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A discrete two-species competitivemodel is investigated. By using somepreliminary lemmas and constructing a Lyapunov function,
the existence and uniformly asymptotic stability of positive almost periodic solutions of the system are derived. In addition, an
example and numerical simulations are presented to illustrate and substantiate the results of this paper.

1. Introduction

Gopalsamy has presented the following Lotka-Volterra com-
petitive systemwith continuous time version in 1992 (see [1]):
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𝑛 = 0, 1, 2, . . . ,

(1)

where 𝑥
1
(𝑡), 𝑥
2
(𝑡) represent the population densities of two

competing species; 𝑟
1
(𝑡), 𝑟
2
(𝑡) are the intrinsic growth rates

of species; 𝑏
1
(𝑡), 𝑏
2
(𝑡) stand for the rates of intraspecific

competition of the first and second species, respectively;
𝑎
2
(𝑡)𝑥
2
(𝑡)/(1 + 𝑑

1
(𝑡)𝑥
1
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1
(𝑡)𝑥
1
(𝑡)/(1 + 𝑑

2
(𝑡)𝑥
2
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the competitive response function, respectively. All the coef-
ficients above are continuous and bounded above and below
by positive constants.

The discrete-time systems governed by difference equa-
tions recently have been won wide-spread attention and
applied in studying population growth, the transmission
of tuberculosis and HIV/AIDS and influenza prevention
and control (see [2, 3]), just because discrete-time models
conform better to the reality than the continuous ones,

especially for the populations with a short life expectancy or
non-overlapping generations. In addition, some works about
the bifurcation, chaos, and complex dynamical behaviors
of the discrete specie systems have been done (see [4, 5]).
In practice, according to the discrete data measured, the
discrete-time models commonly provide efficient computa-
tional models of continuous models for numerical simu-
lations (see [2, 3, 6–11]). Therefore, we derive the discrete
analogue of system (1) by using the same discretization
method (see [11]):
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] ,

𝑛 = 0, 1, 2, . . . ,

(2)

where 𝑥
𝑖
(𝑛) (𝑖 = 1, 2; 𝑖 ̸= 𝑗) denote the densities of species

𝑥
𝑖
at the 𝑛th generation, 𝑟

𝑖
(𝑛) stand for the natural growth

rates of species 𝑥
𝑖
at the 𝑛th generation, 𝑏

𝑖
(𝑛) represent the
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self-inhibition rate, respectively, and 𝑎
𝑗
(𝑛) and 𝑑

𝑖
(𝑛) are the

interspecific effects of the 𝑛th generation of species 𝑥
𝑖
on

species 𝑥
𝑗
.

From an evolutionary perspective, because of the selec-
tivity of species evolution, the periodically varying environ-
ments are of vital importance for survival of the fittest. For
instance, any periodic change of climate tends to impose
its period upon oscillations of internal origin or to cause
such oscillations to have a harmonic relation to periodic
climatic changes (see [11–16]). Therefore, the coefficients of
many systems constructed in ecology are usually considered
as periodic functions (see [12, 13]). Not long ago, Wang (see
[12]) studied a delayed predator-prey model with Hassell-
Varley type functional responses and obtained the sufficient
conditions for the existence of positive periodic solutions
by applying the coincidence degree theorem. Many excellent
results concerned with the discrete periodic systems are
obtained (see [14–16]).

In nature, however, there hardly exists necessarily com-
mensurate periods in the various environment components
like seasonal weather change, food supplies, mating habits
and harvesting, and so forth. Compared with the periodic
systems, we can thus incorporate the assumption of almost
periodicity of the coefficients of (1) to reflect the time-
dependent variability of the environment (see [6, 8–10,
17]). Recently, Li et al. (see [18]) have proposed an almost
periodic discrete predator-prey models with time delays and
investigated permanence of the system and the existence
of a unique uniformly asymptotically stable positive almost
periodic sequence solution. Afterwards, by using Mawhins
continuation theoremof the coincidence degree theory, refer-
ence [19] achieved some sufficient conditions for the existence
of positive almost periodic solutions for a class of delay
discrete models with Allee-effect.

Notice that the investigation of periodic solutions and
almost periodic solutions is one of the most important topics
in the qualitative theory of the difference equations. In this
paper, based on the ideas mentioned above, for system (2),
one carries out two main works.

(i) Assume that all the coefficients {𝑟
𝑖
(𝑛)}, {𝑏

𝑖
(𝑛)},

{𝑎
𝑖
(𝑛)}, and {𝑑

𝑖
(𝑛)} are bounded nonnegative periodic

sequences. We explore the existence and global sta-
bility of positive periodic solutions of system (2) with
positive periodic coefficients.

(ii) Furtherly, one discusses the almost periodic solutions
of system (2) with positive almost periodic coeffi-
cients.

The organization of this paper is as follows. In Section
2, we present some notations and preliminary lemmas. In
Section 3, we seek sufficient conditions which ensure the
existence and global stability of positive periodic solutions of
system (2). In Section 4, we further investigate the existence,
uniqueness, and uniformly asymptotic stability of positive
almost periodic solutions for system (2) above. In Section
5, we present an example and its numerical simulations are
carried out to illustrate the feasibility of our main results. In
Section 6, a conclusion is given to conclude this work.

2. Notations and Preliminaries Lemmas

Throughout this paper, the notations below will be used:

ℎ
𝑢
= sup
𝑛∈Z+

{ℎ (𝑛)} ,

ℎ
𝑙
= inf
𝑛∈Z+

{ℎ (𝑛)} ,

(3)

where {ℎ(𝑛)} is a bounded sequence andZ+ = {0, 1, 2, 3, . . .}.
Denote by R, R+, Z, and Z+ the sets of real numbers,

nonnegative real numbers, integers, and nonnegative inte-
gers, respectively.R2 andR𝑘 are the cones of 2-dimensional
and 𝑘-dimensional real Euclidean spaces, respectively.

Definition 1 (see [10]). A sequence 𝑦 : Z → R𝑘 is called
an almost periodic sequence provided that the following 𝜀-
translation set of 𝑦

𝐼 {𝜀, 𝑦} := {𝜏 ∈ Z :
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑛 + 𝜏) − 𝑦 (𝑛)

󵄨
󵄨
󵄨
󵄨
< 𝜀, ∀𝑛 ∈ Z} (4)

is a relatively dense set inZ for all 𝜀 > 0; that is, for any given
𝜀 > 0, there exists an integer 𝑙(𝜀) > 0 such that each discrete
interval of length 𝑙(𝜀) contains a 𝜏 = 𝜏(𝜀) ∈ 𝐼{𝜀, 𝑦} such that

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑛 + 𝜏) − 𝑦 (𝑛)

󵄨
󵄨
󵄨
󵄨
< 𝜀, ∀𝑛 ∈ Z; (5)

𝜏 is referred to as the 𝜀-translation number of 𝑦(𝑛).

Definition 2 (see [10]). Suppose ℎ : Z ×A → 𝑅
𝑘, whereA

is an open set inR𝑘. ℎ(𝑛, 𝑥) is said to be almost periodic in 𝑛
uniformly for 𝑥 ∈ A or uniformly almost periodic for short,
if for any 𝜀 > 0 and any compact set S in A there exists a
positive integer 𝑙(𝜀,S) such that any interval of length 𝑙(𝜀,S)
contains an integer 𝜏 for which

|ℎ (𝑛 + 𝜏, 𝑥) − ℎ (𝑛, 𝑥)| < 𝜀, ∀𝑛 ∈ Z, 𝑥 ∈ S; (6)

𝜏 is called the 𝜀-translation number of ℎ(𝑛, 𝑥).

Lemma 3 (see [10]). {𝑥(𝑛)} is an almost periodic sequence
if and only if for any sequence {𝑝󸀠

𝑡
} ⊂ Z there exists a

subsequence {𝑝
𝑡
} ⊂ {𝑝

󸀠

𝑡
} such that𝑥(𝑛+𝑝

𝑡
) converges uniformly

on 𝑛 ∈ Z as 𝑡 → ∞.Thus, the limit sequence is also an almost
periodic sequence.

