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Estimating Vehicle Stability Region Based on Energy Function
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In order to improve the deficiency of vehicle stability region, according to vehicle nonlinear dynamic model, method of estimating
vehicle spatial stability region was proposed. With Pacejka magic formula tire model, nonlinear 3DOF vehicle model was deduced
and verified though vehicle test. Detailed detecting system and data processing were introduced. In addition, stability of the vehicle
system was discussed using Hurwitz criterion. By establishing energy function for vehicle system, the vehicle’s stability region in
20m/s was estimated based on Lyapunov theorem and vehicle system characteristics. Vehicle test in the same condition shows that
the calculated stability region defined by Lyapunov and system stability theorem has good effect on characterized vehicle stability
and it could be a valuable reference for vehicle stability evaluation.

1. Introduction

It is clear that stability region for vehicle stability evaluation
has been extensively studied in our country and abroad now.
Up to date, some researchers have analyzed stability region
applying simple vehicle model [1, 2]. Typically, in the 1990s,
Inagaki, Samsundar, Yasui, and Stotsky proposed analytical
expression for vehicle plane stability region based on simpli-
fied cubic tire model and deduced plane oval stability region
by simulation [3–6]. In 2002, Ko and Lee estimated plane
stability region of vehicle by side slip angle and yaw rate
according to topology theory and 2DOF vehicle model [7].
Similarly, in 2007, Shen et al. estimated singular points of
vehicle and studied stability characteristics of vehicle [8].

Many reference classical conclusions play a positive role
for vehicle stability region; however there are still some
limitations: first, most of the traditional studies were based
on simplified 2DOF vehicle models, so vehicle state could
not be comprehensively considered. In addition, it is crystal
clear that traditional vehicle dynamic model with simplified
tire formula, such as linear tire model, was conveniently
calculated but it still had great deviation compared with
fact, and as a result, the accuracy of vehicle region was
unsatisfied. Furthermore, traditional researches for vehicle
region boundary conditions had insufficient basis, which
affect the accuracy as well.

Therefore, an improved nonlinear vehicle dynamicmodel
with Pacejka magic formula is introduced, and the stability
region of the vehicle is estimated based on energy method.
It is valuable for evaluating the stability of vehicle and
improving traffic safety.

2. Vehicle Nonlinear Dynamic Model

2.1. Vehicle Differential Equations. Figures 1(a) and 1(b) illus-
trate the 3DOF vehicle model or double-axis vehicle and
coordinate systems. Suppose the vehicle is steering at a speed
without braking and driving forces, pitch movement, and
longitudinal tire force and align toque could be ignored in this
condition. So the established vehicle 3DOFmodel consists of
lateral motion, yaw, and roll motions.

Corresponding equations of the vehicle model are
described as follows:

𝑚(V̇𝑦 + V𝑥𝜔) − 𝑚𝑠ℎ𝑠�̈�𝑠 = 𝐹𝑦𝑓 + 𝐹𝑦𝑟,

𝐼𝑧�̇� = 𝑎𝐹𝑦𝑓 − 𝑏𝐹𝑦𝑟,

𝐼𝑥𝑠�̈�𝑠 + 𝑚𝑠ℎ𝑠 (V̇𝑦 + V𝑥𝜔 − ℎ𝑠�̈�𝑠) = 𝑚𝑠𝑔ℎ𝑠𝜓𝑠 −𝑀𝜓,

(1)
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Figure 1: Schematic diagram of body movement.
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Figure 2: Details of vehicle tests and related equipment.

Table 1: Curve factors’ values of nonlinear tire.

Tire position (number) 𝐵 𝐶 𝐷 𝐸

Front wheel (2) 10.30 1.30 −11821.63
−1.05

Rear wheel (4) 10.51 −13437.49

𝑀𝜓 = 𝑀𝜓𝑓 +𝑀𝜓𝑟,

𝑀𝜓𝑓 = 𝐾𝑓𝜓𝑠 + 𝐷𝑓�̇�𝑠,

𝑀𝜓𝑟 = 𝐾𝑟𝜓𝑠 + 𝐷𝑟�̇�𝑠.

(2)

2.2. Nonlinear TireModel. The lateral tire force depending on
the side slip angle is represented as the Pacejkamagic formula
[9]:

𝐹𝑦 = 𝐷 sin (𝐶 arctan {𝐵𝛼 − 𝐸 [𝐵𝛼 − arctan (𝐵𝛼)]}) , (3)

where 𝛼 is the slip angle of tire and 𝐵, 𝐶, 𝐷, and 𝐸

are, respectively, stiffness factor, shape factor, peak factor,
and curvature factor. These factors are obtained by fitting.
According to the structure of vehicle tire and vertical load,
the relevant factor values of tire on normal road (𝜇 = 0.7) are
listed (Table 1) [10].

