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A pest management model with stage structure and impulsive state feedback control is investigated. We get the sufficient condition
for the existence of the order-1 periodic solution by differential equation geometry theory and successor function. Further, we
obtain a new judgement method for the stability of the order-1 periodic solution of the semicontinuous systems by referencing the
stability analysis for limit cycles of continuous systems, which is different from the previous method of analog of Poincarè criterion.
Finally, we analyze numerically the theoretical results obtained.

1. Introduction

Banana leaves diseases are divided into epiphyte and virus.
Banana bunchy top disease (i.e., Prawn banana, Green
banana, Banana) is one of virus diseases, caused by Banana
bunchy top virus. Banana farmers call it an incurable disease.
Banana aphids are the major propagation medium of banana
virus diseases. The development of banana aphids includes
three stages: egg, nymph, and adult (winged form). Eggs
do not carry and spread virus. Nymphs transmit virus to
healthy plants only through short-distance crawling since
genitalia andwings of nymphs are not fully developed yet, and
therefore infected nymphs have slight infective power. After 4
instars, nymphs grow into adults which have fully developed
genitalia and wings and can oviposit and transmit virus to
healthy plants through migrating after piercing and sucking
the virus of diseased plants, so infected adults have strong
infective power. To avoid the outbreak of banana aphids, we
will use ovicides to kill eggs or use insecticides to kill nymphs
and adults.

In pest management, we spray pesticides only when pest
density increases to a certain level called ET (economic
threshold, i.e., pest population density at which control
measures should be adopted to prevent an increasing pest
population from reaching the economic injury level). ET

is the index of pest density. Crop output will not decrease
much when pest density is lower than ET; thus, we need not
adopt any control measure. Once pest density rises to ET,
somemeasures must be carried out to prevent EIL (economic
injure tolerate level) from happening. To control pests, such a
measure for spraying pesticides is always adopted when pest
density arrives at a given ET.

Considering that immature pests cause a minor damage
to crops, in this paper, we will spray insecticides when the
density of immature pests increases to ET, which is a more
effective preventive measure than we do when the density
of mature pests increases to ET. Usually, insecticides have
specificity; in other words, insecticides (such as 2000 to 2500
times dilution of acetamiprid 3%EC, 15000 times dilution
of imidacloprid 70%WG, 1000 times dilution of omethoate
40%EC, and 2500 to 3000 times dilution of sumicidin
20%EC) can only kill nymphs and adults but cannot kill eggs.
Therefore, a pestmanagementmodel with stage structure and
impulsive state feedback control is constructed as follows:
𝑑𝑥

𝑑𝑡
= 𝑎1𝑎2𝑦− 𝑏𝑥 = 𝑎𝑦− 𝑏𝑥 = 𝑃 (𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡
= 𝑐𝑥 − 𝑑𝑦 = 𝑄 (𝑥, 𝑦) ,

𝑥 < 𝑥
∗

,
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Δ𝑥 = −𝛼𝑥,

Δ𝑦 = −𝛽𝑦,

𝑥 = 𝑥
∗

,

(1)

where 𝑥(𝑡), 𝑦(𝑡) denote the proportions of immature pests
(nymphs) andmature pests (adults) at time 𝑡, respectively, 𝑎 =
𝑎1𝑎2 denotes the transformation rate from mature to imma-
ture pests, where 𝑎1 denotes the birth rate of mature pests, 𝑎2
denotes the transformation rate from eggs to immature pests,
𝑐 denotes the transformation rate from immature to mature
pests, 𝑏, 𝑑 denote the death rate of immature and mature
pests, respectively, 𝑎1, 𝑎2, 𝑎, 𝑏, 𝑐, 𝑑 are positive constants, 0 <
𝛼 < 1, 0 < 𝛽 < 1 are the ratios of killing immature andmature
pests by spraying pesticides, respectively, and 𝑥∗ denotes ET.

At present, for stage structure pest management model
with impulsive effect, extinction and permanence have been
proved by using Floquet theorem and comparison theo-
rem [1–4]. For impulsive state feedback control systems,
the sufficient condition for the existence and the orbitally
asymptotically stability of the order-1 periodic solutions have
been obtained by differential equation geometry theory,
the method of successor function, and analog of Poincarè
criterion [5–14]. However, for the pest management model
with stage structure and impulsive state feedback control,
almost no one investigates. In this paper, we try to obtain
a new judgement method for the stability of the order-1
periodic solution by referencing the stability analysis of limit
cycles for continuous systems. This is a superior method,
by which the more perfect and simple conclusions than the
others are obtained.

In the next section, we give some preliminaries. In
Section 3, we get the sufficient condition for the existence
of the order-1 periodic solution of system (1) by differen-
tial equation geometry theory and successor function. In
Section 4, referencing the stability analysis of the limit cycles
for continuous dynamic systems, we prove the order-1 peri-
odic solution of system (1) is orbitally asymptotically stable
under some conditions. In Section 5, we analyze numerically
the theoretical results obtained.