Furthermore, we consider the following almost periodic
difference system:

𝑥 (𝑛 + 1) = ℎ (𝑛, 𝑥 (𝑛)) , 𝑛 ∈ Z
+
, (7)

where ℎ : Z+ × C
𝐵
→ R𝑘, C

𝐵
= {𝑥 ∈ C : ‖𝑥‖ < 𝐵}, and

ℎ(𝑛, 𝑥) is almost periodic in 𝑛 uniformly for 𝑥 ∈ C
𝐵
and is

continuous in 𝑥.
The product system of (7) is in the following form:

𝑥 (𝑛 + 1) = ℎ (𝑛, 𝑥
𝑛
) ,

𝑦 (𝑛 + 1) = ℎ (𝑛, 𝑦
𝑛
) ,

(8)

and [20] obtained the following lemma, where (𝑥(𝑛, 𝜙), 𝑦(𝑛,
𝜓)) is a solution of (8).
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Lemma4 (see [20]). Suppose there exists a Lyapunov function
𝑉(𝑛, 𝜙, 𝜓) defined for 𝑛 ∈ Z+, ‖𝜙‖ < 𝐵, and ‖𝜓‖ < 𝐵 satisfying
the following conditions:

(1) 𝛼(|𝜙 − 𝜓|) ≤ 𝑉(𝑛, 𝜙, 𝜓) ≤ 𝛽(‖𝜙 − 𝜓‖), where 𝛼, 𝛽 ∈ 𝑝
with 𝑝 = {𝜂 : [0,∞) → [0,∞) | 𝜂(0) = 0 and 𝜂(]) is
continuous, increasing in ]};

(2) |𝑉(𝑛, 𝜙
1
, 𝜓
1
)−𝑉(𝑛, 𝜙

2
, 𝜓
2
)| ≤ 𝐿(‖𝜙

1
−𝜙
2
‖+‖𝜓
1
−𝜓
2
‖),

where 𝐿 > 0 is a constant;
(3) Δ𝑉

(8)
(𝑛, 𝜙, 𝜓) ≤ −𝛾𝑉(𝑛, 𝜙, 𝜓), where 0 < 𝛾 <

1 is a constant and Δ𝑉
(8)
(𝑛, 𝜙, 𝜓) = 𝑉(𝑛 +

1, 𝑥
𝑛+1
(𝑛, 𝜙), 𝑦

𝑛+1
(𝑛, 𝜓)) − 𝑉(𝑛, 𝜙, 𝜓).

Moreover, suppose that there exists a solution 𝑥(𝑛) of system
(7) such that ‖𝑥

𝑛
‖ ≤ 𝐵

∗
< 𝐵 for all 𝑛 ∈ Z+; then there

exists a unique uniformly asymptotically stable almost periodic
solution 𝑞(𝑛) of system (7) which satisfies |𝑞(𝑛)| ≤ 𝐵

∗. In
particular, if ℎ(𝑛, 𝜙) is periodic of period 𝜔, then system (7) has
a unique uniformly asymptotically stable periodic solution with
period 𝜔.

Lemma 5 (see [21]). Any positive solution (𝑥
1
(𝑛), 𝑥
2
(𝑛)) of

system (2) satisfies

lim sup
𝑛→+∞

𝑥
𝑖
(𝑛) ≤

exp (𝑟𝑢
𝑖
− 1)

𝑏
𝑙

𝑖

≡ 𝑀
𝑖
, 𝑖 = 1, 2. (9)

Lemma 6 (see [21]). Let system (2) satisfy the following
assumptions:

min {𝑟𝑙
1
− 𝑎
𝑢

2
𝑀
2
, 𝑟
𝑙

2
− 𝑎
𝑢

1
𝑀
1
} > 0. (10)

Then, any positive solution (𝑥
1
(𝑛), 𝑥
2
(𝑛)) of system (2) satisfies

𝑥
𝑖
(𝑛) ≥

𝑟
𝑙

𝑖
− 𝑎
𝑢

𝑗
𝑀
𝑗

𝑏
𝑢

𝑖

exp (𝑟𝑙
𝑖
− 𝑎
𝑢

𝑗
𝑀
𝑗
− 𝑏
𝑢

𝑖
𝑀
𝑖
) ≡ 𝑚

𝑖
,

𝑖 ̸= 𝑗; 𝑖, 𝑗 = 1, 2.

(11)

3. Existence and Stability of Positive
Periodic Solutions

Apparently, the permanence of system (2) can be obtained
according to Lemmas 5 and 6. In the following, we will show
the existence and stability of positive periodic solutions of
system (2). To this end, let us assume that all the coefficients
of system (2) are 𝛿-periodic; namely,

𝑟
𝑖
(𝑛 + 𝛿) = 𝑟

𝑖
(𝑛) ,

𝑎
𝑖
(𝑛 + 𝛿) = 𝑎

𝑖
(𝑛) ,

𝑏
𝑖
(𝑛 + 𝛿) = 𝑏

𝑖
(𝑛) ,

𝑑
𝑖
(𝑛 + 𝛿) = 𝑑

𝑖
(𝑛) ,

𝑖 = 1, 2.

(12)

Lemma 7 (see [16]). If the assumption (10) holds, then system
(2) has at least one strictly positive 𝛿-periodic solution and is
denoted by (𝑥∗

1
(𝑛), 𝑥
∗

2
(𝑛)).

Definition 8. A positive periodic solution (𝑥
∗

1
(𝑛), 𝑥
∗

2
(𝑛))

of system (2) is globally stable if each other solution
(𝑥
1
(𝑛), 𝑥
2
(𝑛)) with positive initial value defined for all 𝑛 > 0

satisfies

lim
𝑛→+∞

󵄨
󵄨
󵄨
󵄨
𝑥
1
(𝑛) − 𝑥

∗

1
(𝑛)
󵄨
󵄨
󵄨
󵄨
= 0,

lim
𝑛→+∞

󵄨
󵄨
󵄨
󵄨
𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)
󵄨
󵄨
󵄨
󵄨
= 0.

(13)

Now, we present the main results.

Theorem 9. Let the following assumption

𝜉
1
= max {󵄨󵄨󵄨󵄨

󵄨
1 + 𝑎
𝑢

2
𝑑
𝑢

1
𝑀
1
𝑀
2
− 𝑏
𝑙

1
𝑚
1

󵄨
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
1 + 𝑎
𝑙

2
𝑑
𝑙

1
𝑚
1
𝑚
2
− 𝑏
𝑢

1
𝑀
1

󵄨
󵄨
󵄨
󵄨
󵄨
}

+ 𝑎
𝑢

2
𝑀
2
+ 𝑎
𝑢

2
𝑑
𝑢

1
𝑀
1
𝑀
2
< 1,

𝜉
2
= max {󵄨󵄨󵄨󵄨

󵄨
1 + 𝑎
𝑢

1
𝑑
𝑢

2
𝑀
1
𝑀
2
− 𝑏
𝑙

2
𝑚
2

󵄨
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
1 + 𝑎
𝑙

1
𝑑
𝑙

2
𝑚
1
𝑚
2
− 𝑏
𝑢

2
𝑀
2

󵄨
󵄨
󵄨
󵄨
󵄨
}

+ 𝑎
𝑢

1
𝑀
1
+ 𝑎
𝑢

1
𝑑
𝑢

2
𝑀
1
𝑀
2
< 1

(14)

and (10) hold; then the positive periodic solution of system (2)
is globally stable.

Proof. Let (𝑥∗
1
(𝑛), 𝑥
∗

2
(𝑛)) be a positive periodic solution of

system (2).
Denote exp 𝑧

1
(𝑛) = 𝑥

1
(𝑛)/𝑥
∗

1
(𝑛) and exp 𝑧

2
(𝑛) = 𝑥

2
(𝑛)/

𝑥
∗

2
(𝑛); then we have

𝑧
1
(𝑛 + 1)

= 𝑧
1
(𝑛) + 𝑏

1
(𝑛) 𝑥
∗

1
(𝑛) (1 − exp 𝑧

1
(𝑛))

+ (𝑎
2
(𝑛) (𝑥

∗

2
(𝑛) − 𝑥

2
(𝑛))

+ 𝑎
2
(𝑛) 𝑑
1
(𝑛) (𝑥

1
(𝑛) 𝑥
∗

2
(𝑛) − 𝑥

∗

1
(𝑛) 𝑥
2
(𝑛)))

⋅ ((1 + 𝑑
1
(𝑛) 𝑥
∗

1
(𝑛)) (1 + 𝑑

1
(𝑛) 𝑥
1
(𝑛)))
−1

≤ 𝑧
1
(𝑛) + 𝑏

1
(𝑛) 𝑥
∗

1
(𝑛) (1 − exp 𝑧

1
(𝑛))

+ 𝑎
2
(𝑛) 𝑥
∗

2
(𝑛) (1 − exp 𝑧

2
(𝑛))

+ 𝑎
2
(𝑛) 𝑑
1
(𝑛) 𝑥
∗

1
(𝑛) 𝑥
∗

2
(𝑛)

⋅ [(1 − exp 𝑧
2
(𝑛)) − (1 − exp 𝑧

1
(𝑛))] ,

𝑧
2
(𝑛 + 1)

= 𝑧
2
(𝑛) + 𝑏

2
(𝑛) 𝑥
∗

2
(𝑛) (1 − exp 𝑧

2
(𝑛))

+ (𝑎
1
(𝑛) (𝑥

∗

1
(𝑛) − 𝑥

1
(𝑛))

+ 𝑎
1
(𝑛) 𝑑
2
(𝑛) (𝑥

∗

1
(𝑛) 𝑥
2
(𝑛) − 𝑥

1
(𝑛) 𝑥
∗

2
(𝑛)))

⋅ ((1 + 𝑑
2
(𝑛) 𝑥
∗

2
(𝑛)) (1 + 𝑑

2
(𝑛) 𝑥
2
(𝑛)))
−1
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≤ 𝑧
2
(𝑛) + 𝑏

2
(𝑛) 𝑥
∗

2
(𝑛) (1 − exp 𝑧

2
(𝑛))

+ 𝑎
1
(𝑛) 𝑥
∗

1
(𝑛) (1 − exp 𝑧

1
(𝑛))

+ 𝑎
1
(𝑛) 𝑑
2
(𝑛) 𝑥
∗

1
(𝑛) 𝑥
∗

2
(𝑛)

