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This paper is concerned with a discrete predator-prey model with Holling II functional response and delays. Applying Gaines and
Mawhin’s continuation theorem of coincidence degree theory and the method of Lyapunov function, we obtain some sufficient
conditions for the existence global asymptotic stability of positive periodic solutions of the model.

1. Introduction

In recent years, numerous studies have been carried out on
predator-prey interactions using Lotka-Volterra type func-
tional response [1]. Considering the simplification of assump-
tions on prey searching, prey consumption, and environ-
mental complexity, Holling suggested three different kinds
of functional response to model more realistic predator-
prey interactions than what is possible with the standard
Lotka-Volterra type response [1, 2]. Many predator-prey
systems with Holling type II functional response have been
investigated. In particular, the periodic solutions are of great
interest. During the past decades, a large number of excellent
results have been reported for a lot of different predator-
prey models with Holling type II functional response. For
example, Ko and Ryu [3] investigated the qualitative analysis
of a predator-prey model with Holling type II functional
response incorporating a prey refuge. Zhou and Shi [4]
considered the existence, bifurcation, and stability of positive
stationary solutions of a diffusive Leslie-Gower predator-prey
model with Holling type II functional responses. Liu and Yan
[5] dealt with the positive periodic solutions for a neutral
delay ratio-dependent predator-prey model with a Holling
type II functional response. For more related work, one can
see [6–25]. Dunkel [26] pointed out that feedback control
item in predator-prey models depends on the population

number for certain time past and also depends on the average
of the population number for a period of time past.Motivated
by the viewpoint, we proposed the following predator-prey
model with Holling II functional response and distributed
delays:
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(1)

where 𝑥
𝑖
(𝑡) (𝑖 = 1, 2) stands for the prey and predator density

at time 𝑡. For the biological meaning of model (1), one can see
[27].

As pointed out in [28–35], discrete time models are more
appropriate to describe the dynamics relationship among
populations than continuous ones when the populations
have nonoverlapping generations. What is more, we can also
get more accurate numerical simulation results from the
discrete-time systems. Thus it is reasonable and interesting
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to investigate discrete-time systems governed by difference
equations. Following [33, 36], we obtain the discrete form of
system (1) as follows:

𝑥
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× exp{[𝑟
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(2)

which is a discrete time analogue of system (1), where 𝑘 =
0, 1, 2, . . ., 𝑥

𝑖
(𝑘) (𝑖 = 1, 2) stands for the prey and predator

density at time 𝑘, 𝑟
𝑖
(𝑘), 𝑘
𝑗
(𝑘) (𝑖 = 1, 2, 𝑗 = 1, 2, 3, 4) are

strictly positive sequences, and𝑚 is a positive constant.
In order to obtain our main results, we assume that

(H1) 𝑟
𝑖
: 𝑍 → 𝑅

+ is positive 𝜔-periodic; that is, 𝑟
𝑖
(𝑘 +

𝜔) = 𝑟
𝑖
(𝑘) (𝑖 = 1, 2) for any 𝑘 ∈ 𝑍, where 𝜔, a fixed

positive integer, denotes the common period of the
parameters in system (2);

(H2) the following inequalities are satisfied:

0 <

+∞

∑

𝑙=0

𝑘
𝑖
(−𝑙) < +∞ (𝑖 = 1, 2, 3, 4) . (3)

The principle aim of this paper is to discuss the effect of
the periodicity of the ecological and environmental param-
eters on the dynamics of discrete time predator-prey model
with Holling II functional response and distributed delays.

The paper is organized as follows. In Section 2, applying
the coincidence degree and the related continuation theorem,
a series of sufficient conditions to ensure the existence
of positive solutions of difference equations are given. In
Section 3, by means of the method of Lyapunov function, a
set of sufficient conditions for the global asymptotic stability
of the model are established. Some numerical simulations are
given to illustrate the theoretical results in Section 4.

2. Existence of Positive Periodic Solutions

Throughout the paper, we always use the notations below:

𝐼
𝜔
:= {0, 1, 2, . . . , 𝜔 − 1} , 𝑓 :=

1

𝜔

𝜔−1

∑

𝑘=0

𝑓 (𝑘) , (4)

where𝑓(𝑘) is an𝜔-periodic sequence of real numbers defined
for 𝑘 ∈ 𝑍. In order to explore the existence of positive

periodic solutions of (2) and for the reader’s convenience, we
will first summarize below a few concepts and results without
proof, borrowing from [37].