2. Preliminaries

Definition 1 (see [15]). Suppose impulsive state differential
equation

𝑑𝑥

𝑑𝑡
= 𝑃 (𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡
= 𝑄 (𝑥, 𝑦) ,

(𝑥, 𝑦) ∉ 𝑀{𝑥, 𝑦} ,

Δ𝑥 = 𝛼 (𝑥, 𝑦) ,

Δ𝑦 = 𝛽 (𝑥, 𝑦) ,

(𝑥, 𝑦) ∈ 𝑀{𝑥, 𝑦} ,

(2)
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Figure 1: Successor function 𝑓(𝐴) = 𝑎1 − 𝑎.

whose solution mapping composes the system called semi-
continuous dynamic system, denoted by (Ω, 𝑓, 𝜑,𝑀). Set
initial point of mapping 𝑝 ∈ Ω = 𝑅

+

2 \ 𝑀{𝑥, 𝑦}; 𝜑 is a
continuous mapping, 𝜑(𝑀) = 𝑁, and 𝜑 is called impulse
mapping, where 𝑀(𝑥, 𝑦) and 𝑁(𝑥, 𝑦) are straight lines or
curves on the plane 𝑅+2 = {(𝑥, 𝑦) ∈ 𝑅

2
: 𝑥 ≥ 0, 𝑦 ≥ 0},

𝑀{𝑥, 𝑦} denotes impulse set, and𝑁{𝑥, 𝑦} denotes phase set.
In system (1), impulse set𝑀 = {(𝑥, 𝑦) ∈ 𝑅

+

2 | 𝑥 = 𝑥
∗

, 𝑦 ≥

0}, impulse mapping 𝜑: (𝑥, 𝑦) ∈ 𝑀 → ((1 − 𝛼)𝑥∗, 𝑦) ∈ 𝑅+2 ,
phase set𝑁 = 𝜑(𝑀) = {(𝑥, 𝑦) ∈ 𝑅

+

2 | 𝑥 = (1 − 𝛼)𝑥
∗

, 𝑦 ≥ 0}.
Therefore, system (1) composes a semicontinuous dynamic
system (Ω, 𝑓, 𝜑,𝑀).

Definition 2. Let 𝑓(𝑃, 𝑡) be the semicontinuous dynamical
system mapping described by system (2) at Ω → Ω, and
𝑓(𝑃, 𝑡) is amapping in itself. If there are a point𝑃

1
in phase set

𝑁 and a 𝑡1 such that𝑓(𝑃1, 𝑡1) = 𝑄1 ∈ 𝑀{𝑥, 𝑦} (pulsemapping
is 𝜑(𝑄1) = 𝜑(𝑓(𝑃1, 𝑡1)) = 𝑃1 ∈ 𝑁), then 𝑓(𝑃1, 𝑡1) is said to be
the order-1 periodic solution.

Definition 3 (see [15]). Suppose 𝑁 is the phase set of system
(1), 𝑀 is the impulse set of system (1), and both 𝑁 and 𝑀
are straight lines (see Figure 1). The intersection point of 𝑁
and 𝑥-axis is 𝑄, the distance between point 𝐴 (𝐴 ∈ 𝑁) and
point 𝑄 is noted by 𝑎, 𝑀1 denotes the intersection point of
trajectory passing through point 𝐴 and 𝑀, phase point of
𝑀1 is 𝐴1 (𝐴1 ∈ 𝑁), and the distance between 𝐴1 and 𝑄 is
noted by 𝑎1. One defines subsequent point of 𝐴 as 𝐴1, and
the successor function of 𝐴 is 𝑓(𝐴) = 𝑎1 − 𝑎.

Remark 4. If 𝑓(𝐴) = 0, the trajectory passing through point
𝐴 is the order-1 periodic solution of the system.

Lemma 5 (see [15]). Successor function 𝑓(𝐴) is continuous.

According to Lemma 5, we can get the following lemma.
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Figure 2: (a) 𝑞 > 0 and 𝜆1 > 𝜆2. (b) 𝑞 > 0 and 𝜆1 < 𝜆2.

Lemma 6 (see [15]). Assume continuous dynamical system
(𝑋, Ψ); if there exist two points 𝐴, 𝐵 in the phase set such that
successor function 𝑓(𝐴) > 0, 𝑓(𝐵) < 0, we can find a point 𝐶
between 𝐴 and 𝐵 in the phase set satisfying 𝑓(𝐶) = 0. So there
must exist an order-1 periodic solution passing through point𝐶.

3. Existence of the Order-1 Periodic Solution

For system (1), if 𝛼 = 0, 𝛽 = 0, that is, without impulse effects,
there is a unique singular point 𝑂(0, 0) if and only if



−𝑏 𝑎

𝑐 −𝑑



= 𝑏𝑑 − 𝑎𝑐 ̸= 0. (3)

Taking the transform

(
𝑥

𝑦
) = 𝑇(

𝜉

𝜂
) , (4)

system (1) turns into

𝑑

𝑑𝑡
(
𝜉

𝜂
) = 𝑇

−1
𝐴𝑇(

𝜉

𝜂
) , 𝐴 = [

−𝑏 𝑎

𝑐 −𝑑
] . (5)

There are four forms for Jordan standard of the two-
dimensional matrix:

[
𝜆1 0
0 𝜆2

] ,

[
𝜆1 0
1 𝜆1

] ,

[
𝜆1 0
0 𝜆1

] ,

[
𝑢 V

−V 𝑢
] ,

(6)

where 𝜆1, 𝜆2 are two real roots of characteristic equation

𝐷 (𝜆) =



−𝑏 − 𝜆 𝑎

𝑐 −𝑑 − 𝜆



= 𝜆
2
+𝑝𝜆+ 𝑞 = 0, (7)

where𝑝 = 𝑏+𝑑, 𝑞 = 𝑏𝑑−𝑎𝑐, and obviously,𝑝 > 0,𝑝2−4𝑞 > 0.
By theory of stability, singular point 𝑂(0, 0) has the

following two cases [16]:

(i) if 𝑞 > 0, 𝑂(0, 0) is an asymptotically stable node; see
Figures 2(a) and 2(b);

(ii) if 𝑞 < 0, 𝑂(0, 0) is a saddle point; see Figures 3(a) and
3(b).