⋅ [(1 − exp 𝑧
1
(𝑛)) − (1 − exp 𝑧

2
(𝑛))] ,

(15)

which, according to the mean value, yields

𝑧
1
(𝑛 + 1)

≤ 𝑧
1
(𝑛) [1 − 𝑏

1
(𝑛) 𝑥
∗

1
(𝑛) exp (𝜗

1
𝑧
1
(𝑛))

+ 𝑎
2
(𝑛) 𝑑
1
(𝑛) 𝑥
∗

1
(𝑛) 𝑥
∗

2
(𝑛) exp (𝜗

1
𝑧
1
(𝑛))]

− 𝑧
2
(𝑛) [𝑎
2
(𝑛) 𝑥
∗

2
(𝑛) exp (𝜗

2
𝑧
2
(𝑛))

+ 𝑎
2
(𝑛) 𝑑
1
(𝑛) 𝑥
∗

1
(𝑛) 𝑥
∗

2
(𝑛) exp (𝜗

2
𝑧
2
(𝑛))] ,

𝑧
2
(𝑛 + 1)

≤ 𝑧
2
(𝑛) [1 − 𝑏

2
(𝑛) 𝑥
∗

2
(𝑛) exp (𝜗

3
𝑧
2
(𝑛))

+ 𝑎
1
(𝑛) 𝑑
2
(𝑛) 𝑥
∗

1
(𝑛) 𝑥
∗

2
(𝑛) exp (𝜗

3
𝑧
2
(𝑛))]

− 𝑧
1
(𝑛) [𝑎
1
(𝑛) 𝑥
∗

1
(𝑛) exp (𝜗

4
𝑧
1
(𝑛))

+ 𝑎
1
(𝑛) 𝑑
2
(𝑛) 𝑥
∗

1
(𝑛) 𝑥
∗

2
(𝑛) exp (𝜗

4
𝑧
1
(𝑛))] ,

(16)

where all the constants 𝜗
1
, 𝜗
2
, 𝜗
3
, 𝜗
4

∈ (0, 1). Obviously,
together with (14) we can find a sufficiently small 𝜀 such that

𝜉
∗

1
= max {󵄨󵄨󵄨󵄨

󵄨
1 + 𝑎
𝑢

2
𝑑
𝑢

1
(𝑀
1
+ 𝜀) (𝑀

2
+ 𝜀) − 𝑏

𝑙

1
(𝑚
1
− 𝜀)

󵄨
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
1 + 𝑎
𝑙

2
𝑑
𝑙

1
(𝑚
1
− 𝜀) (𝑚

2
− 𝜀) − 𝑏

𝑢

1
(𝑀
1
+ 𝜀)

󵄨
󵄨
󵄨
󵄨
󵄨
}

+ 𝑎
𝑢

2
(𝑀
2
+ 𝜀) + 𝑎

𝑢

2
𝑑
𝑢

1
(𝑀
1
+ 𝜀) (𝑀

2
+ 𝜀) < 1,

𝜉
∗

2
= max {󵄨󵄨󵄨󵄨

󵄨
1 + 𝑎
𝑢

1
𝑑
𝑢

2
(𝑀
1
+ 𝜀) (𝑀

2
+ 𝜀) − 𝑏

𝑙

2
(𝑚
2
− 𝜀)

󵄨
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
1 + 𝑎
𝑙

1
𝑑
𝑙

2
(𝑚
1
− 𝜀) (𝑚

2
− 𝜀) − 𝑏

𝑢

2
(𝑀
2
+ 𝜀)

󵄨
󵄨
󵄨
󵄨
󵄨
}

+ 𝑎
𝑢

1
(𝑀
1
+ 𝜀) + 𝑎

𝑢

1
𝑑
𝑢

2
(𝑀
1
+ 𝜀) (𝑀

2
+ 𝜀) < 1.

(17)

It follows from Lemmas 5 and 6 that there exists an𝑁
0
such

that 𝑛 > 𝑁
0
; we have

0 < 𝑚
1
− 𝜀 ≤ 𝑥

∗

1
(𝑛) ≤ 𝑀

1
+ 𝜀,

0 < 𝑚
2
− 𝜀 ≤ 𝑥

∗

2
(𝑛) ≤ 𝑀

2
+ 𝜀,

0 < 𝑚
1
− 𝜀 ≤ 𝑥

1
(𝑛) ≤ 𝑀

1
+ 𝜀,

0 < 𝑚
2
− 𝜀 ≤ 𝑥

2
(𝑛) ≤ 𝑀

2
+ 𝜀.

(18)

Then one obtains the fact that both 𝑥∗
1
(𝑛) exp(𝜗

1
𝑧
1
(𝑛)) and

𝑥
∗

1
(𝑛) exp(𝜗

4
𝑧
1
(𝑛)) are between 𝑥

∗

1
(𝑛) and 𝑥

1
(𝑛). Similarly,

both 𝑥∗
2
(𝑛) exp(𝜗

2
𝑧
2
(𝑛)) and 𝑥∗

2
(𝑛) exp(𝜗

3
𝑧
2
(𝑛)) are between

𝑥
∗

2
(𝑛) and 𝑥

2
(𝑛). From the first equation of (2), one has

󵄨
󵄨
󵄨
󵄨
𝑧
1
(𝑛 + 1)

󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑧
1
(𝑛)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
[1 − 𝑏

1
(𝑛) 𝑥
∗

1
(𝑛) exp (𝜗

1
𝑧
1
(𝑛))

+ 𝑎
2
(𝑛) 𝑑
1
(𝑛) 𝑥
∗

1
(𝑛) 𝑥
∗

2
(𝑛) exp (𝜗

1
𝑧
1
(𝑛))]

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑧
2
(𝑛)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
[𝑎
2
(𝑛) 𝑥
∗

2
(𝑛) exp (𝜗

2
𝑧
2
(𝑛))

+ 𝑎
2
(𝑛) 𝑑
1
(𝑛) 𝑥
∗

1
(𝑛) 𝑥
∗

2
(𝑛) exp (𝜗

2
𝑧
2
(𝑛))]

󵄨
󵄨
󵄨
󵄨

≤ max {󵄨󵄨󵄨󵄨
󵄨
1 + 𝑎
𝑢

2
𝑑
𝑢

1
(𝑀
1
+ 𝜀) (𝑀

2
+ 𝜀) − 𝑏

𝑙

1
(𝑚
1
− 𝜀)

󵄨
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
1 + 𝑎
𝑙

2
𝑑
𝑙

1
(𝑚
1
− 𝜀) (𝑚

2
− 𝜀) − 𝑏

𝑢

1
(𝑀
1
+ 𝜀)

󵄨
󵄨
󵄨
󵄨
󵄨
}

⋅
󵄨
󵄨
󵄨
󵄨
𝑧
1
(𝑛)
󵄨
󵄨
󵄨
󵄨

+ [𝑎
𝑢

2
(𝑀
2
+ 𝜀) + 𝑎

𝑢

2
𝑑
𝑢

1
(𝑀
1
+ 𝜀) (𝑀

2
+ 𝜀)]

󵄨
󵄨
󵄨
󵄨
𝑧
2
(𝑛)
󵄨
󵄨
󵄨
󵄨

≤ 𝜉
∗

1
max {𝑧

1
(𝑛) , 𝑧
2
(𝑛)} .

(19)

Similar to the arguments as above, we must have
󵄨
󵄨
󵄨
󵄨
𝑧
2
(𝑛 + 1)

󵄨
󵄨
󵄨
󵄨
≤ 𝜉
∗

2
max {𝑧

1
(𝑛) , 𝑧
2
(𝑛)} . (20)

We denote 𝜉∗ = max{𝑥∗
1
, 𝑥
∗

2
}; then 𝜉∗ < 1. Therefore, pro-

vided that 𝑛 > 𝑁
0
,

max {󵄨󵄨󵄨
󵄨
𝑧
1
(𝑛 + 1)

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑧
2
(𝑛 + 1)

󵄨
󵄨
󵄨
󵄨
}

≤ 𝜉
∗max {󵄨󵄨󵄨

󵄨
𝑧
1
(𝑛)
󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑧
2
(𝑛)
󵄨
󵄨
󵄨
󵄨
} ≤ (𝜉

∗
)
𝑛−𝑁
0

.

(21)

Consequently, lim
𝑛→+∞

|𝑥
𝑖
(𝑛) − 𝑥

∗

𝑖
(𝑛)| = 0, where 𝑖 = 1, 2.

By Definition 8, it follows that the positive periodic solution
{𝑥
∗

1
(𝑛), 𝑥
∗

2
(𝑛)} of system (2) is globally stable. This completes

the proof.

4. Existence and Stability of Positive Almost
Periodic Solutions

In this section, we discuss the existence of positive almost
periodic solutions of system (2).

Lemma 10. If assumption (10) is true, then Ω ̸= ⌀.

Proof. According to an inductive argument, system (2) is
actually described as follows:

𝑥
1
(𝑛)

= 𝑥
1
(0) exp

𝑛−1

∑

𝑡=0

[𝑟
1
(𝑡) − 𝑏

1
(𝑡) 𝑥
1
(𝑡) −

𝑎
2
(𝑡) 𝑥
2
(𝑡)

1 + 𝑑
1
(𝑡) 𝑥
1
(𝑡)

] ,

𝑥
2
(𝑛)

= 𝑥
2
(0) exp

𝑛−1

∑

𝑡=0

[𝑟
2
(𝑡) − 𝑏

2
(𝑡) 𝑥
2
(𝑡) −

𝑎
1
(𝑡) 𝑥
1
(𝑡)

1 + 𝑑
2
(𝑡) 𝑥
2
(𝑡)

] .