Let 𝑋,𝑌 be normed vector spaces, let 𝐿 : Dom𝐿 ⊂ 𝑋 →
𝑌 be a linear mapping, and let𝑁 : 𝑋 → 𝑌 be a continuous
mapping. The mapping 𝐿 will be called a Fredholm mapping
of index zero if dimKer 𝐿 = codim Im 𝐿 < +∞ and Im 𝐿 is
closed in 𝑌. If 𝐿 is a Fredholm mapping of index zero and
there exist continuous projectors 𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑌 →
𝑌 such that Im𝑃 = Ker 𝐿, Im 𝐿 = Ker𝑄 = Im(𝐼 − 𝑄), it
follows that 𝐿 | Dom𝐿 ∩ Ker𝑃 : (𝐼 − 𝑃)𝑋 → Im 𝐿 is
invertible. We denote the inverse of that map by 𝐾

𝑃
. If Ω is

an open bounded subset of 𝑋, the mapping 𝑁 will be called
𝐿-compact onΩ if𝑄𝑁(Ω) is bounded and𝐾

𝑃
(𝐼−𝑄)𝑁 : Ω →

𝑋 is compact. Since Im𝑄 is isomorphic to Ker 𝐿, there exists
an isomorphism 𝐽 : Im𝑄 → Ker 𝐿.

Lemma 1 ([37] continuation theorem). Let 𝐿 be a Fredholm
mapping of index zero and let𝑁 be 𝐿-compact on Ω. Suppose

(a) for each 𝜆 ∈ (0, 1) every solution 𝑥 of 𝐿𝑥 = 𝜆𝑁𝑥 is such
that 𝑥 ∉ 𝜕Ω;

(b) 𝑄𝑁𝑥 ̸= 0 for each 𝑥 ∈ Ker 𝐿⋂𝜕Ω, and
deg{𝐽𝑄𝑁,Ω⋂Ker 𝐿, 0} ̸= 0.

Then the equation 𝐿𝑥 = 𝑁𝑥 has at least one solution lying in
Dom𝐿⋂Ω.

Lemma 2 (see [33]). Let 𝑔 : 𝑍 → 𝑅 be 𝜔-periodic; that is,
𝑔(𝑘 + 𝜔) = 𝑔(𝑘); then for any fixed 𝑘

1
, 𝑘
2
∈ 𝐼
𝜔
and any 𝑘 ∈ 𝑍,

one has
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1
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 .

(5)

Lemma 3. (𝑥
1
(𝑘), 𝑥
2
(𝑘)) is an 𝜔-periodic solution of (2) with

strictly positive components if and only if (ln(𝑥
1
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2
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+∞
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1
(𝑘 − 𝑙))
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2
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2
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,
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2
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2
(𝑘) = −𝑟

2
(𝑘) −

+∞

∑

𝑙=0

𝑘
3
(−𝑙) exp (𝑥

2
(𝑘 − 𝑙))

+

+∞

∑

𝑙=0

𝑘
4
(−𝑙) exp (𝑥

1
(𝑘 − 𝑙))

1 + 𝑚 exp (𝑥
1
(𝑘))

.

(6)

The proofs of Lemma 3 are trivial, so we omitted the
details here.
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Define

𝑙
2
= {𝑧 = {𝑧 (𝑘) : 𝑧 (𝑘) ∈ 𝑅

2
, 𝑘 ∈ 𝑍}} . (7)

For 𝑎 = (𝑎
1
, 𝑎
2
)
𝑇
∈ 𝑅
2, define |𝑎| = max{|𝑎

1
|, |𝑎
2
|}.

Let 𝑙𝜔 ⊂ 𝑙
2
denote the subspace of all 𝜔-periodic sequences

equipped with the usual supremum norm ‖ ⋅ ‖, that is, ‖𝑧‖ =
max
𝑘∈𝐼
𝜔

|𝑧(𝑘)|, for any 𝑧 = {𝑧(𝑘) : 𝑘 ∈ 𝑍} ∈ 𝑙𝜔. It is easy to
show that 𝑙

𝜔
is a finite-dimensional Banach space.

Let

𝑙
𝜔

0
= {𝑧 = {𝑧 (𝑘)} ∈ 𝑙

𝜔
:

𝜔−1

∑

𝑘=0

𝑧 (𝑘) = 0} ,

𝑙
𝜔

𝑐
= {𝑧 = {𝑧 (𝑘)} ∈ 𝑙

𝜔
: 𝑧 (𝑘) = ℎ ∈ 𝑅

2
, 𝑘 ∈ 𝑍} ,

(8)

and then it follows that 𝑙𝜔
0
and 𝑙𝜔
𝑐
are both closed linear

subspaces of 𝑙𝜔 and

𝑙
𝜔
= 𝑙
𝜔

0
+ 𝑙
𝜔

𝑐
, dim 𝑙𝜔

𝑐
= 2. (9)

Next, we will be ready to establish our result.