Theorem 7. If 𝑞 < 0, that is, 𝑏𝑑 − 𝑎𝑐 < 0, there exists a point
𝐶 ∈ 𝑁 satisfying𝑓(𝐶) = 0; that is to say, there exists an order-1
periodic solution of system (1).

Proof. If 𝑞 < 0, that is, 𝑏𝑑−𝑎𝑐 < 0, for system (1), the impulse
set𝑀 is straight line 𝑥 = 𝑥∗, the phase set 𝑁 is straight line
𝑥 = (1 − 𝛼)𝑥∗, and𝑁,𝑀 intersect 𝑥-axis at 𝐺, 𝐹, respectively
(see Figure 4). Denote isoclinic lines 𝑑𝑦/𝑑𝑡 = 0, 𝑑𝑥/𝑑𝑡 = 0
and boundary between the two isoclinic lines as 𝐿1, 𝐿2, 𝐿3,
where 𝐿2 intersects 𝑁 at 𝐵 and 𝐿3 intersects 𝑁,𝑀 at 𝐸,𝐴,
respectively.

Firstly, we analyze the existence of order-1 periodic
solution of system (1) in the domain Δ𝑂𝐹𝐴.

Suppose 𝐶 ∈ 𝑁 is the phase point of 𝐴; then 𝐶
𝑦
< 𝐸
𝑦
,

where𝐶
𝑦
, 𝐸
𝑦
is the 𝑦 coordinate of𝐶, 𝐸, respectively. Choose
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Figure 3: (a) 𝑞 < 0 and 𝜆1 < 0, 𝜆2 > 0. (b) 𝑞 < 0 and 𝜆1 > 0, 𝜆2 < 0.
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Figure 4:The existence of order-1 periodic solution of system (1) in
the domain Δ𝑂𝐹𝐴 when𝐷

𝑦
> 𝐵
𝑦
.

𝑀1 between 𝐸 and 𝐶; the trajectory Γ1 passing through𝑀1
intersects the phase set𝑁 at 𝐶1 after impulse effect, and then
𝐶1 is the subsequent point of𝑀1. Since distinct trajectories do
not intersect, 𝐶1 must be below 𝐶; we have 𝐶1𝑦 < 𝐶𝑦 < 𝑀1𝑦,
where 𝐶1𝑦,𝑀1𝑦 is the 𝑦 coordinate of 𝐶1,𝑀1, respectively.
Therefore, 𝑓(𝑀1) = 𝐶1𝑦 −𝑀1𝑦 < 0.

Suppose the trajectory Γ2 passing through𝐵 intersects the
phase set𝑁 at𝐷 after impulse effect; then𝐷 is the subsequent
point of 𝐵, and there are two cases.
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Figure 5: The existence of order-1 periodic solution of system (1) in
the domain Δ𝑂𝐹𝐴 when𝐷

𝑦
< 𝐵
𝑦
.

Case 1. If 𝐷 is above 𝐵, then 𝐷
𝑦
> 𝐵
𝑦
, where 𝐷

𝑦
, 𝐵
𝑦
is the 𝑦

coordinate of𝐷, 𝐵, respectively; we have𝑓(𝐵) = 𝐷
𝑦
−𝐵
𝑦
> 0.

By Lemma 6, there exists a point 𝐶 ∈ 𝐵𝑀1 ⊂ 𝑁 such that
𝑓(𝐶) = 0. Therefore, there exists an order-1 periodic solution
of system (1) passing through 𝐶. The proof is completed.

Case 2. If 𝐷 is below 𝐵, then 𝐷
𝑦
< 𝐵
𝑦
; we have 𝑓(𝐵) = 𝐷

𝑦
−

𝐵
𝑦
< 0 (see Figure 5). In addition, the trajectory Γ3 passing

through 𝐺 intersects the phase set 𝑁 at 𝐻 after impulse
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Figure 6:The existence of order-1 periodic solution of system (1) in
the trapezoid 𝑂𝐴𝐺𝐹.

effect; then 𝐻 is the subsequent point of 𝐺, and 𝐻 must be
below 𝐶1 and above 𝐺 because distinct trajectories do not
intersect. Therefore, we have 𝑓(𝐺) = 𝐻

𝑦
− 𝐺
𝑦
= 𝐻
𝑦
> 0,

where 𝐻
𝑦
, 𝐺
𝑦
is the 𝑦 coordinate of 𝐻,𝐺, respectively. By

Lemma 6, there exists a point 𝐶 ∈ 𝐺𝐵 ⊂ 𝑁 such that 𝑓(𝐶) =
0. The proof is completed.