(22)
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Combining Lemmas 5 and 6, for any solution (𝑥
1
(𝑛), 𝑥
2
(𝑛))

of system (2) and an arbitrarily small constant 𝜀 > 0, there
must be 𝑛

0
which is sufficiently large such that

𝑚
1
− 𝜀 ≤ 𝑥

1
(𝑛) ≤ 𝑀

1
+ 𝜀,

𝑚
2
− 𝜀 ≤ 𝑥

2
(𝑛) ≤ 𝑀

2
+ 𝜀,

∀𝑛 ≥ 𝑛
0
.

(23)

Assuming that 𝜏
𝑘
is any positive integer sequence such that

{𝜏
𝑘
} → +∞ as 𝑘 → +∞, we can prove that there is a

subsequence of {𝜏
𝑘
} still denoted by {𝜏

𝑘
}, such that 𝑥

𝑖
(𝑛 +

𝜏
𝑘
) → 𝑥

∗

𝑖
(𝑛), 𝑖 = 1, 2 uniformly in 𝑛 on any finite subset

𝐿 ofZ+ as 𝑘 → +∞, where 𝐿 = {𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑚
}, 𝑙
𝑗
∈ Z+ (𝑗 =

1, 2, . . . , 𝑚), and𝑚 is a finite number.
In fact, for any finite subset 𝐿 ⊂ Z+, 𝜏

𝑘
+ 𝑙
𝑗
> 𝑛
0
, (𝑗 =

1, 2, . . . , 𝑚), when 𝑘 is large enough.Therefore,𝑚
𝑖
−𝜀 ≤ 𝑥

𝑖
(𝑛+

𝜏
𝑘
) ≤ 𝑀

𝑖
−𝜀, 𝑖 = 1, 2; that is, 𝑥

𝑖
(𝑛+𝜏
𝑘
) are uniformly bounded

when 𝑘 is sufficiently large.
Next, for 𝑙

1
∈ 𝐿, we choose a subsequence {𝜏(1)

𝑘
} of {𝜏

𝑘
}

such that 𝑥
1
(𝑙
1
+𝜏
(1)

𝑘
) and 𝑥

2
(𝑙
1
+𝜏
(1)

𝑘
) uniformly converge on

Z+ for 𝑘 sufficient large.
Similar to the arguments of 𝑙

1
, for 𝑙
2
∈ 𝐿, one can select a

subsequence {𝜏(2)
𝑘
} of {𝜏(1)

𝑘
} such that 𝑥

1
(𝑙
2
+ 𝜏
(2)

𝑘
) and 𝑥

2
(𝑙
2
+

𝜏
(2)

𝑘
) uniformly converge onZ+ for large enough 𝑘.
Repeating above-mentioned process, for 𝑙

𝑚
∈ 𝐿, one

obtains a subsequence {𝜏(𝑚)
𝑘
} of {𝜏(𝑚−1)

𝑘
} such that 𝑥

1
(𝑙
𝑚
+𝜏
(𝑚)

𝑘
)

and 𝑥
2
(𝑙
𝑚
+ 𝜏
(𝑚)

𝑘
) uniformly converge on Z+ for sufficiently

large 𝑘.
Based on the above, one selects the sequence {𝜏(𝑚)

𝑘
}which

is a subsequence of {𝜏
𝑘
} still denoted by {𝜏

𝑘
}; then, for 𝑛 ∈

𝐿, one gets 𝑥
𝑖
(𝑛 + 𝜏

𝑘
) → 𝑥

∗

𝑖
(𝑛), 𝑖 = 1, 2 uniformly in 𝑛 ∈

𝐿 as 𝑘 → +∞. So the conclusion holds truely due to the
arbitrariness of 𝐿.

Different from Section 3, we suppose that all the coef-
ficients {𝑟

𝑖
(𝑛)}, {𝑎

𝑖
(𝑛)}, {𝑏

𝑖
(𝑛)}, and {𝑑

𝑖
(𝑛)}, 𝑖 = 1, 2, are

bounded nonnegative almost periodic sequences; for the
above sequence {𝜏

𝑘
}, 𝜏
𝑘
→ +∞ as 𝑘 → +∞, there exists

a subsequence denoted by {𝜏
𝑘
} such that

𝑟
𝑖
(𝑛 + 𝜏

𝑘
) 󳨀→ 𝑟

𝑖
(𝑛) ,

𝑏
𝑖
(𝑛 + 𝜏

𝑘
) 󳨀→ 𝑏

𝑖
(𝑛) ,

𝑎
𝑖
(𝑛 + 𝜏

𝑘
) 󳨀→ 𝑎

𝑖
(𝑛) ,

𝑑
𝑖
(𝑛 + 𝜏

𝑘
) 󳨀→ 𝑑

𝑖
(𝑛) ,

𝑖 = 1, 2,

(24)

as 𝑘 → +∞ uniformly onZ+.
For any 𝜌 ∈ Z+, assume that 𝜏

𝑘
+ 𝜌 ≥ 𝑁

0
when 𝑘 is large

enough. By an inductive argument of system (2) from 𝜏
𝑘
+ 𝜌

to 𝑛 + 𝜏
𝑘
+ 𝜌, where 𝑛 ∈ Z+, one obtains

𝑥
1
(𝑛 + 𝜏

𝑘
+ 𝜌)

= 𝑥
1
(𝜏
𝑘
+ 𝜌)

⋅ exp
𝑛+𝜏
𝑘
+𝜌−1

∑

𝑡=𝜏
𝑘
+𝜌

[𝑟
1
(𝑡) − 𝑏

1
(𝑡) 𝑥
1
(𝑡) −

𝑎
2
(𝑡) 𝑥
2
(𝑡)

1 + 𝑑
1
(𝑡) 𝑥
1
(𝑡)

] ,

𝑥
2
(𝑛 + 𝜏

𝑘
+ 𝜌)

= 𝑥
2
(𝜏
𝑘
+ 𝜌)

⋅ exp
𝑛+𝜏
𝑘
+𝜌−1

∑

𝑡=𝜏
𝑘
+𝜌

[𝑟
2
(𝑡) − 𝑏

2
(𝑡) 𝑥
2
(𝑡) −

𝑎
1
(𝑡) 𝑥
1
(𝑡)

1 + 𝑑
2
(𝑡) 𝑥
2
(𝑡)

] .

(25)

Hence, (25) yields

𝑥
1
(𝑛 + 𝜏

𝑘
+ 𝜌)

= 𝑥
1
(𝜏
𝑘
+ 𝜌)

⋅ exp
𝑛+𝜌−1

∑

𝑡=𝜌

[𝑟
1
(𝑡 + 𝜏
𝑘
) − 𝑏
1
(𝑡 + 𝜏
𝑘
) 𝑥
1
(𝑡 + 𝜏
𝑘
)

−

𝑎
2
(𝑡 + 𝜏
𝑘
) 𝑥
2
(𝑡 + 𝜏
𝑘
)

1 + 𝑑
1
(𝑡 + 𝜏
𝑘
) 𝑥
1
(𝑡 + 𝜏
𝑘
)

] ,

𝑥
2
(𝑛 + 𝜏

𝑘
+ 𝜌)

= 𝑥
2
(𝜏
𝑘
+ 𝜌)

⋅ exp
𝑛+𝜌−1

∑

𝑡=𝜌

[𝑟
2
(𝑡 + 𝜏
𝑘
) − 𝑏
2
(𝑡 + 𝜏
𝑘
) 𝑥
2
(𝑡 + 𝜏
𝑘
)

−

𝑎
1
(𝑡 + 𝜏
𝑘
) 𝑥
1
(𝑡 + 𝜏
𝑘
)

1 + 𝑑
2
(𝑡 + 𝜏
𝑘
) 𝑥
2
(𝑡 + 𝜏
𝑘
)

] .

(26)

Let 𝑘 → +∞; one has

𝑥
∗

1
(𝑛 + 𝜌)

= 𝑥
∗

1
(𝜌)

⋅ exp
𝑛+𝜌−1

∑

𝑡=𝜌

[𝑟
1
(𝑡) − 𝑏

1
(𝑡) 𝑥
∗

1
(𝑡) −

𝑎
2
(𝑡) 𝑥
∗

2
(𝑡)

1 + 𝑑
1
(𝑡) 𝑥
∗

1
(𝑡)

] ,

𝑥
∗

2
(𝑛 + 𝜌)

= 𝑥
∗

2
(𝜌)

⋅ exp
𝑛+𝜌−1

∑

𝑡=𝜌

[𝑟
2
(𝑡) − 𝑏

2
(𝑡) 𝑥
∗

2
(𝑡) −

𝑎
1
(𝑡) 𝑥
∗

1
(𝑡)

1 + 𝑑
2
(𝑡) 𝑥
∗

2
(𝑡)

] .