Theorem 4. Suppose that (H1), (H2), and (H3) 𝑟
1

>

(1/𝑚)∑
+∞

𝑙=0
𝑘
2
(−𝑙) hold. Then system (2) has at least an 𝜔-

periodic solution with positive components.

Proof . Let𝑋 = 𝑌 = 𝑙𝜔,

(𝐿𝑧) (𝑘) = 𝑧 (𝑘 + 1) − 𝑧 (𝑘) = [
𝑥
1
(𝑘 + 1) − 𝑥

1
(𝑘)

𝑥
2
(𝑘 + 1) − 𝑥

2
(𝑘)
] ,

(𝑁𝑧) (𝑘) = [
𝑓
1
(𝑘)

𝑓
2
(𝑘)
] ,

(10)

where 𝑧 ∈ 𝑋, 𝑘 ∈ 𝑍 and

𝑓
1
(𝑘) = 𝑟

1
(𝑘) −

+∞

∑

𝑙=0

𝑘
1
(−𝑙) exp (𝑥

1
(𝑘 − 𝑙))

−

+∞

∑

𝑙=0

𝑘
2
(−𝑙) exp (𝑥

2
(𝑘 − 𝑙))

1 + 𝑚 exp (𝑥
2
(𝑘 − 𝑙))

,

𝑓
2
(𝑘) = −𝑟

2
(𝑘) −

+∞

∑

𝑙=0

𝑘
3
(−𝑙) exp (𝑥

2
(𝑘 − 𝑙))

+

+∞

∑

𝑙=0

𝑘
4
(−𝑙) exp (𝑥

1
(𝑘 − 𝑙))

1 + 𝑚 exp (𝑥
1
(𝑘))

.

(11)

Then it is trivial to see that 𝐿 is a bounded linear operator and

Ker 𝐿 = 𝑙𝜔
𝑐
, Im 𝐿 = 𝑙𝜔

0
,

dimKer 𝐿 = 2 = codim Im 𝐿.
(12)

It follows that 𝐿 is a Fredholm mapping of index zero. Define

𝑃𝑦 =
1

𝜔

𝜔−1

∑

𝑠=0

𝑦 (𝑠) , 𝑦 ∈ 𝑋,

𝑄𝑧 =
1

𝜔

𝜔−1

∑

𝑠=0

𝑧 (𝑠) , 𝑧 ∈ 𝑌.

(13)

It is not difficult to show that 𝑃 and 𝑄 are continuous
projectors such that

Im𝑃 = Ker 𝐿, Im 𝐿 = Ker𝑄 = Im (𝐼 − 𝑄) . (14)

Furthermore, the generalized inverse (to 𝐿) 𝐾
𝑃
: Im 𝐿 →

Ker𝑃⋂Dom𝐿 exists and is given by

𝐾
𝑃
(𝑧) =

𝜔−1

∑

𝑠=0

𝑧 (𝑠) −
1

𝜔

𝜔−1

∑

𝑠=0

(𝜔 − 𝑠) 𝑧 (𝑠) . (15)

Obviously, 𝑄𝑁 and 𝐾
𝑃
(𝐼 − 𝑄)𝑁 are continuous. Since 𝑋 is

a finite-dimensional Banach space, it is not difficult to show
that 𝐾

𝑃
(𝐼 − 𝑄)𝑁(Ω) is compact for any open bounded set

Ω ⊂ 𝑋. Moreover, 𝑄𝑁(Ω) is bounded. Thus,𝑁 is 𝐿-compact
onΩ with any open bounded set Ω ⊂ 𝑋.

Nowwe are at the point to search for an appropriate open,
bounded subset Ω for the application of the continuation
theorem. Corresponding to the operator equation 𝐿𝑧 =

𝜆𝑁𝑧, 𝜆 ∈ (0, 1), we have

𝑥
1
(𝑘 + 1) − 𝑥

1
(𝑘)

= 𝜆[𝑟
1
(𝑘) −

+∞

∑

𝑙=0

𝑘
1
(−𝑙) exp (𝑥

1
(𝑘 − 𝑙))

−

+∞

∑

𝑙=0

𝑘
2
(−𝑙) exp (𝑥

2
(𝑘 − 𝑙))

1 + 𝑚 exp (𝑥
2
(𝑘 − 𝑙))

] ,

𝑥
2
(𝑘 + 1) − 𝑥

2
(𝑘)

= 𝜆[−𝑟
2
(𝑘) −

+∞

∑

𝑙=0

𝑘
3
(−𝑙) exp (𝑥

2
(𝑘 − 𝑙))

+

+∞

∑

𝑙=0

𝑘
4
(−𝑙) exp (𝑥

1
(𝑘 − 𝑙))

1 + 𝑚 exp (𝑥
1
(𝑘))

] .