Secondly, suppose 𝐿3 intersects 𝑁,𝑀 at 𝐸,𝐴, respec-
tively, and 𝐿1 intersects𝑀 at 𝐺. Draw a straight line which
is perpendicular to 𝑁 and 𝑦-axis; the foot points are 𝐵, 𝐹,
respectively (see Figure 6). Let us analyze the existence of
order-1 periodic solution of system (1) in the trapezoid𝑂𝐴𝐺𝐹.

Suppose 𝐶,𝐻 are the phase points of 𝐴,𝐺, respectively.
On the one hand, the trajectory Γ4 passing through 𝐵

intersects the phase set 𝑁 at 𝐶1 after impulse effect; then
𝐶1 is the subsequent point of 𝐵, and 𝐶1 must be below 𝐻
because distinct trajectories do not intersect. We have 𝑓(𝐵) =
𝐶1𝑦 − 𝐵𝑦 < 0, where 𝐶1𝑦, 𝐵𝑦 is the 𝑦 coordinate of 𝐶1, 𝐵,
respectively.

On the other hand, choose a point 𝐷 ∈ 𝑁 between 𝐸
and 𝐶. The trajectory Γ5 passing through 𝐷 intersects the
phase set 𝑁 at 𝐷1 after impulse effect, and then 𝐷1 is the
subsequent point of 𝐷, and 𝐷1 must be above 𝐶 because
distinct trajectories do not intersect. We have 𝑓(𝐷) = 𝐷1𝑦 −
𝐷
𝑦
> 0, where 𝐷1𝑦, 𝐷𝑦 is the 𝑦 coordinate of 𝐷1, 𝐷,

respectively.
By Lemma 6, there exists a point 𝐶 ∈ 𝐵𝐷 ⊂ 𝑁 such that

𝑓(𝐶) = 0. Therefore, there exists an order-1 periodic solution
of system (1) passing through 𝐶. The proof is completed.

4. Stability of the Order-1 Periodic Solution

Definition 8 (see [17]). On the positive half-trajectory of
semicontinuous dynamic system denoted by 𝑓(𝑃, 𝐼+), 𝐼+ =
(0, +∞), choose any time series {0 ≤ 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑛 < ⋅ ⋅ ⋅ }

S0

S1

Sk

Sk+1

S0

S1

Sk

C

MN

B

A

Γ

Figure 7: The order-1 periodic solution Γ of system (1) is stable.

such that lim
𝑡→∞

𝑡
𝑛
= +∞. If 𝑄 is the limit point of point

range {𝑓(𝑃, 𝑡
𝑛
)}, 𝑛 = 1, 2, . . ., One calls𝑄 the 𝜔 limit point of

point range {𝑓(𝑃, 𝑡
𝑛
)}, 𝑛 = 1, 2, . . . .The set Ωmade up of all

limit points of point range {𝑓(𝑃, 𝑡
𝑛
)}, 𝑛 = 1, 2, . . ., is called 𝜔

limit set.

Definition 9. Assume Γ is the order-1 periodic solution of
semicontinuous dynamic system. If there exists a neighbor-
hood𝑈(Γ) sufficiently small such that𝜔 limit set of trajectory
starting from any point 𝑃 ∈ 𝑈(Γ) is always Γ, the order-1
periodic solution Γ is stable. Otherwise, the order-1 periodic
solution Γ is unstable.

In system (1), 𝐴 is any point of the phase set 𝑁 (see
Figure 7); assume the single-closed curve consisting of curve
𝐴𝐵𝐶 and line segment 𝐶𝐴 is an order-1 periodic solution of
system (1), denoted by Γ. Get point 𝑆0 near 𝐴; there exists a
point range:

{𝑆1, 𝑆2, . . . , 𝑆𝑘, 𝑆𝑘+1 . . .} , (8)

where

𝑆1, 𝑆2, . . . , 𝑆𝑘, 𝑆𝑘+1, . . . (9)

are the subsequent points of 𝑆0, 𝑆1, . . . , 𝑆𝑘−1, 𝑆𝑘, . . ., respec-
tively.

Establish coordinates at phase set and near𝐴, the coordi-
nate of 𝐴 is 0. Let

𝑠0, 𝑠1, . . . , 𝑠𝑘, 𝑠𝑘+1 . . . (10)

denote the coordinates of points

𝑆0, 𝑆1, . . . , 𝑆𝑘, 𝑆𝑘+1, . . . , (11)

respectively.
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Proposition 10. For any point 𝑆0 near 𝐴, when 𝑘 → ∞, the
point range

𝑆0, 𝑆1, . . . , 𝑆𝑘, 𝑆𝑘+1, . . . → 𝐴, (12)

that is,

𝑠0, 𝑠1, . . . , 𝑠𝑘, 𝑠𝑘+1, . . . → 0, (13)

and then the order-1 periodic solution is stable (unidirectional).

Proposition 11 (königs). Assume 𝑠 = 𝑓(𝑠) is a continuous
transform from line segment 𝑁 to itself; 𝑆 = 0 is a fixed point
under the transform. If the part near origin of curve 𝑠 = 𝑓(𝑠)
on the plane (𝑠, 𝑠) lies in the interior of the domain



𝑠

𝑠


≤ 1− 𝜀 (≥ 1+ 𝜀) , 𝜀 > 0, (14)

the fixed point 𝑆 = 0 is stable (unstable).