(27)

It is easy to see that (𝑥∗
1
(𝑛), 𝑥
∗

2
(𝑛)) is a solution of system (2)

onZ+ for arbitrary 𝜌, and

0 < 𝑚
1
− 𝜀 ≤ 𝑥

∗

1
(𝑛) ≤ 𝑀

1
− 𝜀,

0 < 𝑚
2
− 𝜀 ≤ 𝑥

∗

2
(𝑛) ≤ 𝑀

2
− 𝜀,

𝑛 ∈ Z
+
.

(28)
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Thenwe get (29) due to 𝜀which is an arbitrarily small positive
constant:

0 < 𝑚
1
≤ 𝑥
∗

1
(𝑛) ≤ 𝑀

1
,

0 < 𝑚
2
≤ 𝑥
∗

2
(𝑛) ≤ 𝑀

2
,

𝑛 ∈ Z
+
.

(29)

This completes the proof.

Finally, we are ready to state our main result in this
section.

Theorem 11. Let the assumption (10) be satisfied and the
following statement in which 0 < 𝛾 < 1 holds true, where
𝛾 = min{𝛽

1
, 𝛽
2
}:

𝛽
1
= 2𝑏
𝑙

1
𝑚
1
−

𝑎
𝑢

2
𝑀
2
+ 𝑎
𝑢

2
𝑏
𝑢

1
𝑀
1
𝑀
2

1 + 𝑑
𝑙

1
𝑚
1

−

𝑎
𝑢

1
𝑀
1
+ 𝑎
𝑢

1
𝑏
𝑢

2
𝑀
1
𝑀
2

1 + 𝑑
𝑙

2
𝑚
2

− (𝑏
𝑢

1
𝑀
1
)
2

−

2 (𝑎
𝑢

2
𝑑
𝑢

1
𝑀
1
𝑀
2
− 𝑎
𝑙

2
𝑏
𝑙

1
𝑑
𝑙

1
𝑚
2

1
𝑚
2
)

(1 + 𝑑
𝑙

1
𝑚
1
)

2

−

(𝑎
𝑢

1
𝑀
1
)
2

(1 + 𝑑
𝑙

2
𝑚
2
)

2
−

𝑎
𝑢2

2
𝑑
𝑢

1
𝑀
1
𝑀
2

2

(1 + 𝑑
𝑙

1
𝑚
1
)

3
−

𝑎
𝑢2

1
𝑑
𝑢

2
𝑀
2

1
𝑀
2

(1 + 𝑑
𝑙

2
𝑚
2
)

3

−

(𝑎
𝑢

2
𝑑
𝑢

1
𝑀
1
𝑀
2
)
2

(1 + 𝑑
𝑙

1
𝑚
1
)

4
,

𝛽
2
= 2𝑏
𝑙

2
𝑚
2
−

𝑎
𝑢

2
𝑀
2
+ 𝑎
𝑢

2
𝑏
𝑢

1
𝑀
1
𝑀
2

1 + 𝑑
𝑙

1
𝑚
1

−

𝑎
𝑢

1
𝑀
1
+ 𝑎
𝑢

1
𝑏
𝑢

2
𝑀
1
𝑀
2

1 + 𝑑
𝑙

2
𝑚
2

− (𝑏
𝑢

2
𝑀
2
)
2

−

2 (𝑎
𝑢

1
𝑑
𝑢

2
𝑀
1
𝑀
2
− 𝑎
𝑙

2
𝑏
𝑙

2
𝑑
𝑙

2
𝑚
1
𝑚
2

2
)

(1 + 𝑑
𝑙

2
𝑚
2
)

2

−

(𝑎
𝑢

2
𝑀
2
)
2

(1 + 𝑑
𝑙

1
𝑚
1
)

2
−

𝑎
𝑢2

2
𝑑
𝑢

1
𝑀
1
𝑀
2

2

(1 + 𝑑
𝑙

1
𝑚
1
)

3
−

𝑎
𝑢2

1
𝑑
𝑢

2
𝑀
2

1
𝑀
2

(1 + 𝑑
𝑙

2
𝑚
2
)

3

−

(𝑎
𝑢

1
𝑑
𝑢

2
𝑀
1
𝑀
2
)
2

(1 + 𝑑
𝑙

2
𝑚
2
)

4
;

(30)

then system (2) admits a unique positive almost periodic solu-
tion, which is uniformly asymptotically stable.

Proof. Denote 𝑢
1
(𝑛) = ln𝑥

1
(𝑛) and 𝑢

2
(𝑛) = ln𝑥

2
(𝑛). It fol-

lows from (2) that

𝑢
1
(𝑛 + 1) = 𝑢

1
(𝑛) + 𝑟

1
(𝑛) − 𝑏

1
(𝑛) 𝑒
𝑢
1
(𝑛)

−

𝑎
2
(𝑛) 𝑒
𝑢
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝑒
𝑢
1
(𝑛)
,

𝑢
2
(𝑛 + 1) = 𝑢

2
(𝑛) + 𝑟

2
(𝑛) − 𝑏

2
(𝑛) 𝑒
𝑢
2
(𝑛)

−

𝑎
1
(𝑛) 𝑒
𝑢
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝑒
𝑢
2
(𝑛)
.

(31)

By Lemma 10, it is easy to see that for system (31) there exists
a bounded solution (𝑢

1
(𝑛), 𝑢
2
(𝑛)) satisfying

ln𝑚
1
≤ 𝑢
1
(𝑛) ≤ ln𝑀

1
,

ln𝑚
2
≤ 𝑢
2
(𝑛) ≤ ln𝑀

2
,

𝑛 ∈ Z
+
.

(32)

Thus |𝑢
1
(𝑛)| ≤ 𝑠

1
and |𝑢

2
(𝑛)| ≤ 𝑠

2
, where 𝑠

1
= max{| ln𝑀

1
|,

| ln𝑚
1
|} and 𝑠

2
= max{| ln𝑀

2
|, | ln𝑚

2
|}. Define the norm:

󵄩
󵄩
󵄩
󵄩
(𝑢
1
(𝑛) , 𝑢

2
(𝑛))

󵄩
󵄩
󵄩
󵄩
=
󵄨
󵄨
󵄨
󵄨
𝑢
1
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑢
2
(𝑛)
󵄨
󵄨
󵄨
󵄨
, (33)

where (𝑢
1
(𝑛), 𝑢
2
(𝑛)) ∈ R2.

Consider the product system of system (31) as follows:

𝑢
1
(𝑛 + 1) = 𝑢

1
(𝑛) + 𝑟

1
(𝑛) − 𝑏

1
(𝑛) 𝑒
𝑢
1
(𝑛)

−

𝑎
2
(𝑛) 𝑒
𝑢
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝑒
𝑢
1
(𝑛)
,

𝑢
2
(𝑛 + 1) = 𝑢

2
(𝑛) + 𝑟

2
(𝑛) − 𝑏

2
(𝑛) 𝑒
𝑢
2
(𝑛)

−

𝑎
1
(𝑛) 𝑒
𝑢
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝑒
𝑢
2
(𝑛)
,

𝑤
1
(𝑛 + 1) = 𝑤

1
(𝑛) + 𝑟

1
(𝑛) − 𝑏

1
(𝑛) 𝑒
𝑤
1
(𝑛)

−

𝑎
2
(𝑛) 𝑒
𝑤
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝑒
𝑤
1
(𝑛)
,

𝑤
2
(𝑛 + 1) = 𝑤

2
(𝑛) + 𝑟

2
(𝑛) − 𝑏

2
(𝑛) 𝑒
𝑤
2
(𝑛)

−

𝑎
1
(𝑛) 𝑒
𝑤
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝑒
𝑤
2
(𝑛)
.

(34)

Assume that 𝐻 = (𝑢
1
(𝑛), 𝑢
2
(𝑛)) and 𝐼 = (𝑤

1
(𝑛), 𝑤

2
(𝑛)) are

any two solutions of system (18) defined on Γ. And then ‖𝐻‖ ≤
𝑆 and ‖𝐼‖ ≤ 𝑆, where 𝑆 = 𝑠

1
+ 𝑠
2
, and Γ = {(𝑢

1
(𝑛), 𝑢
2
(𝑛)) |

ln𝑚
𝑖
≤ 𝑢
𝑖
(𝑛) ≤ ln𝑀

𝑖
, 𝑖 = 1, 2, 𝑛 ∈ Z+}.

