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The throughput of a given transportation network is always of interest to the traffic administrative department, so as to evaluate
the benefit of the transportation construction or expansion project before its implementation. The model of the transportation
network capacity formulated as a mathematic programming with equilibrium constraint (MPEC) well defines this problem. For
practical applications, amodified sensitivity analysis based (SAB)method is developed to estimate the solution of this bilevelmodel.
The high-efficient origin-based (OB) algorithm is extended for the precise solution of the combined model which is integrated in
the network capacity model. The sensitivity analysis approach is also modified to simplify the inversion of the Jacobian matrix in
large-scale problems. The solution produced in every iteration of SAB is restrained to be feasible to guarantee the success of the
heuristic search. From the numerical experiments, the accuracy of the derivatives for the linear approximation could significantly
affect the converging of the SAB method. The results also show that the proposed method could obtain good suboptimal solutions
from different starting points in the test examples.

1. Introduction

As the rapid growth of urbanization, the population and
economy ofmost cities in the developing countries or regions
are going through significant changes. The fast development
of transportation infrastructures in these areas gives rise to
a quick change on the travel behaviors. Along with the city’s
expansion, an inevitable thing is to design new transportation
system which is capable of meeting the future development
in land-using and population growth. However, under fast-
changing of travel demand, the conventional forecasting
methods (e.g., “four-step”) could not provide a straightfor-
ward evaluation to the new designed transportation network
such as on whether the new network is suitable for the
travel demand in the target year or how many trips can
be accommodated. Thus, to help the government to make
decision on the expansion or construction project or pre-
assessment of social benefits, the throughput, or “capacity,” of
the given transportation network is of practical meaning to
be estimated before planning implementation.

Capacity is a commonly used property to represent the
maximum flows that can pass through the link or node in
transportation system. In an attempt to address the question
of what is the maximum attainable throughput of the given
network, the concept of capacity is employed as an important
measurement for transportation system evaluation. It is able
to reflect how much traffic demand can be accommodated
by a given transportation system. Thus, efficient policy for
land use or traffic restraint and growth can be established in
advance. According to the conventional network flow theory,
the capacity problem is stated to find themaximumflows that
can be sent from a specified source node to another specified
sink node without exceeding the capacity of any link. This
well-known problem is extended to the multicommodity and
is widely used in freight transport. However, when modeling
the capacity of urban transportation network, the problem
becomes quite complex. Noted by Yang et al. [1], travelers in
urban transportation network can choose their routes and
their trip costs increase with increasing flow as a result of
congestion. Besides, multiple origin and destination (O-D)
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pairs exist and the flows between distinct O-D pairs cannot
be exchanged in passenger transportation system. These
differences make the modeling of transportation network
capacity complex, and the intriguing problem is also hard to
solve.

The most popular formulation of the transportation
network capacity is the bilevel programming model, which
maximizes the traffic flows under the equilibrium constraint.
Wong and Yang [2] first incorporated the reserve capacity
concept into a traffic signal control network.This concept was
widely extended in the study of signal controlled networks
[3–5]. The reserve capacity is defined as the largest multiplier
applied to a given O-D demand matrix that can be allocated
to a network, so the solution is significantly affected by
the predetermined O-D matrix. However, it is unrealistic to
assume that all O-D flows increase in the same rate, especially
for the areas under rapid changing. If the predetermined
distribution proportion is far from the future tendency, the
solution will be of little use. Consequently, in order to reflect
the differences of the future development of each urban
subarea, Yang et al. [1] considered that the new increased O-
D demand pattern should be variable both in level and in
distribution, while the distribution of the current trips would
be relatively fixed. Thereby they introduced the equilibrium
trip distribution/assignment model with variable destination
costs (ETDA-VDC) [6] to capture this characteristic for net-
work capacity estimation. Based on this model, Kasikitwiwat
and Chen [7] proposed the concepts and models of the
ultimate and practical capacity. The former is used for the
new network without any current flow, while the latter is
the same as Yang’s model. Then, Chen and Kasikitwiwat [8]
used the practical network capacity model to describe the
limited flexibility of transportation networks. According to
the literatures, the concept of the practical capacity model
is more fully functional and preferred, as it takes both the
current demand pattern and the variability of future growth
into consideration.