Proof. We prove firstly that the fixed point 𝑆 = 0 is stable.
Choose 𝜂 > 0 sufficiently small such that for any point 𝑆 in
noncentral neighborhood 𝑈0

(0; 𝜂) of the fixed point 𝑆 = 0,
|𝑠| ≤ 𝜂.

Let


𝑠

𝑠


≤ 1− 𝜀 = 𝛿 < 1, (15)

and we have

|𝑠| ≤ 𝛿 |𝑠| < |𝑠| . (16)

For any point range

{𝑆, 𝑆1, 𝑆2, . . . , 𝑆𝑘, 𝑆𝑘+1, . . .} , (17)

where 𝑆, 𝑆
𝑘
∈ 𝑈

0
(0; 𝜂), 𝑘 = 1, 2, . . . , 𝑛, . . ., we get sequence

{|𝑠| ,
𝑠1
 ,
𝑠2
 , . . . ,

𝑠𝑘
 ,
𝑠𝑘+1

 , . . .} . (18)

From Figure 7, we have |𝑠
𝑘
| ≤ 𝛿|𝑠

𝑘
|, |𝑠
𝑘+1| = (1 −

𝛽)|𝑠
𝑘
|, . . . (𝑘 = 0, 1, 2, . . .).
Let 𝑠0 = 𝑠, 𝑠0 = 𝑠; it is easy to deduce that

𝑠𝑛
 = (1−𝛽)

𝑠𝑛−1
 ≤ (1−𝛽) 𝛿

𝑠𝑛−1
 ≤ ⋅ ⋅ ⋅

≤ (1−𝛽)𝑛 𝛿𝑛 |𝑠| ,
(19)

and hence |𝑠
𝑛
| → 0 when 𝑛 → ∞. Upon that, the fixed

point 𝑆 = 0 is stable.
In the sameway,we prove the fixed point 𝑆 = 0 is unstable.

The proof is completed.

Corollary 12. Assume the derivative of function 𝑠 = 𝑓(𝑠) at
𝑆 = 0 exists; then 𝑆 = 0 is stable when |𝑑𝑠/𝑑𝑠|

𝑆=0 < 1.

From Figure 8, assume the closed orbit consisting of the
curve 𝐴𝐵𝐶 and line segment 𝐶𝐴 is the order-1 periodic
solution of system (20), denoted by Γ, where 𝐴 ∈ 𝑁, 𝐶 ∈ 𝑀,
𝑁 is the phase set, and𝑀 is impulse set. Draw normal line

Bk

Bk+1

n

B

N M

C
D

E

A

s

Γ

D

Figure 8: Establish coordinate system (𝑠, 𝑛) on point 𝐴.

𝑛 passing through 𝐴 ∈ Γ and establish coordinate system
(𝑠, 𝑛) on point 𝐴. Choose any point 𝐷 ∈ 𝑁 in small enough
neighborhood of𝐴. The trajectory starting from𝐷 intersects
vertically 𝑛-axis at 𝐵

𝑘
and intersects impulse set 𝑀 at 𝐷. 𝐸

denotes the phase point of 𝐷, the trajectory passing through
point 𝐸 intersects vertically 𝑛-axis at 𝐵

𝑘+1 as 𝑡 increases.
Assume rectangular coordinate of 𝐴 is (𝜑(𝑠), 𝜓(𝑠)); then

for 𝐵
𝑘
, there is the relation between its rectangular coordi-

nates (𝑥, 𝑦) and curvilinear coordinates (𝑠, 𝑛):

𝑥 = 𝜑 (𝑠) − 𝑛𝜓


(𝑠) ,

𝑦 = 𝜓 (𝑠) + 𝑛𝜑


(𝑠) ,

(20)

where

𝜑


(𝑠) =
𝑑𝑥

𝑑𝑠

𝐴
=

𝑃0

√𝑃20 + 𝑄
2
0

,

𝜓


(𝑠) =
𝑑𝑦

𝑑𝑠

𝐴
=

𝑄0

√𝑃20 + 𝑄
2
0

,

(21)

where 𝑃0, 𝑄0 denote the values of 𝑃,𝑄 at the point 𝐴,
respectively; we have

𝑃0 = 𝑃 (𝜑 (𝑠) , 𝜓 (𝑠)) ,

𝑄0 = 𝑄 (𝜑 (𝑠) , 𝜓 (𝑠)) .
(22)

From (20), it is easy that we have

𝑑𝑦

𝑑𝑥
=
𝜓


(𝑠) + 𝜑


(𝑠) (𝑑𝑛/𝑑𝑠) + 𝑛𝜑


(𝑠)

𝜑 (𝑠) − 𝜓 (𝑠) (𝑑𝑛/𝑑𝑠) − 𝑛𝜓 (𝑠)

=
𝑄 (𝜑 (𝑠) − 𝑛𝜓



(𝑠) , 𝜓 (𝑠) + 𝑛𝜑


(𝑠))

𝑃 (𝜑 (𝑠) − 𝑛𝜓 (𝑠) , 𝜓 (𝑠) + 𝑛𝜑 (𝑠))
,

(23)

and hence

𝑑𝑛

𝑑𝑠
=
𝑄𝜑


− 𝑃𝜓


− 𝑛 (𝑃𝜑


+ 𝑄𝜓


)