In the following, construct a Lyapunov function which is
defined onZ+ × Γ × Γ:

𝑉 (𝑛,𝐻, 𝐼) = (𝑢
1
(𝑛) − 𝑤

1
(𝑛))
2

+ (𝑢
2
(𝑛) − 𝑤

2
(𝑛))
2

. (35)

Notice that the form ‖𝐻 − 𝐼‖ = |𝑢
1
(𝑛) − 𝑤

1
(𝑛)| + |𝑢

2
(𝑛) −

𝑤
2
(𝑛)| is equivalent to ‖𝐻 − 𝐼‖

Δ
= [(𝑢

1
(𝑛) − 𝑤

1
(𝑛))
2
+

(𝑢
2
(𝑛) − 𝑤

2
(𝑛))
2
]
1/2, which implies that there exist two

positive constants 𝐾
1
, 𝐾
2
such that 𝐾

1
‖𝐻 − 𝐼‖ ≤ ‖𝐻 − 𝐼‖ ≤

𝐾
2
‖𝐻 − 𝐼‖. Obviously,𝐾2

1
(‖𝐻 − 𝐼‖)

2
≤ 𝑉(𝑛,𝐻, 𝐼) ≤ 𝐾

2

2
(‖𝐻 −

𝐼‖)
2.
Let 𝛼(𝑥) = 𝐾

2

1
𝑥
2 and 𝛽(𝑥) = 𝐾

2

2
𝑥
2. Then con-

dition (1) of Lemma 4 is satisfied. Furthermore, for any
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(𝑛,𝐻, 𝐼), (𝑛, 𝐻̂, 𝐼) ∈ Z+×Γ×Γ, we replace (𝑢
𝑖
(𝑛)−𝑤

𝑖
(𝑛)) and

(𝑢̂
𝑖
(𝑛) −𝑤

𝑖
(𝑛)), 𝑖 = 1, 2 withD

𝑖
(𝑛) and D̂

𝑖
(𝑛), respectively; we

have
󵄨
󵄨
󵄨
󵄨
󵄨
𝑉 (𝑛,𝐻, 𝐼) − 𝑉 (𝑛, 𝐻̂, 𝐼)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
D
2

1
(𝑛) + D

2

2
(𝑛) − D̂

2

1
(𝑛) − D̂

2

2
(𝑛)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
D
2

1
(𝑛) − D̂

2

1
(𝑛)

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
D
2

2
(𝑛) − D̂

2

2
(𝑛)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
D
1
(𝑛) + D̂

1
(𝑛)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
D
1
(𝑛) − D̂

1
(𝑛)

󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
D
2
(𝑛) + D̂

2
(𝑛)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
D
2
(𝑛) − D̂

2
(𝑛)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ (
󵄨
󵄨
󵄨
󵄨
𝑢
1
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑤
1
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑢̂
1
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑤
1
(𝑛)
󵄨
󵄨
󵄨
󵄨
)

⋅ (
󵄨
󵄨
󵄨
󵄨
𝑢
1
(𝑛) − 𝑢̂

1
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑤
1
− 𝑤
1
(𝑛)
󵄨
󵄨
󵄨
󵄨
)

+ (
󵄨
󵄨
󵄨
󵄨
𝑢
2
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑤
2
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑢̂
2
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑤
2
(𝑛)
󵄨
󵄨
󵄨
󵄨
)

⋅ (
󵄨
󵄨
󵄨
󵄨
𝑢
2
(𝑛) − 𝑢̂

2
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑤
2
− 𝑤
2
(𝑛)
󵄨
󵄨
󵄨
󵄨
)

≤ 𝐺 {
󵄨
󵄨
󵄨
󵄨
𝑢
1
(𝑛) − 𝑢̂

1
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑢
2
(𝑛) − 𝑢̂

2
(𝑛)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑤
1
− 𝑤
1
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑤
2
− 𝑤
2
(𝑛)
󵄨
󵄨
󵄨
󵄨
}

= 𝐺 {

󵄩
󵄩
󵄩
󵄩
󵄩
𝐻 − 𝐻̂

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐼 − 𝐼

󵄩
󵄩
󵄩
󵄩
󵄩
} ,

(36)

where 𝐻̂ = (𝑢̂
1
(𝑛), 𝑢̂
2
(𝑛)), 𝐼 = (𝑤

1
(𝑛), 𝑤

2
(𝑛)), and 𝐺 =

4max{𝑠
1
, 𝑠
2
}. Consequently, condition (2) of Lemma 4 is

satisfied. At last, calculating the Δ𝑉(𝑛) of 𝑉(𝑛) along the
solutions of system (34) yields

Δ𝑉
(34)

(𝑛)

= 𝑉 (𝑛 + 1) − 𝑉 (𝑛)

= D
2

1
(𝑛 + 1) + D

2

2
(𝑛 + 1) − D

2

1
(𝑛) − D

2

2
(𝑛)

= [D
2

1
(𝑛 + 1) − D

1
(𝑛)
2
]

+ [D
2

2
(𝑛 + 1) − D

2
(𝑛)
2
]

= [D
1
(𝑛) − 𝑏

1
(𝑛) (𝑒
𝑢
1
(𝑛)
− 𝑒
𝑤
1
(𝑛)
)

− (

𝑎
2
(𝑛) 𝑒
𝑢
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝑒
𝑢
1
(𝑛)

−

𝑎
2
(𝑛) 𝑒
𝑤
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝑒
𝑤
1
(𝑛)
)]

2

− D
1
(𝑛)
2

+ [D
2
(𝑛) − 𝑏

2
(𝑛) (𝑒
𝑢
2
(𝑛)
− 𝑒
𝑤
2
(𝑛)
)

− (

𝑎
1
(𝑛) 𝑒
𝑢
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝑒
𝑢
2
(𝑛)

−

𝑎
1
(𝑛) 𝑒
𝑤
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝑒
𝑤
2
(𝑛)
)]

2

− D
2
(𝑛)
2

= −2𝑏
1
(𝑛)D
1
(𝑛) (𝑒
𝑢
1
(𝑛)
− 𝑒
𝑤
1
(𝑛)
)

− 2𝑎
2
(𝑛)D
1
(𝑛)

⋅ (

𝑒
𝑢
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝑒
𝑢
1
(𝑛)

−

𝑒
𝑤
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝑒
𝑤
1
(𝑛)
)

+ 2𝑎
2
(𝑛) 𝑏
1
(𝑛) (𝑒
𝑢
1
(𝑛)
− 𝑒
𝑤
1
(𝑛)
)

⋅ (

𝑒
𝑢
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝑒
𝑢
1
(𝑛)

−

𝑒
𝑤
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝑒
𝑤
1
(𝑛)
)

+ 𝑏
2

1
(𝑛) (𝑒
𝑢
1
(𝑛)
− 𝑒
𝑤
1
(𝑛)
)

2

+ 𝑎
2

2
(𝑛) (

𝑒
𝑢
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝑒
𝑢
1
(𝑛)

−

𝑒
𝑤
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝑒
𝑤
1
(𝑛)
)

2

− 2𝑏
2
(𝑛)D
2
(𝑛) (𝑒
𝑢
2
(𝑛)
− 𝑒
𝑤
2
(𝑛)
)

− 2𝑎
1
(𝑛)D
2
(𝑛)

⋅ (

𝑒
𝑢
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝑒
𝑢
2
(𝑛)

−

𝑒
𝑤
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝑒
𝑤
2
(𝑛)
)

+ 2𝑎
1
(𝑛) 𝑏
2
(𝑛) (𝑒
𝑢
2
(𝑛)
− 𝑒
𝑤
2
(𝑛)
)

⋅ (

𝑒
𝑢
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝑒
𝑢
2
(𝑛)

−

𝑒
𝑤
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝑒
𝑤
2
(𝑛)
)

+ 𝑏
2

2
(𝑛) (𝑒
𝑢
2
(𝑛)
− 𝑒
𝑤
2
(𝑛)
)

2

+ 𝑎
2

1
(𝑛) (

𝑒
𝑢
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝑒
𝑢
2
(𝑛)

−

𝑒
𝑤
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝑒
𝑤
2
(𝑛)
)

2

.

(37)

Applying the one-dimensional and two-dimensional mean
value theorem, we arrive at a simple result as follows:

𝑒
𝑢
𝑖
(𝑛)
− 𝑒
𝑤
𝑖
(𝑛)
= 𝜁
𝑖
(𝑛) (𝑢

𝑖
(𝑛) − 𝑤

𝑖
(𝑛)) ,

𝑒
𝑢
𝑖
(𝑛)

1 + 𝑑
𝑗
(𝑛) 𝑒
𝑢
𝑗
(𝑛)

−

𝑒
𝑤
𝑖
(𝑛)

1 + 𝑑
𝑗
(𝑛) 𝑒
𝑤
𝑗
(𝑛)

=

𝜃
𝑖
(𝑛)

1 + 𝑑
𝑗
(𝑛) 𝜃
𝑗
(𝑛)

(𝑢
𝑖
(𝑛) − 𝑤

𝑖
(𝑛))

−

𝑑
𝑗
(𝑛) 𝜃
𝑖
(𝑛) 𝜃
𝑗
(𝑛)

(1 + 𝑑
𝑗
(𝑛) 𝜃
𝑗
(𝑛))

2
(𝑢
𝑗
(𝑛) − 𝑤

𝑗
(𝑛)) ,

(38)

where 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗, and 𝜁
𝑖
(𝑛) and 𝜃

𝑖
(𝑛) lie between 𝑒𝑢𝑖(𝑛)

and 𝑒𝑤𝑖(𝑛), respectively. Substituting (38) into (37), one obtains

Δ𝑉
(34)

(𝑛)

= −2𝑏
1
(𝑛) 𝜁
1
(𝑛)D
2

1
(𝑛)

+

2𝑎
2
(𝑛) 𝑑
1
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛)

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
2

D
2

1
(𝑛)

−

2𝑎
2
(𝑛) 𝜃
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛)

D
1
(𝑛)D
2
(𝑛)
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Figure 1: Positive almost periodic solution of system (22). (a) and (c) Time-series 𝑥∗
1
(𝑛) and 𝑥∗

2
(𝑛) with initial values 𝑥∗

1
(0) = 0.98 and

𝑥
∗

2
(0) = 1.01, for 𝑛 ∈ [0, 100], and (b) and (d) show that 𝑥∗

1
(𝑛) and 𝑥∗

2
(𝑛) have the same initial data for 𝑛 ∈ [900, 1000], respectively.

