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Based on an integer-order Brushless DC motors (IO-BLDCM) system, we give a fractional-order Brushless DC motors (FO-
BLDCM) system in this paper. There exists a chaotic attractor for fractional-order 0.95 < q ≤ 1 in the FO-BLDCM system.
Furthermore, using the Lyapunov direct method for fractional-order system, a control scheme is proposed to stabilize the FO-
BLDCM chaotic system in the sense of Lyapunov. Numerical simulation shows that the control scheme in this paper is valid for the
FO-BLDCM chaotic system.

1. Introduction

Brushless DC motors (BLDCM) system [1–4] has several
advantages over brushed DC motors, like elimination of
ionizing sparks, overall reduction of electromagnetic interfer-
ence, reduced noise, longer lifetime, increased efficiency and
reliability, and so forth; BLDCM has been widely applied in
positioning and actuation systems, motion control systems,
radio controlled cars, and industrial automation design.
Recently, some results have shown that the chaotic motion
can be presented in BLDCM system. However, the chaotic
motion in BLDCM system is not acceptable in practical
situations, because it can destroy the stable operation of
the BLDCM system and can lead to system malfunction in
practical applications. So, BLDCM system stability is usually
a prerequisite of practical application. Up to now, in order to
control the chaotic motion in BLDCM system, some schemes
have been presented [2–4].

On the other hand, it has been recognized that many
real-world physical systems can be described by fractional-
order differential equations, such as the fractional-order
telegraph system [5], the fractional-order heat conduction
system [6], the fractional-order diffusion and superdiffusion

system [7, 8], the fractional-order Chua system [9], the frac-
tional-order Duffing system [10], the fractional-order cel-
lular neural network [11], the fractional-order gyroscopes
system [12], and the fractional-order microelectromechan-
ical system [13]. Meanwhile, it is well known that many
fractional-order systems exhibit chaotic behavior, such as
the fractional Lorenz chaotic system [14], the fractional-
order Chua chaotic system [9], the fractional-order Duffing
chaotic system [10], the fractional-order Volta chaotic system
[15], the fractional-order gyroscopes chaotic system [12],
the fractional-order microelectromechanical chaotic system
[13], and the fractional-order chaotic electronic circuit [16].
Furthermore, control of the fractional-order chaotic systems
has been attracting more attention in recent years [17–20].

Motivated by the above considerations, a FO-BLDCM
system under loading conditions is presented. By numerical
calculation, we find that the FO-BLDCM system exhibits
a chaotic attractor, and we obtain the largest Lyapunov
exponent of the FO-BLDCM system. Furthermore, based
on the Lyapunov direct method for fractional-order system
[21–23], we propose a control scheme to stabilize the FO-
BLDCM chaotic system. The result in this paper shows that
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the FO-BLDCM chaotic system can be stable in the sense of
Lyapunov.

2. A FO-BLDCM Chaotic System

Ge and Chang [2] proposed a mathematical model for a
BLDCM system under loading conditions and found that
the BLDCM system creates chaotic behavior. Based on the
mathematical model in [2], we present a FO-BLDCM system
model which is described as follows:

𝐶

0𝐷
𝑞

𝑡
𝑥1 = 𝑉𝑞 − 𝑥1 − 𝑥2𝑥3 + 𝜌𝑥3,

𝐶

0𝐷
𝑞

𝑡
𝑥2 = 𝑉

𝑑
− 𝛿𝑥2 + 𝑥1𝑥3,

𝐶

0𝐷
𝑞

𝑡
𝑥3 = − 𝑇

𝐿
+ 𝜎 (𝑥1 − 𝑥3) + 𝜂𝑥1𝑥2,

(1)

where 0 < 𝑞 ≤ 1 is the fractional order and 𝐶0𝐷
𝑞

𝑡
𝑥
𝑖

= (1/Γ(1−

𝑞)) ∫

𝑡

0 (𝑑𝑥𝑖(𝜏)/(𝑡 − 𝜏)
𝑞
) (𝑖 = 1, 2, 3). Constants 𝑉𝑞, 𝑉𝑑 are

related to the fictitious inductance on the quadrature-axis and
direct-axis, respectively; constant 𝑇𝐿 is related to the external
load,Coulomb friction, cogging effect, and so forth; constants
𝛿, 𝜂 are related to the fictitious inductance on the quadrature-
axis and direct-axis; constant 𝜎 is related to the inertia of
rotator and the viscous damping coefficient; constant 𝜌 is a
free parameter. In this paper, we choose system parameters
in FO-BLDCM system (1) as follows: 𝑉