𝑃𝜑 + 𝑄𝜓
= 𝐹 (𝑠, 𝑛) . (24)
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Since there is a zero solution 𝑛 = 0 for (24), when there
exist continuous partial derivatives for functions 𝑃,𝑄, there
exists the continuous partial derivative of 𝐹(𝑠, 𝑛)with respect
to 𝑛 also; (24) is written as

𝑑𝑛

𝑑𝑠
= 𝐹


𝑛
(𝑠, 𝑛)

𝑛=0 𝑛 + 𝑜 (𝑛) .
(25)

In order to calculate

𝑑𝑛

𝑑𝑠
= 𝐹


𝑛
(𝑠, 𝑛)

𝑛=0 ,
(26)

we first get

𝜑


(𝑠)

= −
𝑄0

𝑃20 + 𝑄
2
0
[𝑃

2
0𝑄𝑥0 +𝑃0𝑄0 (𝑄𝑦0 −𝑃𝑥0) −𝑄

2
0𝑃𝑦0] ,

𝜓


(𝑠)

=
𝑃0

𝑃20 + 𝑄
2
0
[𝑃

2
0𝑄𝑥0 +𝑃0𝑄0 (𝑄𝑦0 −𝑃𝑥0) −𝑄

2
0𝑃𝑦0] ,

(27)

where 𝑃
𝑦0, 𝑃𝑥0, 𝑄𝑦0, 𝑄𝑥0 denote partial derivatives of 𝑃,𝑄

when 𝑛 = 0, respectively. Since 𝑃 = 𝑃0, 𝑄 = 𝑄0 when 𝑛 = 0, it
is easy to know 𝑃0𝜑



+ 𝑄0𝜓


= 0. By (24) and (27), we have

𝐹


𝑛
(𝑠, 𝑛)

𝑛=0 =
𝑃
2
0𝑄𝑦0 − 𝑃0𝑄0 (𝑃𝑦0 + 𝑄𝑥0) + 𝑄

2
0𝑃𝑥0

(𝑃20 + 𝑄
2
0)

3/2

= 𝐻 (𝑠) ,

(28)

where𝐻(𝑠) denotes the curvature of orthogonal trajectory at
𝐴 for system (1). Therefore, the approximate equation of (25)
is

𝑑𝑛

𝑑𝑠
= 𝐻 (𝑠) 𝑛, (29)

whose solution is

𝑛 = 𝑛0𝑒
∫

𝑠

0 𝐻(𝑠


)𝑑𝑠


, 𝑛0 = 𝑛 (0) . (30)

Theorem 13. Assume ℎ is the length of curve 𝐴𝐵𝐶 which is
a section of the order-1 periodic solution Γ of system (1). The
order-1 periodic solution Γ is stable when

∫

ℎ

0
𝐻(𝑠) 𝑑𝑠 < 0. (31)

Proof. Let us investigate trajectory 𝐵
𝑘
𝐷𝐸𝐵
𝑘+1 (see Figure 8).

In the coordinate system (𝑠, 𝑛), the ordinate of 𝐵
𝑘
is denoted

by 𝑛0 and the ordinate of 𝐷 is denoted by 𝑛. From (30), we
have

|𝑛 (ℎ)| <
𝑛0
 (32)

when ∫ℎ0 𝐻(𝑠)𝑑𝑠 < 0, where ℎ is the length of curve 𝐴𝐵𝐶.
By Propositions 10 and 11, the order-1 periodic solution Γ is
stable.

Corollary 14 (see Diliberto [18]). If the integral along the
order-1 periodic solution Γ satisfies 𝐻(𝑠) < 0, the order-1
periodic solution Γ is stable.

Let 𝑑𝑠 = √𝑃20 + 𝑄2
0𝑑𝑡; the left of (31) can be rewritten as

∫

ℎ

0
𝐻(𝑠) 𝑑𝑠 = ∫

𝑇

0

1
𝑃20 + 𝑄

2
0
[𝑃

2
0𝑄𝑦0

−𝑃0𝑄0 (𝑃𝑦0 +𝑄𝑥0) +𝑄
2
0𝑃𝑥0] 𝑑𝑡 = ∫

𝑇

0
[𝑃
𝑥0 +𝑄𝑦0

−
𝑃
2
0𝑃𝑥0 + 𝑃0𝑄0 (𝑃𝑦0 + 𝑄𝑥0) + 𝑄

2
0𝑄𝑦0

𝑃20 + 𝑄
2
0

]𝑑𝑡

= ∫

𝑇

0
(𝑃
𝑥0 +𝑄𝑦0) 𝑑𝑡 −∫

𝑇

0

1
2

1
𝑃20 + 𝑄

2
0

𝑑

𝑑𝑡
(𝑃

2
0

+𝑄
2
0) 𝑑𝑡 = ∫

𝑇

0
(𝑃
𝑥0 +𝑄𝑦0) 𝑑𝑡

−∫

𝑇

0

1
2
𝑑

𝑑𝑡
[ln (𝑃20 +𝑄

2
0)] 𝑑𝑡;

(33)

that is,

∫

ℎ

0
𝐻(𝑠) 𝑑𝑠 = ∫

𝑇

0
(𝑃
𝑥0 +𝑄𝑦0) 𝑑𝑡

−∫

𝑇

0

1
2
𝑑

𝑑𝑡
[ln (𝑃20 +𝑄

2
0)] 𝑑𝑡 < 0.