+ 𝑎
2

2
(𝑛) [

(𝑑
1
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛))
2

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
4
D
2

1
(𝑛)

+

𝜃
2

2
(𝑛)

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
2
D
2

2
(𝑛)

−

2𝑑
1
(𝑛) 𝜃
1
(𝑛) 𝜃
2

2
(𝑛)

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
3
D
1
(𝑛)D
2
(𝑛)]

−

2𝑎
2
(𝑛) 𝑏
1
(𝑛) 𝑑
1
(𝑛) 𝜁
1
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛)

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
2

D
2

1
(𝑛)

+

2𝑎
2
(𝑛) 𝑏
1
(𝑛) 𝜁
1
(𝑛) 𝜃
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛)

D
1
(𝑛)D
2
(𝑛)

+ 𝑏
2

1
(𝑛) 𝜁
2

1
(𝑛)D
2

1
(𝑛) − 2𝑏

2
(𝑛) 𝜁
2
(𝑛)D
2

2
(𝑛)

+

2𝑎
1
(𝑛) 𝑑
2
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛)

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
2

D
2

2
(𝑛)

−

2𝑎
1
(𝑛) 𝜃
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛)

D
1
(𝑛)D
2
(𝑛)

+ 𝑎
2

1
(𝑛) [

(𝑑
2
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛))
2

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
4
D
2

2
(𝑛)

+

𝜃
2

1
(𝑛)

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
2
D
2

1
(𝑛)
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Figure 2: Phase portrait; 2-dimensional and 3-dimensional phase portraits of almost periodic solution of system (22). Time-series 𝑥∗
1
(𝑛) and

𝑥
∗

2
(𝑛) with initial values 𝑥∗

1
(0) = 0.98 and 𝑥∗

2
(0) = 1.01; (a) and (c) indicate 𝑛 ∈ [0, 100] and (b) and (d) indicate 𝑛 ∈ [900, 1000], respectively.

−

2𝑑
2
(𝑛) 𝜃
1
(𝑛)
2
(𝑛) 𝜃
2
(𝑛)

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
3

D
1
(𝑛)D
2
(𝑛)]

−

2𝑎
1
(𝑛) 𝑏
2
(𝑛) 𝑑
2
(𝑛) 𝜁
2
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛)

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
2

D
2

2
(𝑛)

+

2𝑎
1
(𝑛) 𝑏
2
(𝑛) 𝜁
2
(𝑛) 𝜃
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛)

D
1
(𝑛)D
2
(𝑛)

+ 𝑏
2

2
(𝑛) 𝜁
2

2
(𝑛)D
2

2
(𝑛)

= [−2𝑏
1
(𝑛) 𝜁
1
(𝑛) +

2𝑎
2
(𝑛) 𝑑
1
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛)

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
2

+ 𝑏
2

1
(𝑛) 𝜁
2

1
(𝑛)

+

(𝑎
2
(𝑛) 𝑑
1
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛))
2

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
4

+

(𝑎
1
(𝑛) 𝜃
1
(𝑛))
2

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
2

−

2𝑎
2
(𝑛) 𝑏
1
(𝑛) 𝑑
1
(𝑛) 𝜁
1
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛)

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
2

]D
2

1
(𝑛)

+ [−2𝑏
2
(𝑛) 𝜁
2
(𝑛) +

2𝑎
1
(𝑛) 𝑑
2
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛)

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
2

+ 𝑏
2

2
(𝑛) 𝜁
2

2
(𝑛) +

(𝑎
1
(𝑛) 𝑑
2
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛))
2

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
4

−

2𝑎
1
(𝑛) 𝑏
2
(𝑛) 𝑑
2
(𝑛) 𝜁
2
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛)

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
2
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Figure 3: Uniformly asymptotic stability. Time-series 𝑥∗
1
(𝑛) and 𝑥∗

2
(𝑛) with initial values 𝑥∗

1
(0) = 0.98 and 𝑥∗

2
(0) = 1.01 and 𝑥

1
(𝑛) and 𝑥

2
(𝑛)

with initial values 𝑥
1
(0) = 0.92 and 𝑥

2
(0) = 0.91. (a) and (c) indicate 𝑛 ∈ [0, 100] and (b) and (d) indicate 𝑛 ∈ [900, 1000], respectively.

+

(𝑎
2
(𝑛) 𝜃
2
(𝑛))
2

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
2
]D
2

2
(𝑛)

+ [−

2𝑎
2
(𝑛) 𝜃
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛)

−

2𝑎
2

2
(𝑛) 𝑑
1
(𝑛) 𝜃
1
(𝑛) 𝜃
2

2
(𝑛)

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
3

+

2𝑎
2
(𝑛) 𝑏
1
(𝑛) 𝜁
1
(𝑛) 𝜃
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛)

−

2𝑎
1
(𝑛) 𝜃
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛)

−

2𝑎
2

1
(𝑛) 𝑑
2
(𝑛) 𝜃
2
(𝑛) 𝜃
2

1
(𝑛)

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
3

+

2𝑎
1
(𝑛) 𝑏
2
(𝑛) 𝜁
2
(𝑛) 𝜃
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛)

]D
1
(𝑛)D
2
(𝑛)

≤ [−2𝑏
1
(𝑛) 𝜁
1
(𝑛) +

2𝑎
2
(𝑛) 𝑑
1
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛)

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
2
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+ 𝑏
2

1
(𝑛) 𝜁
2

1
(𝑛) +

(𝑎
2
(𝑛) 𝑑
1
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛))
2

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
4

−

2𝑎
2
(𝑛) 𝑏
1
(𝑛) 𝑑
1
(𝑛) 𝜁
1
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛)

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
2

+

(𝑎
1
(𝑛) 𝜃
1
(𝑛))
2

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
2
+

𝑎
2
(𝑛) 𝜃
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛)

+

𝑎
2

2
(𝑛) 𝑑
1
(𝑛) 𝜃
1
(𝑛) 𝜃
2

2
(𝑛)

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
3

+

𝑎
2
(𝑛) 𝑏
1
(𝑛) 𝜁
1
(𝑛) 𝜃
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛)

+

𝑎
1
(𝑛) 𝜃
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛)

+

𝑎
2

1
(𝑛) 𝑑
2
(𝑛) 𝜃
2
(𝑛) 𝜃
2

1
(𝑛)

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
3

+

𝑎
1
(𝑛) 𝑏
2
(𝑛) 𝜁
2
(𝑛) 𝜃
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛)

]D
2

1
(𝑛)

+ [−2𝑏
2
(𝑛) 𝜁
2
(𝑛) +

2𝑎
1
(𝑛) 𝑑
2
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛)

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
2

+ 𝑏
2

2
(𝑛) 𝜁
2

2
(𝑛) +

(𝑎
1
(𝑛) 𝑑
2
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛))
2

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
4

−

2𝑎
1
(𝑛) 𝑏
2
(𝑛) 𝑑
2
(𝑛) 𝜁
2
(𝑛) 𝜃
1
(𝑛) 𝜃
2
(𝑛)

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
2

+

(𝑎
2
(𝑛) 𝜃
2
(𝑛))
2

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
2
+

𝑎
2
(𝑛) 𝜃
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛)

+

𝑎
2

2
(𝑛) 𝑑
1
(𝑛) 𝜃
1
(𝑛) 𝜃
2

2
(𝑛)

(1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛))
3

+

𝑎
2
(𝑛) 𝑏
1
(𝑛) 𝜁
1
(𝑛) 𝜃
2
(𝑛)

1 + 𝑑
1
(𝑛) 𝜃
1
(𝑛)

+

𝑎
1
(𝑛) 𝜃
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛)

+

𝑎
2

1
(𝑛) 𝑑
2
(𝑛) 𝜃
2
(𝑛) 𝜃
2

1
(𝑛)

(1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛))
3

+

𝑎
1
(𝑛) 𝑏
2
(𝑛) 𝜁
2
(𝑛) 𝜃
1
(𝑛)

1 + 𝑑
2
(𝑛) 𝜃
2
(𝑛)

]D
2

2
(𝑛)

≤ [−2𝑏
𝑙

1
𝑚
1
+

𝑎
𝑢

2
𝑀
2
+ 𝑎
𝑢

2
𝑏
𝑢

1
𝑀
1
𝑀
2

1 + 𝑑
𝑙

1
𝑚
1

+

𝑎
𝑢

1
𝑀
1
+ 𝑎
𝑢

1
𝑏
𝑢

2
𝑀
1
𝑀
2

1 + 𝑑
𝑙

2
𝑚
2

+ (𝑏
𝑢

1
𝑀
1
)
2

+

2 (𝑎
𝑢

2
𝑑
𝑢

1
𝑀
1
𝑀
2
− 𝑎
𝑙

2
𝑏
𝑙

1
𝑑
𝑙

1
𝑚
2

1
𝑚
2
)

(1 + 𝑑
𝑙

1
𝑚
1
)

2

+

(𝑎
𝑢

1
𝑀
1
)
2

(1 + 𝑑
𝑙

2
𝑚
2
)

2
+

𝑎
𝑢2

2
𝑑
𝑢

1
𝑀
1
𝑀
2

2

(1 + 𝑑
𝑙

1
𝑚
1
)