𝑞
= 0.168, 𝑉

𝑑
= 20.66,

𝑇
𝐿

= 0.53, 𝛿 = 0.875, 𝜂 = 0.26, 𝜎 = 4.56, and 𝜌 = 60.
By the improved version of the Adams-Bashforth-Moul-

ton numerical algorithm [24] for fractional-order nonlinear
system, the fractional-order system (1) can be discretized as
follows:

𝑥1 (𝑛 + 1) = 𝑥1 (0) +

ℎ
𝑞

Γ (𝑞 + 2)

[

[

𝑉𝑞 − 𝑥
𝑝

1 (𝑛 + 1) − 𝑥
𝑝

1 (𝑛 + 1) 𝑥
𝑝

3

+ 𝜌𝑦
𝑝

3 (𝑛 + 1)

+

𝑛

∑

𝑗=0

𝑐
𝑗,𝑛+1 (𝑉

𝑞
− 𝑥1 (𝑗) − 𝑥1 (𝑗) 𝑥3 (𝑗) + 𝜌𝑥3 (𝑗))]

]

,

𝑥2 (𝑛 + 1) = 𝑥2 (0) +

ℎ
𝑞

Γ (𝑞 + 2)

[

[

𝑉𝑑 − 𝛿𝑥
𝑝

2 (𝑛 + 1)

+ 𝑥
𝑝

1 (𝑛 + 1) 𝑥
𝑝

3 (𝑛 + 1)

+

𝑛

∑

𝑗=0
𝑐
𝑗,𝑛+1 (𝑉

𝑑
− 𝛿𝑥2 (𝑗) + 𝑥1 (𝑗) 𝑥3 (𝑗))]

]

,

𝑥3 (𝑛 + 1) = 𝑥3 (0) +

ℎ
𝑞

Γ (𝑞 + 2)

[

[

−𝑇
𝐿

+ 𝜎 (𝑥
𝑝

1 (𝑛 + 1) − 𝑥
𝑝

3 (𝑛 + 1)) + 𝜂𝑥
𝑝

1 (𝑛 + 1) 𝑥
𝑝

2 (𝑛 + 1)

+

𝑛

∑

𝑗=0
𝑐
𝑗,𝑛+1 (−𝑇

𝐿
+ 𝜎 (𝑥1 (𝑗) − 𝑥3 (𝑗)) + 𝜂𝑥1 (𝑗) 𝑥2 (𝑗))]

]

,
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Figure 1: The largest Lyapunov exponent of FO-BLDCM system (1)
with respect to the fractional-order 𝑞.

𝑥
𝑝

1 (𝑛 + 1) = 𝑥1 (0) +

1
Γ (𝑞)

⋅

𝑛

∑

𝑗=0
𝑏
𝑗,𝑛+1 (𝑉

𝑞
− 𝑥1 (𝑗) − 𝑥1 (𝑗) 𝑥3 (𝑗) + 𝜌𝑥3 (𝑗)) ,

𝑥
𝑝

2 (𝑛 + 1) = 𝑥2 (0) +

1
Γ (𝑞)

𝑛

∑

𝑗=0
𝑏
𝑗,𝑛+1 (𝑉

𝑑
− 𝛿𝑥2 (𝑗) + 𝑥1 (𝑗) 𝑥3 (𝑗)) ,

𝑥
𝑝

3 (𝑛 + 1) = 𝑦3 (0) +

1
Γ (𝑞)

⋅

𝑛

∑

𝑗=0
𝑏𝑗,𝑛+1 (−𝑇𝐿 + 𝜎 (𝑥1 (𝑗) − 𝑥3 (𝑗)) + 𝜂𝑥1 (𝑗) 𝑥2 (𝑗)) ,

𝑐
𝑗,𝑛+1

=

{
{
{
{

{
{
{
{

{

𝑛
𝑞+1

− (𝑛 − 𝑞) (𝑛 + 1)
𝑞

, 𝑗 = 0

(𝑛 − 𝑗 + 2)
𝑞+1

+ (𝑛 − 𝑗)
𝑞+1

− 2 (𝑛 − 𝑗 + 1)
𝑞+1

, 1 ≤ 𝑗 ≤ 𝑛

1, 𝑗 = 𝑛 + 1,

𝑏
𝑗,𝑛+1 =

ℎ
𝑞

𝑞

[(𝑛 − 𝑗 + 1)
𝑞

− (𝑛 − 𝑗)
𝑞
] , 0 ≤ 𝑗 ≤ 𝑛.