2.3. Vehicle Dynamic Model Validation. Vehicle test on nor-
mal road is to verify the vehicle dynamic model. The details
of tests environment and related equipment are showed
(Figure 2).

As shown in Figure 2, the integrated test system mainly
involves HCZ-1 vehicle handling force and angle measuring
instrument, inertial sensors IMU02, vehicle motion param-
eters measuring instrument by GPS called RLVB20SL, data
collection device RLVB-ADC03, and computer. Function of
the system is to measure the steering wheel angle input and
vehicle motion parameters, such as longitudinal, lateral, and
vertical velocity, acceleration, angle, and angular velocity.

The test data is processed by VBOX Tools and Matlab.
The position deviations between the actual locations of the
test equipment and the vehicle’s centroid should be taken into
account, so processing the sampling data is necessary and a
key step [11].

(1) Inertial Sensors IMU02 Direction Correction. Coordinate
system of IMU02 (Figure 3) is corrected by right-hand rule
and detail (Table 2).

(2) Vehicle Centroid State Parameters Correction.According to
the deviation between the actual locations of the test equip-
ment and the vehicle’s centroid, sampling data of RLVB20SL
and IMU02 should be processed as follows.

(1) Vehicle Longitudinal Velocity and Acceleration. Consider

V𝑥 = V𝑥GPS − 𝑠𝑧1 ̇𝛾INS,

𝑎𝑥 = 𝑎𝑥INS − 𝑠𝑧2 ̈𝛾INS,
(4)
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Table 2: Coordinate system of IMU02 correction.

Parameter Longitudinal Lateral Vertical Yaw Roll Pitch
Direction correction + + − − + −

Y

X

Z

Roll rate

Yaw rate

Pitch rate

Vehicle longitudinal

Figure 3: IMU02 coordinate.

where V𝑥GPS is longitudinal velocity tested by RLVB20SL,
𝑎𝑥INS and 𝛾INS are longitudinal acceleration and pitch angle
tested by IMU02, 𝑠𝑧1 is vertical distance between the main
antenna of RLVB20SL and vehicle centroid, and 𝑠𝑧2 is vertical
distance between the location of IMU02 and vehicle centroid.

(2) Vehicle Lateral Velocity and Acceleration. Consider

V𝑦 = V𝑦GPS − 𝑠𝑥1𝜔INS + 𝑠𝑧1�̇�INS,

𝑎𝑦 = 𝑎𝑦INS − 𝑠𝑥2�̇�INS + 𝑠𝑧2�̈�INS,
(5)

where V𝑦GPS is lateral velocity tested by RLVB20SL, 𝑎𝑦INS,
𝜔INS, andΨINS are lateral acceleration, yaw rate, and roll angle
tested by IMU02, 𝑠𝑥1 is longitudinal distance between the
main antenna of RLVB20SL and vehicle centroid, and 𝑠𝑥2
is longitudinal distance between the location of IMU02 and
vehicle centroid.

As shown in Figure 2, the tested vehicle is driven along
the double change race on normal road [12]. The velocity
and steering wheel angle operated by driver are showed in
Figure 4(a). Then, under the same condition, vehicle lateral
acceleration by vehicle tests and Matlab simulation applying
the established model is obtained, as shown in Figure 4(b).

Clearly, vehicle’s lateral acceleration in Figure 4 shows the
good consistency between simulation and vehicle test, and
the error is less than 10%. So the reliability of the established
nonlinear dynamic model is definitely concluded and could
be used for the vehicle stability analysis described in the next
section.
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Figure 4: Comparing simulation with vehicle test.

3. Vehicle Steering Stability Analysis

Suppose (X𝑒, 𝛿𝑒
𝑓
) and X𝑒 = (V𝑒

𝑦
, 𝜔
𝑒
, �̇�
𝑒

𝑠
, 𝜓
𝑒

𝑠
) are one of the

balance points of vehicle system.Then the nonlinear formula
ẋ = 𝑓(x) could be described as

ẋ = 𝐴x + 𝐹 (x, 𝛿𝑓) , (6)

where 𝐴 is Jacobian matrix located on the point of (X𝑒, 𝛿𝑒
𝑓
).