3

+

𝑎
𝑢2

1
𝑑
𝑢

2
𝑀
2

1
𝑀
2

(1 + 𝑑
𝑙

2
𝑚
2
)

3
+

(𝑎
𝑢

2
𝑑
𝑢

1
𝑀
1
𝑀
2
)
2

(1 + 𝑑
𝑙

1
𝑚
1
)

4
]D
2

1
(𝑛)

+ [−2𝑏
𝑙

2
𝑚
2
+

𝑎
𝑢

2
𝑀
2
+ 𝑎
𝑢

2
𝑏
𝑢

1
𝑀
1
𝑀
2

1 + 𝑑
𝑙

1
𝑚
1

+

𝑎
𝑢

1
𝑀
1
+ 𝑎
𝑢

1
𝑏
𝑢

2
𝑀
1
𝑀
2

1 + 𝑑
𝑙

2
𝑚
2

+ (𝑏
𝑢

2
𝑀
2
)
2

+

2 (𝑎
𝑢

1
𝑑
𝑢

2
𝑀
1
𝑀
2
− 𝑎
𝑙

2
𝑏
𝑙

2
𝑑
𝑙

2
𝑚
1
𝑚
2

2
)

(1 + 𝑑
𝑙

2
𝑚
2
)

2

+

(𝑎
𝑢

2
𝑀
2
)
2

(1 + 𝑑
𝑙

1
𝑚
1
)

2
+

𝑎
𝑢2

2
𝑑
𝑢

1
𝑀
1
𝑀
2

2

(1 + 𝑑
𝑙

1
𝑚
1
)

3

+

𝑎
𝑢2

1
𝑑
𝑢

2
𝑀
2

1
𝑀
2

(1 + 𝑑
𝑙

2
𝑚
2
)

3
+

(𝑎
𝑢

1
𝑑
𝑢

2
𝑀
1
𝑀
2
)
2

(1 + 𝑑
𝑙

2
𝑚
2
)

4
]D
2

2
(𝑛)

= −[2𝑏
𝑙

1
𝑚
1
−

𝑎
𝑢

2
𝑀
2
+ 𝑎
𝑢

2
𝑏
𝑢

1
𝑀
1
𝑀
2

1 + 𝑑
𝑙

1
𝑚
1

−

𝑎
𝑢

1
𝑀
1
+ 𝑎
𝑢

1
𝑏
𝑢

2
𝑀
1
𝑀
2

1 + 𝑑
𝑙

2
𝑚
2

− (𝑏
𝑢

1
𝑀
1
)
2

−

2 (𝑎
𝑢

2
𝑑
𝑢

1
𝑀
1
𝑀
2
− 𝑎
𝑙

2
𝑏
𝑙

1
𝑑
𝑙

1
𝑚
2

1
𝑚
2
)

(1 + 𝑑
𝑙

1
𝑚
1
)

2

−

(𝑎
𝑢

1
𝑀
1
)
2

(1 + 𝑑
𝑙

2
𝑚
2
)

2
−

𝑎
𝑢2

2
𝑑
𝑢

1
𝑀
1
𝑀
2

2

(1 + 𝑑
𝑙

1
𝑚
1
)

3

−

𝑎
𝑢2

1
𝑑
𝑢

2
𝑀
2

1
𝑀
2

(1 + 𝑑
𝑙

2
𝑚
2
)

3
−

(𝑎
𝑢

2
𝑑
𝑢

1
𝑀
1
𝑀
2
)
2

(1 + 𝑑
𝑙

1
𝑚
1
)

4
]D
2

1
(𝑛)

− [2𝑏
𝑙

2
𝑚
2
−

𝑎
𝑢

2
𝑀
2
+ 𝑎
𝑢

2
𝑏
𝑢

1
𝑀
1
𝑀
2

1 + 𝑑
𝑙

1
𝑚
1

−

𝑎
𝑢

1
𝑀
1
+ 𝑎
𝑢

1
𝑏
𝑢

2
𝑀
1
𝑀
2

1 + 𝑑
𝑙

2
𝑚
2

− (𝑏
𝑢

2
𝑀
2
)
2

−

2 (𝑎
𝑢

1
𝑑
𝑢

2
𝑀
1
𝑀
2
− 𝑎
𝑙

2
𝑏
𝑙

2
𝑑
𝑙

2
𝑚
1
𝑚
2

2
)

(1 + 𝑑
𝑙

2
𝑚
2
)

2

−

(𝑎
𝑢

2
𝑀
2
)
2

(1 + 𝑑
𝑙

1
𝑚
1
)

2
−

𝑎
𝑢2

2
𝑑
𝑢

1
𝑀
1
𝑀
2

2

(1 + 𝑑
𝑙

1
𝑚
1
)

3

−

𝑎
𝑢2

1
𝑑
𝑢

2
𝑀
2

1
𝑀
2

(1 + 𝑑
𝑙

2
𝑚
2
)

3
−

(𝑎
𝑢

1
𝑑
𝑢

2
𝑀
1
𝑀
2
)
2

(1 + 𝑑
𝑙

2
𝑚
2
)

4
]D
2

2
(𝑛)

= − [𝛽
1
D
2

1
(𝑛) + 𝛽

2
D
2

2
(𝑛)]

= −𝛾 [D
2

1
(𝑛) + D

2

2
(𝑛)] = −𝛾𝑉

𝑛
,

(39)
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where 𝛾 = min{𝛽
1
, 𝛽
2
} and 0 < 𝛾 < 1which has been pointed

out in Theorem 11. In addition, condition (3) of Lemma 4 is
also satisfied. According to Lemma 4, there exists a uniformly
asymptotically stable almost periodic solution (𝑢∗

1
(𝑛), 𝑢
∗

2
(𝑛))

of system (31) which is bounded by Γ for all 𝑛 ∈ Z+. Namely,
there exists a uniformly asymptotically stable almost periodic
solution (𝑥∗

1
(𝑛), 𝑥
∗

2
(𝑛)) of system (2) which is bounded by Ω

for all 𝑛 ∈ Z+. This completed the proof.

5. Example and Numerical Simulations

In this section, we only give the following example about
almost periodic solutions to check the feasibility of the
assumptions of Theorem 11 considering that the simulation
about periodic model is similar.

Example 1. Consider the following discrete system:

𝑥
1
(𝑛 + 1)

= 𝑥
1
(𝑛) exp[1.09 − 0.03 sin (√2𝑛𝜋)

− (1.15 − 0.01 cos (√2𝑛𝜋)) 𝑥
1
(𝑛)

−

(0.035 + 0.005 cos (√2𝑛𝜋)) 𝑥
2
(𝑛)

1 + (2.10 + 0.02 cos (√5𝑛𝜋)) 𝑥
1
(𝑛)

] ,

𝑥
2
(𝑛 + 1)

= 𝑥
2
(𝑛) exp[1.06 + 0.03 cos (√2𝑛𝜋)

− (1.11 + 0.01 sin (√2𝑛𝜋)) 𝑥
2
(𝑛)

−

(0.025 + 0.005 cos (√2𝑛𝜋)) 𝑥
1
(𝑛)

1 + (2.07 + 0.03 sin (√5𝑛𝜋)) 𝑥
2
(𝑛)

] ,

(40)

with the following intial conditions:

𝑥
1
(𝑛)
∗

(0) = 0.98,

𝑥
2
(𝑛)
∗

(0) = 1.01.

(41)

By a computation, we get

𝑀
1
≈ 0.9890,

𝑀
2
≈ 0.9947,

𝑚
1
≈ 0.7745,

𝑚
2
≈ 0.7971,

𝛽
1
≈ 0.3781,

𝛽
2
≈ 0.4438,

(𝑟
𝑙

1
− 𝑎
𝑢

2
𝑀
2
) ≈ 1.0202 > 0,

(𝑟
𝑙

2
− 𝑎
𝑢

1
𝑀
1
) ≈ 1.0003 > 0,

𝑏
𝑢

1
𝑀
1

𝑟
𝑙

1
− 𝑎
𝑢

2
𝑀
2

≈ 1.1245 > 1,

𝑏
𝑢

2
𝑀
2

𝑟
𝑙

2
− 𝑎
𝑢

2
𝑀
2

≈ 1.1251 > 1.

(42)

Clearly, the assumptions of Theorem 11 are satisfied and all
the coefficients are appropriate. Hence, system (40) admits a
unique uniformly asymptotically stable positive almost peri-
odic solution. From Figure 1, we easily see that there exists
a positive almost periodic solution (𝑥

∗

1
(𝑛), 𝑥
∗

2
(𝑛)), and the

2-dimensional and 3-dimensional phase portraits of almost
periodic system (40) are revealed in Figure 2, respectively.
Figure 3 shows that any positive solution (𝑥

1
(𝑛), 𝑥
2
(𝑛)) tends

to the almost periodic solution (𝑥∗
1
(𝑛), 𝑥
∗

2
(𝑛)).

6. Conclusions

In this paper, we consider a discrete two-species competitive
model whose periodic solutions and almost periodic solu-
tions are discussed, respectively. By the scale law and mean-
value theorem, a good understanding of the existence and
stability of positive periodic solutions is gained. Furthermore,
by constructing Lyapunov functions, the conditions on the
asymptotic stability of the positive almost periodic solution
are established. The assumption in (10) implies that the 𝑟(𝑡)
should be suitably large.
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