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This paper proposes power series method (PSM) in order to find solutions for singular partial differential-algebraic equations
(SPDAEs). We will solve three examples to show that PSMmethod can be used to search for analytical solutions of SPDAEs. What
is more, we will see that, in some cases, Padé posttreatment, besides enlarging the domain of convergence, may be employed in
order to get the exact solution from the truncated series solutions of PSM.

1. Introduction

The importance of research on partial differential-algebraic
equations (PDAEs) is that they are used in the mathematical
modeling of many phenomena, both practical and theoret-
ical. These systems arise, for example, in nanoelectronics,
electrical networks, and mechanical systems, among many
others. Despite the importance of this topic, it may be
considered relatively new and little known.

Although the case of constant-coefficient linear PDAEs
has been investigated by means of numerical methods, for
instance, in [1, 2], perhaps themore relevant aspect of PDAEs,
both linear and nonlinear, is the concept of index. The
differentiation index is defined as the minimum number of
times that all or part of the PDAEs must be differentiated
with respect to time, in order to obtain the time derivative of

the solution, as a continuous function of the solution and its
space derivatives [3]. A fact that justifies the search for other
methods of solution to these equations is that the solutions
of higher index PDAEs (index greater than one) become
very complicated, even for numerical methods, and many
application problems lead to PDAEs with different indices.
A further difficulty to be considered that arises and affects
also other kinds of systems of differential equations, as well as
differential equations, is the presence of singularities, which
are related to points at which some terms of the differential
equations become infinite or undefined.

In recent years, several methods focused on approxi-
mating nonlinear and linear problems, as an alternative to
classical methods, have been reported, such as those based on
variational approaches [4–7], tanh method [8], exp-function
[9, 10], Adomian’s decomposition method [11–16], parameter
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expansion [17], homotopy perturbation method [7, 16, 18–
46], homotopy analysis method [47], homotopy asymptotic
method [48], series method [49, 50], and perturbation
method [51–54], among many others. Also, a few exact solu-
tions to nonlinear differential equations have been reported
occasionally [55].

This study shows that power seriesmethod (PSM) [56, 57]
is able to address the above difficulties to obtain power series
solutions for singular partial differential-algebraic equations
(SPDAEs), that is, PDAEswith singular points.These systems
turn out to be difficult even for numerical methods. More
generally, we will see that the combination of PSM and
Padé posttreatment could be effective to improve the PSM’s
truncated series solutions in convergence rate; what is more,
sometimes it ends up giving the exact solution of the system,
such as what will happen in our third case study.

This paper is organized as follows. In Section 2, we
introduce the basic idea of power series method. Section 3
provides a brief explanation of application of PSM to solve
SPDAEs. Section 4 presents three case studies: one singu-
lar nonlinear index-one system, one singular linear index-
two system, and one singular nonlinear index-two system.
Besides, a discussion on the results is presented in Section 5.
Finally, a brief conclusion is given in Section 6.

2. Basic Concept of Power Series Method

It can be considered that a nonlinear differential equation can
be expressed as

𝐴 (𝑢) − 𝑓 (𝑡) = 0, 𝑡 ∈ Ω, (1)

with the following boundary condition:

𝐵(𝑢,
𝜕𝑢

𝜕𝑛
) = 0, 𝑡 ∈ Γ, (2)

where 𝐴 is a general differential operator, 𝐵 is a boundary
operator, 𝑓(𝑡) is a known analytical function, and Γ is the
domain boundary forΩ.

PSM [49, 50] assumes that the solution of a differential
equation can be written in the following form:

𝑢 (𝑡) =

∞

∑

𝑛=0

𝑢
𝑛
𝑡
𝑛

, (3)

where 𝑢
0
, 𝑢
1
, . . . are unknown functions to be determined by

series method.
The method of solution for differential equations can be

summarized as follows.

(1) Equation (3) is substituted into (1), and then we
regroup the resulting polynomial equation in terms
of powers of 𝑡.

(2) We equate each coefficient of the above-mentioned
polynomial to zero.

(3) As a consequence, a linear algebraic system for the
unknowns of (3) is obtained.

(4) To conclude, the solution of the above system allows
obtaining the coefficients 𝑢

0
, 𝑢
1
, . . ..

3. Application of PSM to Solve PDAE Systems

Sincemany applications problems in science and engineering
are often modeled by semiexplicit PDAEs, we consider
therefore the following class of PDAEs:

𝑢
1𝑡
= 𝜙 (𝑢, 𝑢

𝑥
, 𝑢
𝑥𝑥
) , (4)

0 = 𝜓 (𝑢, 𝑢
𝑥
, 𝑢
𝑥𝑥
) , (𝑡, 𝑥) ∈ (0, 𝑇) × (𝑎, 𝑏) , (5)

where 𝑢
𝑘
: [0, 𝑇]× [𝑎, 𝑏] → 𝑅

𝑚𝑘 , 𝑘 = 1, 2, and 𝑏 > 𝑎; in other
words 𝑢 = (𝑢

1
, 𝑢
2
).