(16)

Suppose that 𝑧(𝑘) = (𝑥
1
(𝑘), 𝑥
2
(𝑘))
𝑇
∈ 𝑋 is an arbitrary

solution of system (16) for a certain 𝜆 ∈ (0, 1); summing both
sides of (16) from 0 to 𝜔−1with respect to 𝑘, respectively, we
obtain

𝜔−1

∑

𝑘=0

[

+∞

∑

𝑙=0

𝑘
1
(−𝑙) exp (𝑥

1
(𝑘 − 𝑙))

+

+∞

∑

𝑙=0

𝑘
2
(−𝑙) exp (𝑥

2
(𝑘 − 𝑙))

1 + 𝑚 exp (𝑥
2
(𝑘 − 𝑙))

] = 𝑟
1
𝜔,

𝜔−1

∑

𝑘=0

[

+∞

∑

𝑙=0

𝑘
3
(−𝑙) exp (𝑥

2
(𝑘 − 𝑙))

−

+∞

∑

𝑙=0

𝑘
4
(−𝑙) exp (𝑥

1
(𝑘 − 𝑙))

1 + 𝑚 exp (𝑥
1
(𝑘))

] = 𝑟
2
𝜔.

(17)



4 Discrete Dynamics in Nature and Society

It follows from (16) and (17) that

𝜔−1

∑

𝑘=0

𝑥1 (𝑘 + 1) − 𝑥1 (𝑘)
 ≤ 2𝑟1𝜔,

𝜔−1

∑

𝑘=0

𝑥2 (𝑘 + 1) − 𝑥2 (𝑘)
 ≤ 2𝑟2𝜔.

(18)

In view of the hypothesis that 𝑧 = {𝑧(𝑘)} ∈ 𝑋, there exist
𝜉
𝑖
, 𝜂
𝑖
∈ 𝐼
𝜔
such that

𝑥
𝑖
(𝜉
𝑖
) = min
𝑘∈𝐼
𝜔

{𝑥
𝑖
(𝑘)} , 𝑥

𝑖
(𝜂
𝑖
) = max
𝑘∈𝐼
𝜔

{𝑥
𝑖
(𝑘)} (𝑖 = 1, 2) .

(19)

By (17), we have

+∞

∑

𝑙=0

𝑘
1
(−𝑙) exp (𝑥

1
(𝜉
1
)) ≤

+∞

∑

𝑙=0

𝑘
1
(−𝑙) exp (𝑥

1
(𝑘 − 𝑙)) < 𝑟

1
𝜔,

+∞

∑

𝑙=0

𝑘
3
(−𝑙) exp (𝑥

2
(𝜂
2
)) ≥

+∞

∑

𝑙=0

𝑘
3
(−𝑙) exp (𝑥

2
(𝑘 − 𝑙)) > 𝑟

2
𝜔,

+∞

∑

𝑙=0

𝑘
1
(−𝑙) exp (𝑥

1
(𝜂
1
)) 𝜔 +

1

𝑚

+∞

∑

𝑙=0

𝑘
2
(−𝑙) 𝜔 ≥ 𝑟

1
𝜔,

+∞

∑

𝑙=0

𝑘
3
(−𝑙) exp (𝑥

2
(𝜉
2
)) −

1

𝑚

+∞

∑

𝑙=0

𝑘
4
(−𝑙) ≤ 𝑟

2
𝜔.

(20)

Thus

𝑥
1
(𝜉
1
) < ln[ 𝑟

1

∑
+∞

𝑙=0
𝑘
1
(−𝑙)
] := 𝛼

1
,

𝑥
2
(𝜂
2
) > ln[ 𝑟

2

∑
+∞

𝑙=0
𝑘
3
(−𝑙)
] := 𝛽

2
,

𝑥
1
(𝜂
1
) > ln[

𝑟
1
− (1/𝑚)∑

+∞

𝑙=0
𝑘
2
(−𝑙)

∑
+∞

𝑙=0
𝑘
1
(−𝑙)

] := 𝛼
2
,

𝑥
2
(𝜉
2
) < ln[

𝑟
2
+ (1/𝑚)∑

+∞

𝑙=0
𝑘
4
(−𝑙)

∑
+∞

𝑙=0
𝑘
3
(−𝑙)

] := 𝛽
1
.