(2)

The error is
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖 (𝑡𝑛) − 𝑥𝑖 (𝑛)

󵄨
󵄨
󵄨
󵄨

= 𝑜 (ℎ
𝛽

) ,

𝛽 = min (2, 1+ 𝑞) ,

(3)

where ℎ is step size.
Recently, Zhou andHuang [25] introduced one numerical

method to calculate the largest Lyapunov exponent (LLE) for
the fractional-order nonlinear system. Now, we can calculate
the largest Lyapunov exponent (LLE) of FO-BLDCM system
(1) for difference fractional-order 𝑞. Figure 1 displays the LLE
of FO-BLDCMsystem (1) with respect to the fractional-order
𝑞.

According to Figure 1, the LLE of FO-BLDCM system (1)
is larger than zero for 0.95 < 𝑞 ≤ 1, which implies that chaotic
behavior will emerge for 0.95 < 𝑞 ≤ 1. Figure 2 shows a
chaotic attractor of the FO-BLDCMsystem (1) for 𝑞 = 0.96, in
which the LLE is 1.4972. Conversely, the LLE of FO-BLDCM
system (1) is less than zero for 𝑞 ≤ 0.95, which implies that
FO-BLDCM system (1) is stable. For example, the LLE is
−0.4246 for 𝑞 = 0.94, and the evolution of state of 𝑥1, 𝑥2, and
𝑥3 is shown in Figure 3.
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Figure 2: A chaotic attractor in FO-BLDCM system (1) for 𝑞 = 0.96.
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Figure 3: Evolution of the state of 𝑥1, 𝑥2, and 𝑥3 in FO-BLDCM
system (1) with 𝑞 = 0.94.

3. Control of the FO-BLDCM Chaotic System

In this section, control of the FO-BLDCMchaotic systemwill
be discussed.

Theorem 1. Give the controlled FO-BLDCM system as
𝐶

0𝐷
𝑞

𝑡
𝑥1 = 𝑉

𝑞
− 𝑥1 − 𝑥2𝑥3 + 𝜌𝑥3,

𝐶

0𝐷
𝑞

𝑡
𝑥2 = 𝑉

𝑑
− 𝛿𝑥2 + 𝑥1𝑥3,

𝐶

0𝐷
𝑞

𝑡
𝑥3 = − 𝑇

𝐿
+ 𝜎 (𝑥1 − 𝑥3) + 𝜂𝑥1𝑥2 + 𝑢 (𝑥1, 𝑥2)

(4)

and 𝑢(𝑥1, 𝑥2) = [𝑚1 − 𝜌 − 𝜎 − (𝜂 − 1)𝑥2](𝑥1 − 𝑥1) + (𝑚2 −

𝑥1 − 𝜂𝑥1)(𝑥2 − 𝑥2) is a scalar controller, 𝑥
𝑖

(𝑖 = 1, 2, 3) is the
equilibrium point of FO-BLDCM system (1), and 𝑚

𝑖
(𝑖 = 1, 2)

is suitable constant. If 𝑚1 = −2𝑙1𝑙2, 𝑚2 = −2𝑙3𝑙4, and 𝑙
𝑖

(𝑖 =

1, 2, 3, 4) satisfies |𝑙1| < 1, |𝑙3| < √𝛿, 𝑙
2
2 + 𝑙

2
4 < 𝜎, then the equi-

librium point 𝑥𝑖 (𝑖 = 1, 2, 3) in controlled system (4) is stable in
the sense of Lyapunov.