For clarification, the method is described for the general
system (4)-(5) where the number of unknowns is given
by 𝑚
1
+ 𝑚
2
. In this notation, 𝑢

1
(differential unknown)

has 𝑚
1
components and 𝑢

2
(algebraic unknown) has 𝑚

2

components. In fact 𝑚
1
and 𝑚

2
can take any values greater

than or equal to one, so that the number of unknowns in (4)-
(5) is greater than or equal to 2.

System (4)-(5) is subject to the initial condition

𝑢
1
(0, 𝑥) = 𝑔 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏, (6)

and some suitable boundary conditions

𝐵 (𝑢 (𝑡, 𝑎) , 𝑢 (𝑡, 𝑏) , 𝑢
𝑥
(𝑡, 𝑎) , 𝑢

𝑥
(𝑡, 𝑏)) = 0, 0 ≤ 𝑡 ≤ 𝑇, (7)

where 𝑔(𝑥) is a given function.
We assume that the solution to initial boundary-value

problem (4)–(7) exists and is unique and sufficiently smooth.
To simplify the exposition of the PSM, we integrate first

(4) with respect to 𝑡 and use the initial condition (6) to obtain

𝑢
1
(𝑡, 𝑥) − 𝑔 (𝑥) − ∫

𝑡

0

𝜙 (𝑢, 𝑢
𝑥
, 𝑢
𝑥𝑥
) 𝑑𝑡 = 0. (8)

It is important to note that the time integration of (4) is not
relevant to the solution procedure presented here, so one can
apply the PSM directly to (4).

A fact that justifies the use of PSM is that, in general terms,
getting solutions for PDAEs becomes very complicated, even
for numerical methods. Moreover, there are not systematic
analytical or numerical methods to solve these problems.

In view of PSM, we assume the solution components
𝑢
𝑘
(𝑡, 𝑥), 𝑘 = 1, 2, have the form

𝑢
𝑘
(𝑡, 𝑥) = 𝑢

𝑘,0
(𝑥) + 𝑢

𝑘,1
(𝑥) 𝑡 + 𝑢

𝑘,2
(𝑥) 𝑡
2

+ ⋅ ⋅ ⋅ , (9)

where 𝑢
𝑘,𝑛
(𝑥), 𝑘 = 1, 2, 𝑛 = 0, 1, 2, . . ., are unknown functions

to be determined later on by the PSM.
Then substitute (9) into system (4)-(5) and equate the

coefficients of powers of 𝑡 in the resulting equation to zero, to
obtain an algebraic linear system for the coefficients, whose
solution is employed in (9), with the end of obtaining a
solution for (4)–(7) in series form. These series may have
limited regions of convergence, even if we take a large number
of terms. Therefore, in some cases, it will be convenient to
apply the Padé resummationmethod to PSM truncated series
to enlarge the convergence region as depicted in the next
section.A relevant fact is that the steps outlined in this section
will be also sufficient to obtain satisfactory solutions for the
most difficult case of SPDAEs.
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4. Case Studies

The objective of this section is employing PSM, in order to
solve three SPDAE systems.

Our results will show the efficiency of the presented
method.

4.1. Nonlinear Index-One SPDAE (following Section 3,𝑚
1
= 1

and𝑚
2
= 1). Consider the following:

𝑢
1𝑡
− 𝑢
1𝑥𝑥

+ 𝑢
1
𝑢
1𝑥
+
𝑢
2

𝑥
= 𝑥
3

− 6𝑥𝑡 + 3𝑡
2

𝑥
5

+
𝑡
4

𝑥2
, (10)

𝑢
1
+ 𝑢
2
= 𝑡𝑥
3

+
𝑡
4

𝑥
, 𝑡 > 0, (11)

subject to the initial conditions

𝑢
1
(0, 𝑥) = 0. (12)

In order to apply PSM, we integrate (10) with respect to 𝑡 and
use the initial condition (12) to obtain
𝑢
1
(𝑡, 𝑥)

= ∫

𝑡

0

[𝑢
1𝑥𝑥

− 𝑢
1
𝑢
1𝑥
−
𝑢
2

𝑥
+ 𝑥
3

− 6𝑥𝑡 + 3𝑡
2

𝑥
5

+
𝑡
4

𝑥2
]𝑑𝑡.