(21)

It follows from (18), (21), and Lemma 2 that

𝑥
1
(𝑘) ≤ 𝑥

1
(𝜉
1
) +

𝜔−1

∑

𝑠=0

𝑥1 (𝑠 + 1) − 𝑥1 (𝑠)


≤ 𝛼
1
+ 2𝑟
1
𝜔 := Θ

1
,

𝑥
1
(𝑘) ≥ 𝑥

1
(𝜂
1
) −

𝜔−1

∑

𝑠=0

𝑥1 (𝑠 + 1) − 𝑥1 (𝑠)


≥ 𝛼
2
− 2𝑟
1
𝜔 := Θ

2
,

𝑥
2
(𝑘) ≤ 𝑥

2
(𝜉
2
) +

𝜔−1

∑

𝑠=0

𝑥2 (𝑠 + 1) − 𝑥2 (𝑠)


≤ 𝛽
1
+ 2𝑟
2
𝜔 := Θ

3
,

𝑥
2
(𝑘) ≥ 𝑥

2
(𝜂
2
) −

𝜔−1

∑

𝑠=0

𝑥2 (𝑠 + 1) − 𝑥2 (𝑠)


≥ 𝛽
2
− 2𝑟
2
𝜔 := Θ

4
.

(22)

In view of (22), we derive

max
𝑘∈𝐼
𝜔

{𝑥
1
(𝑘)} ≤ max {Θ1

 ,
Θ2
} := Υ1,

max
𝑘∈𝐼
𝜔

{𝑥
2
(𝑘)} ≤ max {Θ4

 ,
Θ5
} := Υ2.

(23)

Obviously, Υ
𝑖
(𝑖 = 1, 2) are independent of 𝜆 ∈ (0, 1). Take

𝑀 = max{Υ
1
, Υ
2
} + 𝑀

0
, where𝑀

0
is taken sufficiently large

such that max{| ln(𝑥∗
1
)|, | ln(𝑥∗

2
)|} < 𝑀

0
, where (𝑥∗

1
, 𝑥
∗

2
)
𝑇 is

the unique positive solution of (6). Now we have proved that
any solution 𝑧 = {𝑧(𝑘)} = {(𝑥

1
(𝑘), 𝑥
2
(𝑘))
𝑇
} of (16) in 𝑋

satisfies ‖𝑧‖ < 𝑀, 𝑘 ∈ 𝑍.
LetΩ := {𝑧 = {𝑧(𝑘)} ∈ 𝑋 : ‖𝑧‖ < 𝑀}; then it is easy to see

thatΩ is an open, bounded set in𝑋 and verifies requirement
(a) of Lemma 1. When 𝑧 ∈ 𝜕Ω ∩ Ker 𝐿, 𝑧 = {(𝑥

1
, 𝑥
2
)
𝑇
} is a

constant vector in 𝑅2 with ‖𝑧‖ = max{|𝑥
1
|, |𝑥
2
|} = 𝑀. Then

𝑄𝑁𝑧 = [
𝜒
1

𝜒
2

] ̸= 0, (24)

where

𝜒
1
= 𝑟
1
−

+∞

∑

𝑙=0

𝑘
1
(−𝑙) exp (𝑥

1
) −

𝜔−1

∑

𝑘=0

+∞

∑

𝑙=0

𝑘
2
(−𝑙) exp (𝑥

2
)

1 + 𝑚 exp (𝑥
2
)
,

𝜒
2
= −𝑟
2
−

+∞

∑

𝑙=0

𝑘
3
(−𝑙) exp (𝑥

2
) +

𝜔−1

∑

𝑘=0

+∞

∑

𝑙=0

𝑘
4
(−𝑙) exp (𝑥

1
)

1 + 𝑚 exp (𝑥
1
)
.