Proof. First, let 𝑦𝑖(𝑡) = (𝑥𝑖 − 𝑥𝑖) (𝑖 = 1, 2, 3). Then, the
controlled system (4) can be changed as
𝐶

0𝐷
𝑞

𝑡
𝑦1 (𝑡) = − 𝑦1 (𝑡) − 𝑥3𝑦2 (𝑡) + (𝜌 − 𝑥2) 𝑦3 (𝑡)

− 𝑦2 (𝑡) 𝑦3 (𝑡) ,

𝐶

0𝐷
𝑞

𝑡
𝑦2 (𝑡) = 𝑥3𝑦1 (𝑡) − 𝛿𝑦2 (𝑡) + 𝑥1𝑦3 (𝑡)

+ 𝑦1 (𝑡) 𝑦3 (𝑡) ,

𝐶

0𝐷
𝑞

𝑡
𝑦3 (𝑡) = (𝑚1 − 𝜌 + 𝑥2) 𝑦1 (𝑡) + (𝑚2 − 𝑥1) 𝑦2 (𝑡)

− 𝜎𝑦3 (𝑡) .

(5)

Obviously, 𝑦
𝑖
(𝑡) = 0 (𝑖 = 1, 2, 3) is the origin of controlled

system (5).
Second, let 𝑦(𝑡) = (𝑦1(𝑡) 𝑦2(𝑡) 𝑦3(𝑡))

T, whereT denotes
the transpose for a matrix. Then, we have the following:

0.5 𝐶0𝐷
𝑞

𝑡
[𝑦 (𝑡)]

T
𝑦 (𝑡) − [𝑦 (𝑡)]

T 𝐶
0𝐷
𝑞

𝑡
𝑦 (𝑡)

= 0.5
3

∑

𝑖=1

𝐶

0𝐷
𝑞

𝑡
[𝑦
𝑖 (𝑡)]
2

−

3
∑

𝑖=1
𝑦
𝑖 (𝑡)
𝐶

0𝐷
𝑞

𝑡
𝑦
𝑖 (𝑡)

=

3
∑

𝑖=1

1
Γ (1 − 𝑞)

∫

𝑡

0

𝑦𝑖 (𝜏)

(𝑡 − 𝜏)
𝑞

𝑑𝑦
𝑖 (𝜏)

−

3
∑

𝑖=1

1
Γ (1 − 𝑞)

∫

𝑡

0

𝑦𝑖 (𝑡)

(𝑡 − 𝜏)
𝑞

𝑑𝑦
𝑖 (𝜏)

=

3
∑

𝑖=1

1
Γ (1 − 𝑞)

∫

𝑡

0

[𝑦𝑖 (𝜏) − 𝑦𝑖 (𝑡)]

(𝑡 − 𝜏)
𝑞

𝑑𝑦𝑖 (𝜏)

=

3
∑

𝑖=1

1
Γ (1 − 𝑞)

∫

𝑡

0

0.5
(𝑡 − 𝜏)

𝑞
𝑑 [𝑦𝑖 (𝜏) − 𝑦𝑖 (𝑡)]

2

=

3
∑

𝑖=1

0.5
Γ (1 − 𝑞)

{

[𝑦𝑖 (𝜏) − 𝑦
𝑖 (𝑡)]

2

(𝑡 − 𝜏)
𝑞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝑡

−

[𝑦𝑖 (0) − 𝑦𝑖 (𝑡)]
2

𝑡
𝑞

− ∫

𝑡

0

𝑞 [𝑦𝑖 (𝜏) − 𝑦𝑖 (𝑡)]
2

(𝑡 − 𝜏)
𝑞+1 𝑑𝜏} .

(6)

Hence,

0.5 𝐶0𝐷
𝑞

𝑡
[𝑦 (𝑡)]

T
𝑦 (𝑡) − [𝑦 (𝑡)]

T 𝐶
0𝐷
𝑞

𝑡
𝑦 (𝑡)

=

3

∑

𝑖=1

0.5
Γ (1 − 𝑞)

{

[𝑦
𝑖 (𝜏) − 𝑦

𝑖 (𝑡)]
2

(𝑡 − 𝜏)
𝑞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝑡

−

[𝑦𝑖 (0) − 𝑦
𝑖 (𝑡)]

2

𝑡
𝑞

− ∫

𝑡

0

𝑞 [𝑦𝑖 (𝜏) − 𝑦
𝑖 (𝑡)]

2

(𝑡 − 𝜏)
𝑞+1 𝑑𝜏} .