(13)

PSM assumes that 𝑢(𝑡, 𝑥) and V(𝑡, 𝑥) can be written as

𝑢
1
(𝑡, 𝑥) = 𝑢

10
(𝑥) + 𝑢

11
(𝑥) 𝑡 + 𝑢

12
(𝑥) 𝑡
2

+ ⋅ ⋅ ⋅ , (14)

𝑢
2
(𝑡, 𝑥) = 𝑢

20
(𝑥) + 𝑢

21
(𝑥) 𝑡 + 𝑢

22
(𝑥) 𝑡
2

+ ⋅ ⋅ ⋅ , (15)

where 𝑢
10
(𝑥), 𝑢
11
(𝑥), 𝑢
12
(𝑥), 𝑢
20
(𝑥), 𝑢
21
(𝑥), 𝑢
22
(𝑥), . . . are un-

known functions.
This case study is simplified, substituting (14) and (15) into

(11), to get
∞

∑

𝑛=0

𝑢
2𝑛
𝑡
𝑛

=
𝑡
4

𝑥
+ 𝑡𝑥
3

−

∞

∑

𝑛=0

𝑢
1𝑛
𝑡
𝑛

. (16)

On the other hand, substituting (14) through (16) into (13)
leads to

∞

∑

𝑛=0

𝑢
1𝑛
𝑡
𝑛

= ∫

𝑡

0

[

∞

∑

𝑛=0

𝑢


1𝑛
𝑡
𝑛

−

∞

∑

𝑛=0

∞

∑

𝑚=0

𝑢
1𝑛
𝑢


1𝑚
𝑡
𝑛+𝑚

−
1

𝑥
(
𝑡
4

𝑥
+ 𝑡𝑥
3

−

∞

∑

𝑛=0

𝑢
1𝑛
𝑡
𝑛

)

+𝑥
3

− 6𝑥𝑡 + 3𝑡
2

𝑥
5

+
𝑡
4

𝑥2
]𝑑𝑡.

(17)

From here on, the dash notation in 𝑢 denotes the ordinary
derivative with respect to 𝑥.

Integrating the above result, it is obtained that
∞

∑

𝑛=0

𝑢
1𝑛
𝑡
𝑛

=

∞

∑

𝑛=0

𝑢


1𝑛

𝑡
𝑛+1

𝑛 + 1
−

∞

∑

𝑛=0

∞

∑

𝑚=0

𝑢
1𝑛
𝑢


1𝑚

𝑡
𝑛+𝑚+1

𝑛 + 𝑚 + 1

−
𝑥
2

𝑡
2

2
+ 𝑥
3

𝑡 − 3𝑥𝑡
2

+ 𝑥
5

𝑡
3

+
1

𝑥

∞

∑

𝑛=0

𝑢
1𝑛
𝑡
𝑛+1

𝑛 + 1
.

(18)

Standardizing the summation index and grouping, we get the
recursive formula

𝑢
10
𝑡
0

− 𝑥
3

𝑡 + (3𝑥 +
𝑥
2

2
) 𝑡
2

− 𝑥
5

𝑡
3

+

∞

∑

𝑘=1

[𝑢
1𝑘
−
𝑢


1𝑘−1

𝑘
+

∞

∑

𝑚=0

𝑢
1𝑘−𝑚−1

𝑢


1𝑚

𝑘
−
𝑢
1𝑘−1

𝑘𝑥
] 𝑡
𝑘

= 0.

(19)

Equating the coefficients of powers of 𝑡 to zero in (19), we
obtain

𝑘 = 0,

𝑢
0
= 0,

𝑘 = 1,

𝑢
11
= 𝑢


10
− 𝑢


10
𝑢
10
+
1

𝑥
𝑢
10
+ 𝑥
3

;

(20)

after employing (20), it is obtained that

𝑢
11
= 𝑥
3

,

𝑘 = 2,

𝑢
12
=
𝑢


11

2
−
𝑢


10
𝑢
11

2
−
𝑢


11
𝑢
10

2
+
𝑢
11

2𝑥
−
𝑥
2

2
− 3𝑥;

(21)

substituting (20) and (21) in the above equation, it is obtained
that

𝑢
12
= 0,

𝑘 = 3,

𝑢
13
=
𝑢


12

3
−
𝑢


10
𝑢
12

3
−
𝑢


11
𝑢
11

3
−
𝑢


12
𝑢
10

3
+
𝑢
12

3𝑥
+ 𝑥
5

;

(22)

after substituting (20), (21), and (22) in the last equation, we
get

𝑢
13
= 0,

𝑘 = 4,

𝑢
14
=
𝑢


13

4
−
𝑢


10
𝑢
13

4
−
𝑢


11
𝑢
12

4
−
𝑢


12
𝑢
11

4
−
𝑢


13
𝑢
10

4
+
𝑢
13

4𝑥
;