If 𝛿𝑓 ̸= 0, the Jacobian matrix 𝐴 is expressed as

𝐴 = 𝐷𝑥𝑓 (X, 𝛿𝑓)




(V𝑒
𝑦
,𝜔𝑒,�̇�𝑒
𝑠
,𝜓𝑒
𝑠
)

=

[

[

[

[

𝐴11 𝐴12 𝐴13 𝐴14

𝐴21 𝐴22 𝐴23 𝐴24

𝐴31 𝐴32 𝐴33 𝐴34

𝐴41 𝐴42 𝐴43 𝐴44

]

]

]

]

.

(7)
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Figure 5: Characteristic roots of Jacobian matrix.

Characteristic equation of Jacobianmatrix𝐴 is as follows:

𝜆
4
+ 𝑐1𝜆
3
+ 𝑐2𝜆
2
+ 𝑐3𝜆 + 𝑐4 = 0.

(8)

Hurwitz principle shows the characteristic of the equation
[13, 14]

Δ 1 = 𝑐1 > 0,

Δ 2 = 𝑐1𝑐2 − 𝑐3 > 0,

Δ 3 = 𝑐3 (𝑐1𝑐2 − 𝑐3) > 0,

Δ 4 = 𝑐3𝑐4 (𝑐1𝑐2 − 𝑐3) > 0.

(9)

According to Hurwitz principle, if the 𝑐1 ∼ 𝑐4 satisfy (9),
the characteristic roots are all negative. If the 𝑐1 ∼ 𝑐4 do
not satisfy (9) and 𝑐4 ̸= 0, positive characteristic root will
exist, which predict the unbalance of vehicle system. When
the vehicle speed is 20m/s, the front wheel steering angle
is in [0, 0.042] rad and interval 0.005 rad, Jacobian matrix
characteristic roots with the changes of front wheel steering
angle shown in Figure 5.

Note that the arrow indicates the change direction of the
Jacobian matrix characteristic roots in Figure 5. It is shown
that the characteristic roots are all negative when the front
wheel steering angle is small, but they gradually approach 0
as the angle increases and then one of the characteristic roots
is 0 if the angle reaches a certain value called critical steering
angle. The results given by (a) and (b) in Figure 4 represent
characteristic root which is a good way to judge the stability
and obtain the critical steering angle and state parameters of
vehicle system.

4. Stability Regions Estimation

4.1. Energy Function Establishing. Assume a quadratic energy
function 𝑉(𝑥) as follows [15]:

𝑉 (𝑥) = 𝑥
𝑇
𝑃𝑥,

�̇� (𝑥) = �̇�
𝑇
𝑃𝑥 + 𝑥

𝑇
𝑃�̇�,

(10)

where 𝑥𝑇 = [V𝑦, 𝜔, �̇�𝑠, 𝜓𝑠] and “𝑃” is a positive definite
symmetric matrix:

𝑃 =

[

[

[

[

𝑝11 𝑝12 𝑝13 𝑝14

𝑝12 𝑝22 𝑝23 𝑝24

𝑝13 𝑝23 𝑝33 𝑝34

𝑝14 𝑝24 𝑝34 𝑝44

]

]

]

]

. (11)

The matrix “𝑃” is obtained from the next equation:

𝐴
𝑇
𝑃 + 𝑃𝐴 = −𝐼, (12)

where “𝐼” is unit matrix and “𝐴” is the system’s Jacobian
matrix in origin: 𝐴 = (𝜕𝑓(𝑥)/𝜕𝑥)|

𝑥=0
.

Fact is obvious that the Jacobian matrix is a function
of vehicle velocity, so, based on the reference equations,
the matrices “𝐴” and “𝑃” in different driving velocities and
the corresponding energy functions 𝑉(𝑥) and �̇�(𝑥) could
be obtained. The matrices “𝐴” and “𝑃” when the vehicle’s
velocity is 20m/s are listed:

𝐴 =

[

[

[

[

3.725 −2.007𝑒1 −7.956 −1.384𝑒2

−6.640𝑒 − 2 −7.503 −9.950𝑒 − 2 −1.732

1.031𝑒1 4.140𝑒 − 1 −1.048𝑒1 −1.823𝑒2

0 0 1 0

]

]

]

]

,

𝑃 =

[

[

[

[

2.466𝑒 − 1 −2.999𝑒 − 1 −1.395𝑒 − 1 −2.0534

−2.999𝑒 − 1 8.899𝑒 − 1 3.815𝑒 − 1 1.638

−1.395𝑒 − 1 3.815𝑒 − 1 2.976𝑒 − 1 1.5465

−2.0534 1.638 1.5465 3.563𝑒1

]

]

]

]

.