(34)

Consider the integral along the periodic solution Γ of
continuous system

𝐽
Γ
 = ∫

𝑇

0

1
2
𝑑

𝑑𝑡
[ln (𝑃20 +𝑄

2
0)] 𝑑𝑡 = 0, (35)

and we suppose the integral along the order-1 periodic solution
Γ of semicontinuous system has the same result.

Denote 𝐹(𝑥, 𝑦) = ((1/2)(𝑑/𝑑𝑡))[ln(𝑃20 + 𝑄
2
0)].

Lemma 15. If function 𝐹(𝑥, 𝑦) is continuous and differen-
tiable, the integral along the order-1 periodic solution of system
(1) satisfies

∫

𝑇

0

𝑑𝐹 (𝑥, 𝑦)

𝑑𝑡
𝑑𝑡 = 0, (36)

where period of the order-1 periodic solution is 𝑇.

Proof. Let Γ be an order-1 periodic solution of system (1) (see
Figure 9); 𝑆1(𝑡) denotes the curve of system (1) from𝐴(𝑥1, 𝑦1)
to 𝐵(𝑥2, 𝑦2), 𝑆1(𝑡) = 𝐴 when 𝑡 = 0, and 𝑆1(𝑡) = 𝐵 when 𝑡 = 𝑇.
𝑆2(𝑡) denotes line segment 𝐵𝐴.
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y2

y1
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M

B

Γ

S1

S2

x1 x2

Figure 9: Γ is the order-1 periodic solution of system (1).

Take the transform 𝜏 = ((𝑛 − 1)/𝑛)𝑡; system (1) can be
written as

𝑑𝑥

𝑑𝜏
= 𝑎𝑦− 𝑏𝑥 = 𝑃 (𝑥, 𝑦) ,

𝑑𝑦

𝑑𝜏
= 𝑐𝑥 − 𝑑𝑦 = 𝑄 (𝑥, 𝑦) ,

𝑥 < 𝑥
∗

,

Δ𝑥 = −𝛼𝑥,

Δ𝑦 = −𝛽𝑦,

𝑥 = 𝑥
∗

,

(37)

where the trajectory Γ𝑛 of system (37) is similar to system (1)
except for time variable.

Let 𝑆𝑛1(𝜏) denote the curve of system (37) from𝐴(𝑥, 𝑦1) to
𝐵(𝑥, 𝑦2) (see Figure 10); 𝑆

𝑛

1(𝜏) = 𝐴 when 𝜏 = 0 and 𝑆𝑛1(𝜏) = 𝐵
when 𝜏 = ((𝑛 − 1)/𝑛)𝑇. 𝑆𝑛2(𝜏) denotes line segment 𝐵𝐴; the
parameter equation of 𝑆𝑛2(𝜏) is

𝑥 =
(𝑥1 − 𝑥2) 𝑛

𝑇
𝜏 + 𝑥2,

𝑦 =
(𝑦1 − 𝑦2) 𝑛

𝑇
𝜏 +𝑦2,

(38)

where 𝑆𝑛2(𝜏) = 𝐵 when 𝜏 = 0 and 𝑆𝑛2(𝜏) = 𝐴 when 𝜏 = 𝑇/𝑛.
Obviously, system (37) → system (1); that is, Γ𝑛 → Γ,

when 𝑛 → ∞, and thus we have

Γ∮

𝑇

0

𝑑𝐹 (𝑥, 𝑦)

𝑑𝑡
𝑑𝑡 = 𝑆1∮

((𝑛−1)/𝑛)𝑇

0

𝑑𝐹 (𝑥, 𝑦)

𝑑𝑡
𝑑𝑡

+ 𝑆2∮
𝑇

((𝑛−1)/𝑛)𝑇

𝑑𝐹 (𝑥, 𝑦)

𝑑𝑡
𝑑𝑡

y2

y1
A

N M

B

x1 x2

Sn1

Sn2
Γn

Figure 10: Γ𝑛 is the order-1 periodic solution of system (37).

= 𝑆1∮
((𝑛−1)/𝑛)𝑇

0

𝑑𝐹 (𝑥, 𝑦)

𝑑𝑡
𝑑𝑡

+ 𝑆2∮
𝑇/𝑛

0

𝑑𝐹 (𝑥, 𝑦)

𝑑𝑡
𝑑𝑡 → 0

(𝑛 → ∞) ;

(39)

that is, the integral along the order-1 periodic solution Γ of
system (1) satisfies

∫

𝑇

0

𝑑𝐹 (𝑥, 𝑦)

𝑑𝑡
𝑑𝑡 = 0. (40)

The proof is completed.

According to (34), we have the following theorem.

Theorem 16. If the integral along the order-1 periodic solution
Γ of system (1) satisfies

∫

𝑇

0
(𝑃
𝑥0 +𝑄𝑦0) 𝑑𝑡 < 0, (41)

Γ is stable.

Theorem 17. The order-1 periodic solution of system (1) is
stable.