(23)

after employing (20), (21), (22), and (23), we get

𝑢
14
= 0,

𝑘 = 5,

𝑢
15
=
𝑢


14

5
−
𝑢


10
𝑢
14

5
−
𝑢


11
𝑢
13

5
−
𝑢


12
𝑢
12

5

−
𝑢


13
𝑢
11

5
−
𝑢


14
𝑢
10

5
+
𝑢
14

5𝑥
;

(24)
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the substitution of (20), (21), (22), (23), and (24) leads to

𝑢
15
= 0; (25)

in the same way we obtain

𝑢
16
= 𝑢
17
= 𝑢
18
= ⋅ ⋅ ⋅ = 0. (26)

Substituting (20) through (26) into (14) leads us to

𝑢
1
(𝑡, 𝑥) = 𝑥

3

𝑡. (27)

Finally, substituting (27) into (11) leads to

𝑢
2
(𝑡, 𝑥) =

𝑡
4

𝑥
. (28)

Thus, (27) and (28) are the exact solution for SPDAE system
(10)–(12).

4.2. Linear Index-Two SPDAEwithVariable Coefficients (𝑚
1
=

2, 𝑚
2
= 1). Consider the following:

𝑢
1𝑡
= 𝑥
2

𝑢
1𝑥𝑥

− 3𝑢
1
+ 𝑢
3
+

𝑥
2

1 + 𝑡
, (29)

𝑢
2𝑡
= 𝑥
2

𝑢
2𝑥𝑥

− 3𝑢
2
+ 𝑢
3
+

𝑥
2

1 + 𝑡
, (30)

0 = 𝑢
1
+ 𝑢
2
− 2𝑥
2 ln (1 + 𝑡) , (31)

subject to the initial conditions

𝑢
1
(0, 𝑥) = 0, 𝑢

2
(0, 𝑥) = 0,

−1 < 𝑡 ≤ 1, −∞ < 𝑥 < ∞.

(32)

The integration of (29) and (30) with respect to 𝑡 and using
the initial conditions (32) lead to

𝑢
1
(𝑡, 𝑥) = ∫

𝑡

0

[𝑥
2

𝑢
1𝑥𝑥

− 3𝑢
1
+ 𝑢
3
] 𝑑𝑡 + 𝑥

2 ln (1 + 𝑡) , (33)

𝑢
2
(𝑡, 𝑥) = ∫

𝑡

0

[𝑥
2

𝑢
2𝑥𝑥

− 3𝑢
2
+ 𝑢
3
] 𝑑𝑡 + 𝑥

2 ln (1 + 𝑡) , (34)

assuming that 𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), and 𝑢

3
(𝑡, 𝑥) can be written as

𝑢
1
(𝑡, 𝑥) = 𝑢

10
(𝑥) + 𝑢

11
(𝑥) 𝑡 + 𝑢

12
(𝑥) 𝑡
2

+ ⋅ ⋅ ⋅ , (35)

𝑢
2
(𝑡, 𝑥) = 𝑢

20
(𝑥) + 𝑢

21
(𝑥) 𝑡 + 𝑢

22
(𝑥) 𝑡
2

+ ⋅ ⋅ ⋅ , (36)

𝑢
3
(𝑡, 𝑥) = 𝑢

30
(𝑥) + 𝑢

31
(𝑥) 𝑡 + 𝑢

32
(𝑥) 𝑡
2

+ ⋅ ⋅ ⋅ , (37)

where 𝑢
10
(𝑥), 𝑢
11
(𝑥), . . . , 𝑢

20
(𝑥), 𝑢
21
(𝑥), . . . , 𝑢

30
(𝑥), 𝑢
31
(𝑥),

. . . are unknown functions to be determined later on by the
PSM method.

After substituting (35) and (37) into (33), we get

𝑢
10
𝑡
0

+

∞

∑

𝑘=1

1

𝑘
[𝑘𝑢
1𝑘
− 𝑥
2

𝑢


1𝑘−1
+ 3𝑢
1𝑘−1

−𝑢
3𝑘−1

− 𝑥
2

(−1)
𝑘−1

] 𝑡
𝑘

= 0,

(38)

where we have standardized the summation index and em-
ployed the following Taylor series expansion:

ln (1 + 𝑡) =
∞

∑

𝑛=1

(−1)
𝑛−1

𝑛
𝑡
𝑛

, −1 < 𝑡 ≤ 1. (39)

In the same way, the substitution of (36) and (37) into (34)
leads to

𝑢
20
𝑡
0

+

∞

∑

𝑘=1

1

𝑘
[𝑘𝑢
2𝑘
− 𝑥
2

𝑢


2𝑘−1
+ 3𝑢
2𝑘−1

−𝑢
3𝑘−1

− 𝑥
2

(−1)
𝑘−1

] 𝑡
𝑘

= 0.