In order to solve the various bilevel capacity models, the
SAB algorithm is generally employed. This SAB algorithm
for bilevel programing was first presented in Friesz et al.
[9]. It is heuristic and depends absolutely on the derivative
information produced by the sensitivity analysis of the lower-
level problem [10]. Benefiting from the rich achievements in
the study of the sensitivity analysis for equilibrium models
[11–18], SAB algorithm has been widely utilized in the
optimization problems of equilibrium network flows, such as
traffic signal control [3, 5, 19, 20] and network design [21–
23], as well as network capacity [1, 3–5, 24]. But due to the
difficulty of the sensitivity analysis for ETDA-VDC model,
Yang et al. [1] used an iterative estimation-assignment (IEA)
algorithm [11] instead to solve the transportation network
capacity problem. Later, Kasikitwiwat andChen [7] andChen
and Kasikitwiwat [8] selected using a genetic algorithm to
solve the problem in a very small network. However, since
the complexity of the network capacity problem, the global
optimization algorithms (e.g., genetic algorithm or simulated
annealing) can hardly find the exact solution to the capacity
problem in larger networks, and the computation time could
be intolerably long. By contrast, SAB algorithm has the

property of fast convergence which makes the computation
terminate at a local optimum within a considerable time.
Nevertheless, the calculation issue of thematrix inversion still
limits the applications of the SAB method. To address this
problem, we developed an effective method by simplifying
the matrix inversion in the sensitivity analysis approach,
which will take much less memory space, so the capacity of
the real transportation networks could be estimated.

In this study, Yang’s formulation [1] for the transportation
network capacity model is employed to describe the practical
capacity of the urban road system. In an attempt to estimate
the capacity of the real road networks, a series of improve-
ments are taken to the SAB method to make the heuristic
search successfully converge to a relatively better suboptimal
solution. Firstly, the OB algorithm [25] is modified for the
solution of the lower-level ETDA-VDC model. Then, the
restriction sensitivity analysis approach for the ETDA-VDC
model [18] is employed in and improved on the expressions so
as to deal with the large-scale problems. Besides, the solution
update strategy is modified on the step-size adaption, which
ensures the entire heuristic search to converge to a local
optimum. Finally, numerical experiments are implemented
to show the efficiency and capability of the proposed SAB
method.

2. Road Network Capacity Model

It should be noted that the boldface type of the Notation
section represents the corresponding column vectors in the
remainder of this paper.

2.1. Model Formulation. Conversional methods, like the
reserve capacity model, evaluate the capacity of transporta-
tion networks by assuming that the travel demand increases
with a determined distribution proportion, which is usually
far from the regularity and underestimates the results. In
order to evaluate zonal development potential and equi-
librium network capacity more appropriately, Oppenheim’s
definitions on the behaviors of the existing travel demand and
the additional demand are introduced as follows.

(i) The existing demand, denoted by 𝑒𝑝𝑞, has predeter-
mined origins and destinations. The pattern of the
existing demand is formed during the past long term,
so its distribution is going to be relatively stable and
can be regarded as fixed. The existing demand only
changes routes to optimize the travel cost.

(ii) The additional demand, 𝑑𝑝𝑞, is variable. The new
generated demands from residential area can decide
their daily travels without the constraints of either
destination or route choices. But the behavior of the
additional demand still follows the rule that selects
the destinations which maximize the “utility” of the
trips.

The utility could include the destination attractiveness,
the cost along traveling route, and other factors. The attrac-
tiveness of destination is determined by the congestion at
destination and the expenses for the activity in that area.
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In network capacity model, the utility from origin 𝑝 to
destination 𝑞 is formulated as𝑈𝑝𝑞 = −(𝑀𝑞+𝜏𝑝𝑞), in which 𝜏𝑝𝑞
is the travel cost from 𝑝 to 𝑞, and𝑀𝑞 denotes the destination
cost which could be a decrease function of the total additional
trip attraction, 𝐷𝑞, at destination 𝑞. Besides, the destination
choices of the travelers at each origin 𝑝 are assumed to have
certain randomness. Thus, the conditional probability that
an individual will choose destination 𝑝 is derived by using
the standard logit function, so the O-D travel demand is
conducted by

𝑑𝑝𝑞 = 𝑂𝑝

exp {−𝜃 (𝜏𝑝𝑞 +𝑀𝑞)}

∑𝑘∈𝑍 exp {−𝜃 (𝜏𝑝𝑘 +𝑀𝑞)}

, ∀𝑝 ∈ 𝑍, 𝑞 ∈ 𝑍𝑝.