Proof. Since

𝜕𝑃 (𝑥, 𝑦)

𝜕𝑥
+
𝜕𝑄 (𝑥, 𝑦)

𝜕𝑦
= − 𝑏 − 𝑑 < 0, (42)

by Theorem 16, the order-1 periodic solution of system (1) is
stable. The proof is completed.

5. Numerical Analysis and Discussion

Without impulse effects, there is an equilibrium point𝑂(0, 0)
for system (1). If 𝑞 > 0, 𝑂(0, 0) is an asymptotically stable
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Figure 11: Time series and phase portrait of system (1) with 𝑎 = 1.7, 𝑏 = 1.8, 𝑐 = 0.8, 𝑑 = 0.9, 𝑥∗ = 50, 𝛼 = 0, 𝛽 = 0, (𝑥0, 𝑦0) = (50, 10).

node; if 𝑞 < 0, 𝑂(0, 0) is a saddle point. According to
Theorem 7, if 𝑞 < 0, that is, 𝑏𝑑−𝑎𝑐 < 0, there exists an order-1
periodic solution of system (1).

To verify the theoretical results obtained in this paper,
we choose 𝑞 as the parameter and analyze numerically the
following cases.

Case 1. Let 𝑎 = 1.7, 𝑏 = 1.8, 𝑐 = 0.8, 𝑑 = 0.9, 𝑥∗ =

50, 𝛼 = 0, 𝛽 = 0, 𝑥0 = 50, 𝑦0 = 10; we have 𝑞 = 0.26
(see Figure 11). According to the above discussion, 𝑂(0, 0) is
an asymptotically stable node when 𝑞 > 0. It implies that

𝑥(𝑡), 𝑦(𝑡) tend to be extinct as 𝑡 increases without any control
measures.

Case 2. Choose 𝛼 as the control parameter; let 𝑎 = 1.7, 𝑏 =
1.5, 𝑐 = 0.8, 𝑑 = 0.6, 𝑥∗ = 50, 𝛼 = 0.1, 𝛽 = 0.3, 𝑥0 = 40, 𝑦0 =
35; we have 𝑞 = −0.46, the impulse set𝑀 = {(𝑥, 𝑦) ∈ 𝑅

+

2 |
𝑥 = 50, 𝑦 ≥ 0}, and the phase set 𝑁 = {(𝑥, 𝑦) ∈ 𝑅

+

2 | 𝑥 =
(1 − 𝛼)𝑥∗ = 45, 𝑦 ≥ 0}. According to Theorem 7, if 𝑞 < 0,
that is, 𝑏𝑑 − 𝑎𝑐 < 0, there exists an order-1 periodic solution
(see Figure 12). We can observe that there exists an order-1
periodic solution of system (1) which lies between the phase
set and the impulse set (i.e., between 45 and 50).
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Figure 12: Time series and phase portrait of system (1) with 𝑎 = 1.7, 𝑏 = 1.5, 𝑐 = 0.8, 𝑑 = 0.6, 𝑥∗ = 50, 𝛼 = 0.1, 𝛽 = 0.3, (𝑥0, 𝑦0) = (40, 35).

Changing 𝛼 = 0.8, 𝑥0 = 5, 𝑦0 = 40, the rest of the
parameters are the same as Figure 12, andwe obtain Figure 13.
From the phase portrait of Figure 13, we can observe that
there exists an order-1 periodic solution of system (1) which
lies between the phase set and the impulse set (i.e., between
10 and 50).

Figures 12 and 13 give the time series and phase portraits
when 𝛼 < 𝛽 (𝛼 = 0.1, 𝛽 = 0.3) and 𝛼 > 𝛽 (𝛼 =

0.8, 𝛽 = 0.3), respectively, and show different positions
of the periodic solution under different parameter values
and different initial values. Furthermore, the phase portrait
of Figure 12 indicates that the mature pests always keep

increasing, but Figure 13 indicates that the mature pests
firstly decrease and then begin to increase. Therefore, the
control parameter 𝛼 (𝛼 > 𝛽 or 𝛼 < 𝛽) can result in
different change in density of mature pests and different
efficiencies of killing mature pests by spraying pesticides
which will give a conclusion theoretically to the researchers
in killing mature pests. Researchers should give suitable
control parameter 𝛼 and appropriate initial values in order
to obtain a steady and optimal control. In fact, immature
pests (nymphs) are more easily to be killed by pesticides than
mature pests (adults); thus, Figure 13 is more feasible than
Figure 12.
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Figure 13: Time series and phase portrait of system (1) with 𝑎 = 1.7, 𝑏 = 1.5, 𝑐 = 0.8, 𝑑 = 0.6, 𝑥∗ = 50, 𝛼 = 0.8, 𝛽 = 0.3, (𝑥0, 𝑦0) = (5, 40).

Time series portraits of Figures 12 and 13 show that the
order-1 periodic solution of system (1) is stable, and it is
consistentwithTheorem 17.Thenumerical analysis illustrates
that we can achieve the aim of controlling immature and
mature pests by impulsively spraying pesticides when imma-
ture pests density increases to 𝑥∗.

According to the obtained conclusions, we can predict the
cycle time without repeated measurements, which can save
a lot of labor and material resources. Obviously, the model
with impulsive state feedback control is closer to the reality
than the periodic impulsive model where there is no density
dependence.
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