(40)

On the other hand, after substituting (35), (36), and (39) into
(31), we have

∞

∑

𝑘=1

[𝑢
1𝑘
+ 𝑢
2𝑘
−
2𝑥
2

𝑘
(−1)
𝑘−1

] 𝑡
𝑘

= 0, (41)

where we have employed the following results, deduced from
(38) and (40):

𝑢
10
= 𝑢
20
= 0. (42)

Equations (38), (40), and (41) give rise to the following
formulas:

𝑢
1𝑛
=
𝑥
2

𝑢


1𝑛−1
− 3𝑢
1𝑛−1

+ 𝑢
3𝑛−1

+ (−1)
𝑛−1

𝑥
2

𝑛
, 𝑛 ≥ 1, (43)

𝑢
2𝑛
=
𝑥
2

𝑢


2𝑛−1
− 3𝑢
2𝑛−1

+ 𝑢
3𝑛−1

+ (−1)
𝑛−1

𝑥
2

𝑛
, 𝑛 ≥ 1, (44)

𝑢
1𝑛
+ 𝑢
2𝑛
=
2𝑥
2

(−1)
𝑛−1

𝑛
, 𝑛 ≥ 1. (45)

Combining the result of adding (43) and (44), with (45), we
obtain

𝑢
3𝑛−1

= −
1

2
(𝑢


1𝑛−1
+ 𝑢


2𝑛−1
) 𝑥
2

+
3

2
(𝑢
1𝑛−1

+ 𝑢
2𝑛−1

) , 𝑛 ≥ 1.

(46)

The substitution of (46) into (43) and (44), respectively, leads
us to

𝑢
1𝑛
=

1

2𝑛
(𝑥
2

𝑢


1𝑛−1
− 3𝑢
1𝑛−1

+ 3𝑢
2𝑛−1

−𝑥
2

𝑢


2𝑛−1
+ 2 (−1)

𝑛−1

𝑥
2

) , 𝑛 ≥ 1,

𝑢
2𝑛
=

1

2𝑛
(𝑥
2

𝑢


2𝑛−1
− 3𝑢
2𝑛−1

+ 3𝑢
1𝑛−1

−𝑥
2

𝑢


1𝑛−1
+ 2 (−1)

𝑛−1

𝑥
2

) , 𝑛 ≥ 1.

(47)
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From recursion formulas (46) and (47), we get the functions

𝑢
10
(𝑥) = 0, 𝑢

11
(𝑥) = 𝑥

2

, 𝑢
12
(𝑥) =

−𝑥
2

2
,

𝑢
13
=
𝑥
2

3
, 𝑢

14
=
−𝑥
2

4
⋅ ⋅ ⋅ ,

(48)

𝑢
20
(𝑥) = 0, 𝑢

21
(𝑥) = 𝑥

2

, 𝑢
22
(𝑥) =

−𝑥
2

2
,

𝑢
23
=
𝑥
2

3
, 𝑢

24
=
−𝑥
2

4
⋅ ⋅ ⋅ ,

(49)

𝑢
30
(𝑥) = 0, 𝑢

31
(𝑥) = 𝑥

2

, 𝑢
32
(𝑥) =

−𝑥
2

2
,

𝑢
33
=
𝑥
2

3
, 𝑢

34
=
−𝑥
2

4
⋅ ⋅ ⋅ .

(50)

After substituting (48) through (50) into series (35), (36), and
(37), respectively, we get

𝑢
1
(𝑡, 𝑥) = 𝑥

2

[𝑡 −
𝑡
2

2
+
𝑡
3

3
−
𝑡
4

4
+ ⋅ ⋅ ⋅ ] , (51)

𝑢
2
(𝑡, 𝑥) = 𝑥

2

[𝑡 −
𝑡
2

2
+
𝑡
3

3
−
𝑡
4

4
+ ⋅ ⋅ ⋅ ] , (52)

𝑢
3
(𝑡, 𝑥) = 𝑥

2

[𝑡 −
𝑡
2

2
+
𝑡
3

3
−
𝑡
4

4
+ ⋅ ⋅ ⋅ ] . (53)

After identifying the 𝑛th terms of the series (51), (52), and (53)
as ((−1)𝑛−1/𝑛)𝑡𝑛, we conclude that

𝑢
1
(𝑡, 𝑥) = 𝑥

2 ln (1 + 𝑡) ,

𝑢
2
(𝑡, 𝑥) = 𝑥

2 ln (1 + 𝑡) ,

𝑢
3
(𝑡, 𝑥) = 𝑥

2 ln (1 + 𝑡)

(54)

which is the exact solution of (29)–(32) (see (39)).