(25)

Now let us consider homotopic 𝜙(𝑥
1
, 𝑥
2
, 𝜇) = 𝜇𝑄𝑁𝑧 + (1 −

𝜇)𝐺𝑧, 𝜇 ∈ [0, 1], where

𝐺𝑧 = (

𝑟
1
−

+∞

∑

𝑙=0

𝑘
1
(−𝑙) exp (𝑥

1
)

−𝑟
2
−

+∞

∑

𝑙=0

𝑘
3
(−𝑙) exp (𝑥

2
)

) . (26)
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Letting 𝐽 be the identity mapping and by direct calculation,
we get

deg [𝐽𝑄𝑁(𝑥
1
, 𝑥
2
)
𝑇

; Ω⋂ ker 𝐿; 0]

= deg [𝑄𝑁(𝑥
1
, 𝑥
2
)
𝑇

; Ω⋂ ker 𝐿; 0]

= deg [𝜙 (𝑥
1
, 𝑥
2
, 1) ; Ω⋂ ker 𝐿; 0]

= deg [𝜙 (𝑥
1
, 𝑥
2
, 0) ; Ω⋂ ker 𝐿; 0]

= sign
{{{

{{{

{

det
[
[
[

[

+∞

∑

𝑙=0

𝑘
1
(−𝑙) exp (𝑥∗

1
) 0

0 −

+∞

∑

𝑙=0

𝑘
3
(−𝑙) exp (𝑥∗

2
)

]
]
]

]

}}}

}}}

}

= sign[−
+∞

∑

𝑙=0

𝑘
1
(−𝑙)

+∞

∑

𝑙=0

𝑘
3
(−𝑙) exp (𝑥∗

2
) exp (𝑥∗

1
+ 𝑥
∗

2
)]

= −1 ̸= 0.

(27)

By now, we have proved that Ω verifies all requirements
of Lemma 1; then it follows that 𝐿𝑧 = 𝑁𝑧 has at least
one solution in Dom 𝐿 ∩ Ω; that is to say, (6) has at
least one 𝜔-periodic solution in Dom𝐿 ∩ Ω, say 𝑧∗ =

{𝑧
∗
(𝑘)} = {(𝑥

∗

1
(𝑘), 𝑥
∗

2
(𝑘))
𝑇
}. Let 𝑥∗

1
(𝑘) = exp(𝑥∗

1
(𝑘)), 𝑥

∗

2
(𝑘) =

exp(𝑥∗
2
(𝑘)); then by Lemma 3 we know that 𝑧∗ = {𝑥∗(𝑘)} =

{𝑥
∗

1
(𝑘), 𝑥
∗

2
(𝑘))
𝑇
} is an 𝜔-periodic solution of system (2) with

strictly positive components. The proof is complete.

3. Global Asymptotic Stability

Let the delays be zero; then (2) takes the form

𝑥
1
(𝑘 + 1) = 𝑥

1
(𝑘) exp{[𝑟

1
(𝑘) −

+∞

∑

𝑙=0

𝑘
1
(−𝑙) 𝑥

1
(𝑘)

−

+∞

∑

𝑙=0

𝑘
2
(−𝑙) 𝑥

2
(𝑘)

1 + 𝑚𝑥
2
(𝑘)
]} ,

𝑥
2
(𝑘 + 1) = 𝑥

2
(𝑘) exp{[−𝑟

2
(𝑘) −

+∞

∑

𝑙=0

𝑘
3
(−𝑙) 𝑥

2
(𝑘)

+

+∞

∑

𝑙=0

𝑘
4
(−𝑙) 𝑥

1
(𝑘)

1 + 𝑚𝑥
1
(𝑘)
]} .

(28)

In this section, we will present sufficient conditions for the
global asymptotic stability of system (28).

Theorem 5. Assume that (H1) and (H2) are satisfied and
furthermore suppose that there exist positive constants 𝜐, 𝜇

1

and 𝜇
2
such that

𝜇
1
[

+∞

∑

𝑙=0

𝑘
1
(−𝑙)] − 𝜇

2
[

1

(1 + 𝑚𝑥∗
1
)
2
] > 𝜐,

𝜇
2
[

+∞

∑

𝑙=0

𝑘
3
(−𝑙)] − 𝜇

1
[

1

(1 + 𝑚𝑥∗
2
)
2
] > 𝜐.

(29)

Then the positive 𝜔-periodic solution of system (28) is globally
asymptotically stable.