(1)

Thus, with the objective to maximize the additional
demand under the above travel behavior regularity and
certain physical constraints, the typical road network capacity
model is formulated as the following bilevel programming
problem.

Upper-level problem is as follows:

Max
O

∑

𝑝∈𝑍

𝑂𝑝, (2)

s.t. V𝑎 (O) ≤ 𝐶𝑎, ∀𝑎 ∈ 𝐴, (3)

𝑂𝑝 = ∑

𝑞∈𝑍𝑝

𝑑𝑝𝑞 (O) ≤ 𝑂
max
𝑝

− 𝑂𝑝, ∀𝑝 ∈ 𝑍, (4)

𝐷𝑞 = ∑

𝑝∈𝑍𝑞

𝑑𝑝𝑞 (O) ≤ 𝐷
max
𝑞

− 𝐷𝑞, ∀𝑞 ∈ 𝑍, (5)

𝑂𝑝 ≥ 0, ∀𝑝 ∈ 𝑍, (6)

where 𝑑𝑝𝑞(O) and V𝑎(O) are obtained by solving the ETDA-
VDC problem in lower-level problem.

Lower-level problem, ETDA-VDC model, is as follows:

Min
(f,h,d)

∑

𝑎

∫

V𝑎

0

𝑡𝑎 (𝑥) 𝑑𝑥 +

1

𝜃

∑

𝑝∈𝑍

∑

𝑞∈𝑍𝑝

𝑑𝑝𝑞 (ln 𝑑𝑝𝑞 − 1)

+ ∑

𝑞∈𝑍

∫

𝐷𝑞

0

𝑀𝑞 (𝑦) 𝑑𝑦,

(7)

s.t. ∑

𝑞∈𝑍𝑝

𝑑𝑝𝑞 = 𝑂𝑝, ∀𝑝 ∈ 𝑍, (8)

∑

𝑟∈𝑅𝑝𝑞

ℎ
𝑝𝑞

𝑟
= 𝑒𝑝𝑞, ∀𝑝 ∈ 𝑍, 𝑞 ∈ 𝑍𝑝, (9)

∑

𝑟∈𝑅𝑝𝑞

𝑓
𝑝𝑞

𝑟
= 𝑑𝑝𝑞, ∀𝑝 ∈ 𝑍, 𝑞 ∈ 𝑍𝑝, (10)

V𝑎 = ∑

𝑝

∑

𝑞

∑

𝑟

(𝑓
𝑝𝑞

𝑟
+ ℎ
𝑝𝑞

𝑟
) 𝛿
𝑝𝑞

𝑎,𝑟
, ∀𝑎 ∈ 𝐴𝑚, (11)

𝑑𝑝𝑞 ≥ 0, ∀𝑝 ∈ 𝑍, 𝑞 ∈ 𝑍𝑝𝑚, (12)

𝑓
𝑝𝑞

𝑟
≥ 0, ∀𝑝 ∈ 𝑍, 𝑞 ∈ 𝑍𝑝, 𝑟 ∈ 𝑅𝑝𝑞, (13)

ℎ
𝑝𝑞

𝑟
≥ 0, ∀𝑝 ∈ 𝑍, 𝑞 ∈ 𝑍𝑝, 𝑟 ∈ 𝑅𝑝𝑞. (14)

The upper-level problem defines a maximal trip produc-
tion model. The objective is to maximize the summation
of the additional trip production at origins. Equation (3)
represents that the traffic flowon every link should not exceed
its capacity. Constraints (4) and (5) are the limitation of the
zonal trip production and attraction. They mean the number
of trips generated and attracted at each traffic zone should
be limited by some upper bounds, namely, 𝑂max

𝑝
and 𝐷

max
𝑞

,
respectively.