4.3. Nonlinear Index-Two SPDAE with Variable Coefficients
(𝑚
1
= 2, 𝑚

2
= 1). Finally, consider the following:

𝑢
1𝑡
= 𝑓 (𝑥) 𝑢

1𝑥𝑥
+ 𝑢
1
𝑢
1𝑥
−
1 − 𝑡

1 + 𝑡
𝑢
3
, (55)

𝑢
2𝑡
= 𝑔 (𝑥) 𝑢

2𝑥𝑥
− 𝑢
2
𝑢
2𝑥
+
1 + 𝑡

1 − 𝑡
𝑢
3
, (56)

0 = 𝑢
1
(1 + 𝑡) − 𝑢

2
(1 − 𝑡) , −∞ < 𝑥 < ∞, −1 < 𝑡 < 1,

(57)

subject to the initial conditions

𝑢
1
(0, 𝑥) = 𝑥, 𝑢

2
(0, 𝑥) = 𝑥, 𝑢

3
(0, 𝑥) = 2𝑥, (58)

where 𝑓(𝑥) and 𝑔(𝑥) are analytical functions on −∞ < 𝑥 <

∞.

The integration of (55) and (56)with respect to 𝑡 andusing
the initial conditions (58) lead to

𝑢
1
(𝑡, 𝑥) = 𝑥 + ∫

𝑡

0

[𝑓 (𝑥) 𝑢
1𝑥𝑥

+ 𝑢
1
𝑢
1𝑥
−
1 − 𝑡

1 + 𝑡
𝑢
3
] 𝑑𝑡, (59)

𝑢
2
(𝑡, 𝑥) = 𝑥 + ∫

𝑡

0

[𝑔 (𝑥) 𝑢
2𝑥𝑥

− 𝑢
2
𝑢
2𝑥
+
1 + 𝑡

1 − 𝑡
𝑢
3
] 𝑑𝑡. (60)

PSM assumes once again that 𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), and 𝑢

3
(𝑡, 𝑥)

can be written as

𝑢
1
(𝑡, 𝑥) = 𝑢

10
(𝑥) + 𝑢

11
(𝑥) 𝑡 + 𝑢

12
(𝑥) 𝑡
2

+ ⋅ ⋅ ⋅ , (61)

𝑢
2
(𝑡, 𝑥) = 𝑢

20
(𝑥) + 𝑢

21
(𝑥) 𝑡 + 𝑢

22
(𝑥) 𝑡
2

+ ⋅ ⋅ ⋅ , (62)

𝑢
3
(𝑡, 𝑥) = 𝑢

30
(𝑥) + 𝑢

31
(𝑥) 𝑡 + 𝑢

32
(𝑥) 𝑡
2

+ ⋅ ⋅ ⋅ , (63)

where 𝑢
10
(𝑥), 𝑢
11
(𝑥), . . . , 𝑢

20
(𝑥), 𝑢
21
(𝑥), . . . , 𝑢

30
(𝑥), 𝑢
31
(𝑥),

. . . are unknown functions to be determined later on by the
PSM method.

Substituting (61) and (63) into (59) and also (62) and (63)
into (60), respectively, we get
∞

∑

𝑛=0

𝑢
1𝑛
𝑡
𝑛

= 𝑥 + ∫

𝑡

0

𝑓 (𝑥)

∞

∑

𝑛=0

𝑢


1𝑛
𝑡
𝑛

𝑑𝑡 + ∫

𝑡

0

∞

∑

𝑛=0

∞

∑

𝑚=0

𝑢
1𝑛
𝑢


1𝑚
𝑡
𝑛+𝑚

𝑑𝑡

− ∫

𝑡

0

(1 − 𝑡)

∞

∑

𝑛=0

∞

∑

𝑚=0

(−1)
𝑛

𝑢
3𝑚
𝑡
𝑛+𝑚

𝑑𝑡,

(64)
∞

∑

𝑛=0

𝑢
2𝑛
𝑡
𝑛

= 𝑥 + ∫

𝑡

0

𝑔 (𝑥)

∞

∑

𝑛=0

𝑢


2𝑛
𝑡
𝑛

𝑑𝑡 + ∫

𝑡

0

∞

∑

𝑛=0

∞

∑

𝑚=0

𝑢
2𝑛
𝑢


2𝑚
𝑡
𝑛+𝑚

𝑑𝑡

− ∫

𝑡

0

(1 + 𝑡)

∞

∑

𝑛=0

∞

∑

𝑚=0

𝑢
3𝑚
𝑡
𝑛+𝑚

𝑑𝑡,

(65)

where we have employed the Taylor series expansions

1

1 − 𝑡
=

∞

∑

𝑛=0

𝑡
𝑛

,
1

1 + 𝑡
=

∞

∑

𝑛=0

(−1)
𝑛

𝑡
𝑛

. (66)

After integrating and standardizing the summation index,
we get the following recursion formulas, from (64) and (65),
respectively:

− 𝑢
10
+ 𝑥 − 𝑢

30
𝑡 −

1

2
(𝑢
31
− 2𝑢
30
) 𝑡
2

−
1

3
(𝑢
32
− 2𝑢
31
+ 2𝑢
30
) 𝑡
3

−
1

4
(𝑢
33
− 2𝑢
32
+ 2𝑢
31
− 2𝑢
30
) 𝑡
4

+

∞

∑

𝑘=1

[
𝑓 (𝑥) 𝑢



1𝑘−1

𝑘
+

∞

∑

𝑚=0

𝑢


1𝑚
𝑢
1𝑘−𝑚−1

𝑘
− 𝑢
1𝑘
] 𝑡
𝑘

= 0,

− 𝑢
20
+ 𝑥 + 𝑢

30
𝑡 +

1

2
(𝑢
31
+ 2𝑢
30
) 𝑡
2

+
1

3
(𝑢
32
+ 2𝑢
31
+ 2𝑢
30
) 𝑡
3
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+
1

4
(𝑢
33
+ 2𝑢
32
+ 2𝑢
31
+ 2𝑢
30
) 𝑡
4

+

∞

∑

𝑘=1

[
𝑔 (𝑥) 𝑢



2𝑘−1

𝑘
−

∞

∑

𝑚=0

𝑢


2𝑚
𝑢
2𝑘−𝑚−1

𝑘
− 𝑢
2𝑘
] 𝑡
𝑘

= 0.

(67)

From (57) we obtain

∞

∑

𝑚=0

𝑢
2𝑚
𝑡
𝑚

= (1 + 𝑡)

∞

∑

𝑛=0

∞

∑

𝑗=0

𝑡
𝑛+𝑗

𝑢
1𝑗
, (68)

after using again the first series of (66).
After standardizing the summation index, we get a third

recurrence formula from (68):

𝑢
2𝑘
=

∞

∑

𝑛=0

[𝑢
1𝑘−𝑛

+ 𝑢
1𝑘−𝑛−1

] , where 𝑘 = 0, 1, 2, 3, . . . .

(69)

From recursion formulas (67) and (69), we get the following
coupled equations:

𝑢
10
= 𝑢
10
(0, 𝑥) , (70)

𝑢
11
= 𝑓 (𝑥) 𝑢



10
+ 𝑢


10
𝑢
10
− 𝑢
30
, (71)

𝑢
12
= 𝑓 (𝑥)

𝑢


11

2
+
𝑢


10
𝑢
11
+ 𝑢


11
𝑢
10

2
+
𝑢
31

2
, (72)

𝑢
13
= 𝑓 (𝑥)

𝑢


12

3
+
𝑢


10
𝑢
12
+ 𝑢


11
𝑢
11
+ 𝑢


12
𝑢
10

3

−
𝑢
32
+ 2𝑢
30
− 2𝑢
31

3
,

(73)

𝑢
14
=
𝑢


13

4
+
𝑢


10
𝑢
13
+ 𝑢


11
𝑢
12
+ 𝑢


12
𝑢
11
+ 𝑢


13
𝑢
10

4

−
𝑢
33
− 2𝑢
32
+ 2𝑢
31
− 2𝑢
30

4
,

.

.

.

(74)

𝑢
20
= 𝑢
20
(0, 𝑥) , (75)

𝑢
21
= 𝑔 (𝑥) 𝑢



20
− 𝑢


20
𝑢
20
+ 𝑢
30
, (76)

𝑢
22
= 𝑔 (𝑥)

𝑢


21

2
−
𝑢


20
𝑢
21
+ 𝑢


21
𝑢
20

2
+
𝑢
31
+ 2𝑢
30

2
, (77)

𝑢
23
= 𝑔 (𝑥)

𝑢


22

3
−
𝑢


20
𝑢
22
+ 𝑢


21
𝑢
21
+ 𝑢


22
𝑢
20

3

+
𝑢
32
+ 2𝑢
30
+ 2𝑢
31

3
,

(78)

𝑢
24
= 𝑔 (𝑥)

𝑢


23

4
−
𝑢


20
𝑢
23
+ 𝑢


21
𝑢
22
+ 𝑢


22
𝑢
21
+ 𝑢


23
𝑢
20

4

+
𝑢
33
+ 2𝑢
32
+ 2𝑢
31
+ 2𝑢
30

4
,

.

.

.

(79)

𝑢
20
= 𝑢
10
, (80)

𝑢
21
= 2𝑢
10
+ 𝑢
11
, (81)

𝑢
22
= 𝑢
12
+ 2𝑢
11
+ 2𝑢
10
, (82)

𝑢
23
= 𝑢
13
+ 2𝑢
12
+ 2𝑢
11
+ 2𝑢
10
, (83)

𝑢
24
= 𝑢
14
+ 2𝑢
13
+ 2𝑢
12
+ 2𝑢
11
+ 2𝑢
10
,

.