Proof . Since the delays in system (2) have no effect on the
periodic solution, then system (28) has a positive solution
(𝑥
∗

1
(𝑘), 𝑥
∗

2
(𝑘))
𝑇. Now we prove below that it is uniformly

asymptotically stable. First, we make the change of variable

𝑢
𝑖
(𝑘) = 𝑥

𝑖
(𝑘) − 𝑥

∗

𝑖
(𝑘) (𝑖 = 1, 2) . (30)

It follows from (28) that

𝑢
1
(𝑘 + 1)

= 𝑥
1
(𝑘 + 1) − 𝑥

∗

1
(𝑘 + 1)

= 𝑥
1
(𝑘) exp{[𝑟

1
(𝑘) −

+∞

∑

𝑙=0

𝑘
1
(−𝑙) 𝑥

1
(𝑘)

−

+∞

∑

𝑙=0

𝑘
2
(−𝑙) 𝑥

2
(𝑘)

1 + 𝑚𝑥
2
(𝑘)
]}

− 𝑥
∗

1
(𝑘) exp{[𝑟

1
(𝑘) −

+∞

∑

𝑙=0

𝑘
1
(−𝑙) 𝑥

∗

1
(𝑘)

−

+∞

∑

𝑙=0

𝑘
2
(−𝑙) 𝑥

∗

2
(𝑘)

1 + 𝑚𝑥∗
2
(𝑘)
]}

= {𝑥
1
(𝑘) exp[(−

+∞

∑

𝑙=0

𝑘
1
(−𝑙)) 𝑢

1
(𝑘)

− (

+∞

∑

𝑙=0

𝑘
2
(−𝑙) 𝑥

2
(𝑘)

1 + 𝑚𝑥
2
(𝑘)

−

+∞

∑

𝑙=0

𝑘
2
(−𝑙) 𝑥

∗

2
(𝑘)

1 + 𝑚𝑥
2
(𝑘)
)]

− 𝑥
∗

1
(𝑘)}

𝑥
∗

1
(𝑘 + 1)

𝑥∗
1
(𝑘)

= {[1 −

+∞

∑

𝑙=0

𝑘
1
(−𝑙) 𝑥

∗

1
(𝑘)]

𝑢
1
(𝑘)

𝑥∗
1
(𝑘)

−
1

(1 + 𝑚𝑥∗
2
)
2
𝑢
2
(𝑘) + 𝜌

1
}𝑥
∗

1
(𝑘 + 1) ,
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𝑢
2
(𝑘 + 1)

= 𝑥
2
(𝑘 + 1) − 𝑥

∗

2
(𝑘 + 1)

= 𝑥
2
(𝑘) exp{[−𝑟

2
(𝑘) −

+∞

∑

𝑙=0

𝑘
3
(−𝑙) 𝑥

2
(𝑘)

+

+∞

∑

𝑙=0

𝑘
4
(−𝑙) 𝑥

1
(𝑘)

1 + 𝑚𝑥
1
(𝑘)
]}

− 𝑥
∗

2
(𝑘) exp{[−𝑟

2
(𝑘) −

+∞

∑

𝑙=0

𝑘
3
(−𝑙) 𝑥

∗

2
(𝑘)

+

+∞

∑

𝑙=0

𝑘
4
(−𝑙) 𝑥

∗

1
(𝑘)

1 + 𝑚𝑥
1
(𝑘)
]}

= {𝑥
2
(𝑘) exp[(−

+∞

∑

𝑙=0

𝑘
3
(−𝑙)) 𝑢

2
(𝑘)

− (

+∞

∑

𝑙=0

𝑘
4
(−𝑙) 𝑥

1
(𝑘)

1 + 𝑚𝑥
1
(𝑘)

−

+∞

∑

𝑙=0

𝑘
4
(−𝑙) 𝑥

∗

1
(𝑘)

1 + 𝑚𝑥
1
(𝑘)
)]

− 𝑥
∗

2
(𝑘)}

𝑢
∗

2
(𝑘 + 1)

𝑥∗
2
(𝑘)

= {[1 −

+∞

∑

𝑙=0

𝑘
3
(−𝑙) 𝑥

∗

2
(𝑘)]

𝑢
2
(𝑘)

𝑥∗
2
(𝑘)

−
1

(1 + 𝑚𝑥∗
1
)
2
𝑢
1
(𝑘) + 𝜌

2
}𝑥
∗

2
(𝑘 + 1) ,

(31)

where ‖𝜌
𝑖
‖/‖𝑢‖ (𝑖 = 1, 2) converges to zero as ‖𝑢‖ → 0.