(13)

4.2. Boundary Conditions of Stability Region. Generally
speaking, traditional principle of the boundary conditions of
driving stability region depends on energy attenuation called
Lyapunov’s second theorem. Actually, energy attenuation
is not enough to calculate the stability region accurately
because vehicle is a regular system when it is stable and the
space estimated by the energy attenuation characteristic is
unreasonably expanded. So the critical vehicle state based on
the vehicle system stability analysis should be introduced to
determine the vehicle stability region.

Boundary conditions mainly lie in two aspects: first,
according to Lyapunov’s second theorem, �̇�(𝑥) ≤ 0 is the
sufficient condition for system asymptotically stable [16].
Second, steady critical steering angle of front wheel and
the corresponding related vehicle state parameters could be
obtained by Hurwitz principle, as listed in Table 3.

Consequently, the boundary conditions of the vehicle
driving stability regions could be described as follows:

�̇� (𝑥) = 0,

𝑉 (𝑥) = 𝑉𝑐.

(14)

4.3. Vehicle Driving Stability Regions Estimation. According
to the proposed boundary conditions of the vehicle stability
regions, Figure 7 vividly describes the critical surfaces in
terms of the boundary conditions.
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Table 3: Critical values of 𝑉(𝑥).

𝑢 (m/s) 𝛿
𝑐
(rad) Stable equilibrium points of state variables

𝑉
𝐶

𝛽 (rad) 𝜔 (rad/s) �̇�
𝑠
(rad/s) 𝜓

𝑠
(rad)

20 0.042 −0.067 0.240 0 0.066 0.15
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Figure 6: Critical surfaces in terms of the boundary conditions.

−0.1

−0.05

0

0.05

0.1

−1

0

1

−0.1
−0.05

0
0.05

0.1

Slip angle (rad)
Yaw rate (rad/s)

Ro
ll 

an
gl

e (
ra

d)

Figure 7: Stability region defined by 𝑉(𝑥) = 0.15 in 20m/s.

As shown in Figure 6, for �̇�(𝑥) = 0 and any value of vector
𝑥, �̇�(𝑥) is a complexity function of vector 𝑥 due to the Pacejka
tire magic formula, so irregular symmetrical ridge surfaces
are formed. Besides, the 𝑉(𝑥) = 𝑉𝑐, as quadratic functions of
vector 𝑥, are described by symmetrical ellipsoids.

Obviously, the space region determined by �̇�(𝑥) = 0

driving stability regions is obtained by the intersection of
�̇�(𝑥) = 0 and 𝑉(𝑥) = 𝑉𝑐. So the stability regions are,
respectively, showed in Figure 7.
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5. Stability Region Validation

Appling the integrated test system, vehicle snake shape
dynamic behavior is tested. Details of the vehicle’s velocity
and steering wheel angles with time are showed in Figure 8.

Figure 9 shows the corresponding driving stability region
and the obtained distribution of slip angle, yaw rate, and roll
angle. Besides, for sake of well comparing the test results with
the calculated driving stability region, details of yaw rate and
roll angle phase plane are illustrated in Figure 11.

As shown in Figure 9, it is clear that when the vehicle
is stable, the distributions of the relevant state variables
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Figure 11: Vehicle’s lateral acceleration with time.

of vehicle are both in the stability region. However, as
the steering wheel angle increases and vehicle system has
approached its critical state, trend from stability to instability
is obvious. When the steering wheel angle reaches the critical
value, the distribution of the state variables while skidding is
outside the stability region. Details are showed in Figure 10.

Figure 11 represents the lateral acceleration of the vehicle
and the maximum value of the acceleration is up to 0.5 g
which has beyond the critical state. Actually, there is slip
phenomenon during the test.

The contrast results indicate that the stability region of the
vehicle’s stability has good consistency with the test results.
Therefore, the proposed driving stability region is reliable for
judging and evaluating the stability of vehicle.

6. Conclusion

(1) 3DOF vehicle dynamic model with nonlinear tire
formulas is deduced and simulated by Matlab. Apply-
ing advanced GPS and inertial measurement tech-
nology, detecting equipment and data process for
vehicle handing stability is integrated and developed,
and vehicle in double lane change conditions is
tested and the established vehicle model is verified.

The reliability of the established nonlinear dynamic
model is clearly concluded and could be used for the
vehicle stability analysis described in the next section.

(2) Law of vehicle system’s Jacobian matrix characteristic
roots changing with increased front wheel steering
angles are fundamentally revealed based on Hurwitz
principle. Consequences of the characteristics intro-
duce a good method for defining the boundary of
stability region.

(3) The driving stability region of vehicle verified by vehi-
cle snake shape test provides an effective reference for
stability evaluation. The consequences of the vehicle
space stability region introduce the new insight into
the vehicle performance of stability.
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