.

.

(84)

From (70) through (84), we get the functions

𝑢
10
= 𝑥, 𝑢

11
= −𝑥, 𝑢

12
= 𝑥,

𝑢
13
= −𝑥, 𝑢

14
= 𝑥 ⋅ ⋅ ⋅ ,

(85)

𝑢
20
= 𝑥, 𝑢

21
= 𝑥, 𝑢

22
= 𝑥,

𝑢
23
= 𝑥, 𝑢

24
= 𝑥 ⋅ ⋅ ⋅ ,

(86)

𝑢
30
= 2𝑥, 𝑢

31
= 0, 𝑢

32
= 2𝑥,

𝑢
33
= 0, 𝑢

34
= 2𝑥.

(87)

Substituting (85) through (87) into series (61), (62), and (63),
respectively, we get

𝑢
1
(𝑡, 𝑥) = 𝑥 (1 − 𝑡 + 𝑡

2

− 𝑡
3

+ 𝑡
4

+ ⋅ ⋅ ⋅ ) , (88)

𝑢
2
(𝑡, 𝑥) = 𝑥 (1 + 𝑡 + 𝑡

2

+ 𝑡
3

+ 𝑡
4

+ ⋅ ⋅ ⋅ ) , (89)

𝑢
3
(𝑡, 𝑥) = 2𝑥 (1 + 𝑡

2

+ 𝑡
4

+ 𝑡
6

+ ⋅ ⋅ ⋅ ) . (90)

After identifying the 𝑛th terms of the above series as (−1)𝑛𝑡𝑛,
𝑡
𝑛, and 𝑡2𝑛, respectively, we conclude that series (88) through
(90) admit the following closed forms:

𝑢
1
(𝑡, 𝑥) =

𝑥

1 + 𝑡
,

𝑢
2
(𝑡, 𝑥) =

𝑥

1 − 𝑡
,

𝑢
3
(𝑡, 𝑥) =

2𝑥

1 − 𝑡2
,

(91)

which is the exact solution of (55)–(58), where we have
employed (66) and

1

1 − 𝑡2
=

∞

∑

𝑛=0

𝑡
2𝑛

. (92)

This case admits an alternative way to obtain the closed
solution (91) by using Padé posttreatment [58, 59]. In general
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terms, Padé technology is employed, in order to obtain
solutions for differential equations, handier and computa-
tionally more efficient. Also, it is employed to improve the
convergence of truncated series. As a matter of fact, the
application of Padé [2/2] to series (88)–(90) leads to the exact
solution (91).

5. Discussion

In this study we presented the power series method (PSM)
as a useful tool in the search for analytical solutions for
singular partial differential-algebraic equations (SPDAEs). To
this end, two SPDAE problems of index-two and another
of index-one were solved by this technique, leading (for
these cases) to the exact solutions. For each of the cases
studied, PSM essentially transformed the SPDAE into an
easily solvable algebraic system for the coefficient functions
of the proposed power series solution.

Since not all the SPDAEs have exact solutions, it is
possible that, in some cases, the series solution obtained
from PSM may have limited regions of convergence, even
taking a large number of terms; our case study three suggests
the use of a Padé posttreatment, as a possibility to improve
the domain of convergence for the PSM’s truncated series.
In fact, the mentioned example showed that, sometimes,
Padé approximant leads to the exact solution. It should be
mentioned that Laplace-Padé resummation is another known
method, employed in the literature [53] to enlarge the domain
of convergence of solutions or is inclusive to find exact
solutions.This technique, which combines Laplace transform
and Padé posttreatment, may be used in the future research
of SPDAEs.

One of the important features of our method is that
the high complexity of SPDAE problems was effectively
handled by this method. This is clear if one notes that
our examples were chosen to include higher-order-index
PDAEs (differentiation index greater than one), linear and
nonlinear cases, even with variable coefficients. In addition
the last example proposed the case of a system of equations
containing two functions entirely arbitrary. The above makes
this system completely inaccessible to numerical methods;
also we add singularities, which gave rise to the name of
SPDAEs.

Finally, the fact that there are not any standard analytical
or numerical methods to solve higher-index SPDAEs con-
verts the PSM method into an attractive tool to solve such
problems.

6. Conclusion

By solving the three examples, we presented PSM as a handy
anduseful tool, with high potential to find analytical solutions
to SPDAEs. Since, on one hand, we proposed the way to
improve the solutions obtained by this method if necessary
and, on the other hand, it is based on a straightforward proce-
dure, our proposal will be useful for practical applications and
suitable for engineers and scientists. Finally, further research
should be conducted to solve other SPDAEs systems, above

all of index greater than one, combining PSM and Laplace-
Padé resummation.
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