Define a function 𝑉 by

𝑉 (𝑁 (𝑘)) = 𝜇
1



𝑢
1
(𝑘)

𝑥∗
1
(𝑘)



+ 𝜇
2



𝑢
2
(𝑘)

𝑥∗
2
(𝑘)



, (32)

where 𝜇
1
and 𝜇

2
are all positive constants given by (34) and

(35), respectively. Calculating the difference of 𝑉 along the
solution of system (31), we get

Δ𝑉 = 𝜇
1
(



𝑢
1
(𝑘 + 1)

𝑥∗
1
(𝑘 + 1)

−
𝑢
1
(𝑘)

𝑥∗
1
(𝑘)



)

+ 𝜇
2
(



𝑢
2
(𝑘 + 1)

𝑥∗
2
(𝑘 + 1)

−
𝑢
2
(𝑘)

𝑥∗
2
(𝑘)



)

≤ −𝜇
1
[

+∞

∑

𝑙=0

𝑘
1
(−𝑙)]

𝑢1 (𝑘)


+ 𝜇
1
[

1

(1 + 𝑚𝑥∗
2
)
2
]
𝑢2 (𝑘)



− 𝜇
2
[

+∞

∑

𝑙=0

𝑘
3
(−𝑙)]

𝑢2 (𝑘)


+ 𝜇
2
[

1

(1 + 𝑚𝑥∗
1
)
2
]
𝑢1 (𝑘)



≤ −Δ
1

𝑢1 (𝑘)
 − Δ 2

𝑢2 (𝑘)
 ,

(33)

where

Δ
1
= 𝜇
1
[

+∞

∑

𝑙=0

𝑘
1
(−𝑙)] − 𝜇

2
[

1

(1 + 𝑚𝑥∗
1
)
2
] , (34)

Δ
2
= 𝜇
2
[

+∞

∑

𝑙=0

𝑘
3
(−𝑙)] − 𝜇

1
[

1

(1 + 𝑚𝑥∗
2
)
2
] . (35)

It follows from the condition (29) that there exists a positive
constant 𝜎 such that if 𝑘 is sufficiently large and ‖𝑢‖ < 𝜖, then

Δ𝑉 ≤ −
𝜎

2
{
𝑢1 (𝑘)

 +
𝑢2 (𝑘)

} < −𝜎𝜖. (36)

In view of Freedman [38], we can see that the trivial solutions
of (31) are uniformly asymptotically stable and so is the solu-
tion {(𝑥∗(𝑘), 𝑦∗(𝑘))𝑇} of (28). Thus we can conclude that the
positive periodic solution of (28) is globally asymptotically
stable. The proof is complete.

4. Numerical Example

In this section, we present some numerical results of system
(2) to verify the analytical predictions obtained in the previ-
ous section. Let us consider the following discrete system:

𝑥
1
(𝑘 + 1) = 𝑥

1
(𝑘) exp{[0.5 + 0.3 sin 𝑘𝜋

−

+∞

∑

𝑙=0

𝑘
1
(−𝑙) 𝑥

1
(𝑘 − 𝑙)

−

+∞

∑

𝑙=0

𝑘
2
(−𝑙) 𝑥

2
(𝑘 − 𝑙)

1 + 2𝑥
2
(𝑘 − 𝑙)

]} ,

𝑥
2
(𝑘 + 1) = 𝑥

2
(𝑘) exp{[− (0.6 + 0.2 sin 𝑘𝜋)

−

+∞

∑

𝑙=0

𝑘
3
(−𝑙) 𝑥

2
(𝑘 − 𝑙)

+

+∞

∑

𝑙=0

𝑘
4
(−𝑙) 𝑥

1
(𝑘 − 𝑙)

1 + 2𝑥
1
(𝑘)

]} ,

(37)

where 𝑟
1
(𝑘) = 0.5 + 0.3 sin 𝑘𝜋, 𝑟

2
(𝑘) = 0.6 + 0.2 sin 𝑘𝜋, 𝑘

𝑖
(𝑠) =

𝑒
0.5𝑠
(𝑖 = 1, 2, 3, 4), 𝑚 = 2, and it is easy to see that all the

conditions ofTheorem 4 are fulfilled.Thus system (37) has at
least a positive two-periodic solution (see Figures 1 and 2).
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Figure 1: The time series graph of 𝑡-𝑥
1
for system (37).
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Figure 2: The time series graph of 𝑡-𝑥
2
for system (37).

5. Conclusions

In this paper, a discrete predator-prey model with Holling II
functional response and delays is investigated. With the aid
of Gaines andMawhin’s continuation theorem of coincidence
degree theory and the method of Lyapunov function, we
establish some sufficient conditions for the existence and
global asymptotic stability of positive periodic solutions of
the model. Since the time scales can unify the continuous
and discrete situations, it is meaningful to investigate the
predator-prey model with Holling II functional response and
delays on time scales. We leave it for future work.
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