The lower-level problem is the ETDA-VDC model. The
objective function (7) indicates the choice behavior of both
the existing and additional travel demand. Constraint (9)
shows that the amount of the existing flows is fixed for
each O-D, while constraints (8) and (10) show that the
additional flows are only restrained at the origin productions.
The relationship between the link flow and route flow is
represented in (11). All the variables must be nonnegative,
that is, constraints (12)–(14). The lower-level problem is a
combined distribution and assignment model.

This bilevel model was first presented in work by Yang
et al. [1]. Because of the advantages on the formulation of
the travel demand growth, it was continually used in later
researches as a typical model for the road network capacity
concept. The remaining part of this study focuses on the
solution of this model in the real-sized road networks.

3. Sensitivity Based Heuristic Algorithm

This section presents an improved version of the SAB algo-
rithm for the solution of the road network capacity model. To
overcome the drawbacks of the conventional SAB algorithm
[9] that cannot be applied to any real-sized network for
capacity estimations, the following improvements are carried
out.

(i) The lower-level ETDA-VDC model is fast solved by
a modified OB algorithm to produce a high accurate
solution.

(ii) The rectified sensitivity analysis method for the
ETDA-VDC model is simplified on the calculation
of the matrix inverse to be applicable for large-scale
problems.

(iii) The solution update of the heuristic search is
improved by step-size adaption in order to ensure that
the SAB algorithm can converge to a local optimum.

Correspondingly, a series of techniques is proposed in this
section, so our modified SAB algorithm will be capable to
solve the bilevel road capacity model efficiently.

3.1. Origin-Based Algorithm for the ETDA-VDC Model. In
the standard SAB search, the lower-level ETDA-VDC model
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Figure 1: Relative gap versus CPU time.

should be solved in every iteration to conduct an equilibrium
traffic flow pattern, namely, the solution to the lower-level
problem. According to recent researches on the traffic assign-
ment problems, the OB algorithm is demonstrated to be one
of the state-of-the-art algorithms [26]. In addition, from the
results of the OB algorithm, the set of all equilibrated routes
can be easily extracted, which will be a precondition for the
restriction sensitivity analysis approach in next step of SAB
algorithm.

The OB algorithm uses the origin-based approach propor-
tions, 𝛼𝑝 = {𝛼𝑎𝑝}, as its main solution variables, where 𝛼𝑎𝑝
represents the proportion of flow that comes from origin 𝑝

through link 𝑎. The approach proportions are updated by
shifting flows within the restricting subnetwork, 𝐴𝑝. The
details of the OB algorithm can be referred to in Bar-Gera
[26]. Using the approach proportions, the OB algorithm is
able to store the route flow information with significantly
less memory than the route-based algorithms and achieve
high-accuracy solutions compared to the link-based algo-
rithms.

In the process of the OB algorithm, it starts with trees of
minimum cost routes from origins as restricting networks.
Then steps of updating restricting network and approach
proportions are implemented for each origin separately. An
“inner loop” is performed subsequently to accelerate con-
vergence, in which the origin-based link flows are updated
while keeping the restricting subnetworks fixed. The inner
loop is useful, because the restricting subnetworks tend to sta-
bilize fairly quickly but updating the restricting subnetworks
requires more computational effort [26, 27].

The OB algorithm for the combined trip distribution and
assignment problems requires an additional step to update

the O-D flows while keeping the route proportions fixed.
Taking Evans’ algorithm as a reference, we modified the orig-
inal OB algorithm for the solution of the ETDA-VDCmodel,
in which the step size of the O-D flow update is obtained
by solving a one-dimension search problem. The proposed
valgorithm is summarized as shown in Algorithm 1.

The performance of Algorithm 1 was testified on different
test networks. The characteristics of these networks are
obtained fromhttp://www.bgu.ac.il/∼bargera/tntp/.The con-
verging processes on two well-known networks are demon-
strated in Figure 1, where the relative gap is defined as RG =

|𝐹
𝑛
− 𝐹
𝑛−1

|/𝐹
𝑛 (𝐹𝑛 is the value of objective function (7) at

𝑛th main loop). It shows that the converging of the improved
OB algorithm (IOBA) is faster and more stable than Evans’
algorithm (EA) or the original OB algorithm (OBA) steps in
Bar-Gera and Boyce [25].