(7)

Now, let us consider the first term in formula (7); we have

3

∑

𝑖=1

0.5
Γ (1 − 𝑞)

[𝑦𝑖 (𝜏) − 𝑦
𝑖 (𝑡)]

2

(𝑡 − 𝜏)
𝑞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝑡

=

3

∑

𝑖=1

0.5
Γ (1 − 𝑞)

lim
𝜏→ 𝑡

[𝑦
𝑖 (𝜏) − 𝑦

𝑖 (𝑡)]
2

(𝑡 − 𝜏)
𝑞

=

3

∑

𝑖=1

0.5
Γ (1 − 𝑞)

lim
𝜏→ 𝑡

2 [𝑦
𝑖 (𝜏) − 𝑦

𝑖 (𝑡)] [𝑑𝑦
𝑖 (𝜏) /𝑑𝜏]

𝑞 (𝑡 − 𝜏)
𝑞−1

=

3

∑

𝑖=1

1
𝑞Γ (1 − 𝑞)

lim
𝜏→ 𝑡

(𝑡 − 𝜏)
1−𝑞

[𝑦
𝑖 (𝜏) − 𝑦

𝑖 (𝑡)]

⋅ [

𝑑𝑦
𝑖 (𝜏)

𝑑𝜏

] = 0.

(8)
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According to (7)-(8), one can yield to

0.5 𝐶0𝐷
𝑞

𝑡
[𝑦 (𝑡)]

T
𝑦 (𝑡) − [𝑦 (𝑡)]

T 𝐶
0𝐷
𝑞

𝑡
𝑦 (𝑡)

= −

3
∑

𝑖=1

0.5
Γ (1 − 𝑞)

{

[𝑦
𝑖 (0) − 𝑦

𝑖 (𝑡)]
2

𝑡
𝑞

+ ∫

𝑡

0

𝑞 [𝑦
𝑖 (𝜏) − 𝑦𝑖 (𝑡)]

2

(𝑡 − 𝜏)
𝑞+1 𝑑𝜏} ≤ 0.

(9)

From inequality (9), one has

0.5 𝐶0𝐷
𝑞

𝑡
[𝑦 (𝑡)]

T
𝑦 (𝑡) ≤ [𝑦 (𝑡)]

T 𝐶
0𝐷
𝑞

𝑡
𝑦 (𝑡) . (10)

Finally, consider a positive definite Lyapunov function as
follows:

𝑉 (𝑡) = 0.5 [𝑦 (𝑡)]
T

𝑦 (𝑡) . (11)

According to system (5) and inequality (10), we can obtain the
fractional derivative of the Lyapunov function as follows:

𝐶

0𝐷
𝑞

𝑡
𝑉 (𝑡) ≤ [𝑦 (𝑡)]

T 𝐶
0𝐷
𝑞

𝑡
𝑦 (𝑡) =

3

∑

𝑖=1
𝑦
𝑖 (𝑡)
𝐶

0𝐷
𝑞

𝑡
𝑦
𝑖 (𝑡)

= − 𝑦
2
1 (𝑡) − 𝛿𝑦

2
2 (𝑡) − 𝜎𝑦

2
3 (𝑡)

+ 𝑚1𝑦1 (𝑡) 𝑦3 (𝑡) + 𝑚2𝑦2 (𝑡) 𝑦3 (𝑡) .

(12)

Based on inequality (12), using the assumptions 𝑚1 =

−2𝑙1𝑙2, 𝑚2 = −2𝑙3𝑙4, |𝑙1| < 1, |𝑙3| < √𝛿, and 𝑙
2
2 + 𝑙

2
4 < 𝜎, we can

obtain the following:

𝐶

0𝐷
𝑞

𝑡
𝑉 (𝑡) ≤ − [𝑙1𝑦1 (𝑡) + 𝑙2𝑦3 (𝑡)]

2

− [𝑙3𝑦2 (𝑡) + 𝑙4𝑦3 (𝑡)]
2

− (1− 𝑙
2
1) 𝑦

2
1 (𝑡)

− (𝛿 − 𝑙
2
3) 𝑦

2
2 (𝑡) − (𝜎 − 𝑙

2
2 − 𝑙

2
4) 𝑦

2
3 (𝑡)

≤ 0, ∀𝑦
𝑖 (𝑡) (𝑖 = 1, 2, 3) .

(13)

So, according to the results in [22, 23], inequality (13)
implies that the origin of controlled system (5) is stable
in the sense of Lyapunov. Therefore, the equilibrium point
𝑥𝑖 (𝑖 = 1, 2, 3) in controlled system (4) is stable in the sense
of Lyapunov, which allows concluding the proof.

Remark 2. Using the assumptions 𝑚1 = −2𝑙1𝑙2, 𝑚2 = −2𝑙3𝑙4,
|𝑙1| < 1, |𝑙3| < √𝛿, and 𝑙

2
2 + 𝑙

2
4 < 𝜎, we can obtain that the suit-

able constant𝑚
𝑖 (𝑖 = 1, 2) inTheorem 1 satisfies𝑚

2
1+𝛿
−1

𝑚
2
2 <

4𝜎.

Remark 3. According to controlled system (4), if controlled
system (4) reached the equilibrium point 𝑥

𝑖
(𝑖 = 1, 2, 3), then

the scalar controller 𝑢(𝑥1, 𝑥2) is removed.

Next, we apply Theorem 1 to stably control the equi-
librium point 𝑥

𝑖
(𝑖 = 1, 2, 3). It is easy to obtain that the frac-

tional-order BDCMchaotic system (1)with 𝑞 = 0.96has three
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Figure 4: Evolution of the state of𝑥1,𝑥2, and𝑥3 in controlled system
(4) with 𝑞 = 0.96 for equilibrium point 𝑝1.
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Figure 5: Evolution of the state of 𝑥1,𝑥2, and𝑥3 in controlled system
(4) with 𝑞 = 0.96 for equilibrium point 𝑝2.

real equilibrium points: 𝑝1 = (−2.6658, 59.7612, −11.8655),
𝑝2 = (0.0481, 23.6112, −0.00329), and 𝑝3 = (2.6926, 59.7852,

11.7551). Taking the control parameters 𝑚1 = 1 and 𝑚2 = 2
and initial conditions 𝑥1 = 10, 𝑥2 = 20, and 𝑥3 = 30 for con-
trolled fractional-order system (4), the simulation results are
shown in Figures 4–6. Here, constant 𝑙𝑖 (𝑖 = 1, 2, 3, 4) is
𝑙1 = 1/2, 𝑙2 = −1, 𝑙3 = 2, and 𝑙4 = −0.5. Figure 4 shows the
evolution of the states in system (4), where (𝑥1, 𝑥2, 𝑥3) =

(−2.6658, 59.7612, −11.8655). This result indicates that sys-
tem (4) can be stable in the equilibrium point 𝑝1; Figure 5
shows the evolution of the states in system (4), where
(𝑥1, 𝑥2, 𝑥3) = (0.0481, 23.6112, −0.00329). This result indi-
cates that system (4) can be stable in the equilibrium point𝑝2.
Figure 6 shows the evolution of the states in system (4), where
(𝑥1, 𝑥2, 𝑥3) = (2.6926, 59.7852, 11.7551). This result indicates
that system (4) can be stable in the equilibrium point 𝑝3.

According to Figures 4–6, we can obtain that the pro-
posed theorem is valid for FO-BLDCM chaotic system.

4. Conclusions

A FO-BLDCM system is proposed in this paper. The chaotic
motion can be presented in the FO-BLDCMsystem for 0.95 <

𝑞 ≤ 1.The chaotic phase portraits for 𝑞 = 0.96 and the largest
Lyapunov exponent with varying the fractional order are
obtained by numerical calculation. Based on the Lyapunov
direct method for fractional-order system, we proposed a
control scheme to stabilize the FO-BLDCM chaotic system
in the sense of Lyapunov. The simulation results show that
the proposed scheme is effective.



Discrete Dynamics in Nature and Society 5

0 1 2 3 4 5

0

50

100

t

x1

x2

x3x
1
,x

2
,x

3

Figure 6: Evolution of the state of𝑥1,𝑥2, and𝑥3 in controlled system
(4) with 𝑞 = 0.96 for equilibrium point 𝑝3.
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