3.2. Sensitivity Analysis of the ETDA-VDC Model. On the
basis of an equilibrium solution of the lower-level model, the
derivatives of the lower-level decision variables with respect
to the upper-level ones should be produced for linearly
approximating the whole bilevel model in next step. The
derivative expressions can be obtained by employing the
restriction sensitivity analysis approach for the ETDA-VDC
model [18]. The restriction approach reduces the original
network to a restricting one in which the nonuniqueness
difficulty will be overcome, and thus the full derivatives of the
link flows in the primal problem can be solved.The necessary
results from the sensitivity analysis of the ETDA-VDCmodel
are presented in this section without proof.
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Initialization:
Set 𝑛 := 0, determine the initial link cost t0 and destination costM0 by setting x0 = 0 and d0 = 0, respectively.
For each origin 𝑝 ∈ 𝑍 do

(i) Find the tree of minimum cost routes rooting from 𝑝. Let 𝐴𝑝 be the minimum route tree. Denote
the minimum route cost to destination 𝑞 ∈ 𝑍𝑝 by 𝜏

0

𝑝𝑞
, and choose a minimum cost route from p to q.

(ii) Compute the initial variable O-D demands by

𝑑
0

𝑝𝑞
= 𝑂𝑝

exp [−𝜃 (𝜏0
𝑝𝑞
+𝑀
0

𝑞
)]

∑
𝑘
exp [−𝜃 (𝜏0

𝑝𝑘
+𝑀
0

𝑘
)]

, ∀𝑞 ∈ 𝑍𝑝

(iii) For 𝑞 ∈ 𝑍𝑝, assign the entire O-D demand 𝑒𝑝𝑞 and 𝑑
0

𝑝𝑞
to the minimum cost route 𝑟 from 𝑝 to 𝑞, and obtain initial

link flow 𝑥
0

𝑎𝑝
.

(iv) Update the link costs using the initial link flows.
(v) Initialize the origin-based approach proportions 𝛼0

𝑎𝑝
.

Main Loop:
Given the current variable O-D demand d𝑛 obtained in (𝑛 − 1)th-iteration:
For 𝑛 = 1 to number of main iterations (𝐼Main)

for each 𝑝 in 𝑍 do
Update restricting network 𝐴𝑝
Update origin-based approach proportions 𝛼𝑝

end for
Inner Loop:
for𝑚 = 1 to number of inner iterations (𝐼inner)

for each 𝑝 in 𝑍 do
Update origin-based approach proportions 𝛼𝑝

end for
end for
Update O-D flows, retain origin-based approach proportions:

Given the origin-based approach proportions 𝛼𝑛
𝑝
, link flows v𝑛 and link costs t𝑛 obtained in the steps

above:
(i) For each 𝑞 ∈ 𝑍, compute the destination cost𝑀𝑛

𝑞
by O-D demand 𝑑𝑛

𝑝𝑞
and 𝑒𝑝𝑞.

(ii) Find the set of auxiliary trip demands ̂
𝑑
𝑛

𝑝𝑞
by solving the following logit distribution model:

̂
𝑑
𝑛

𝑝𝑞
= 𝑂𝑝

exp [−𝜃 (𝜏𝑛
𝑝𝑞
+𝑀
𝑛

𝑞
)]

∑
𝑘
exp [−𝜃 (𝜏𝑛

𝑝𝑘
+𝑀
𝑛

𝑘
)]

∀𝑝 ∈ 𝑍, 𝑞 ∈ 𝑍𝑝

(iii) Calculate the auxiliary traffic flow V̂𝑛
𝑎
on each link a with the approach proportions 𝛼𝑛

𝑎𝑝

(iv) Let (k𝜆(𝑛), d𝜆(𝑛)) = (1 − 𝜆)(k𝑛, d𝑛) + 𝜆(k̂𝑛, ̂d𝑛) and solve the one-dimensional search problem defined
as follows to obtain the step size 𝜆∗ ∈ [0, 1]

min
0≤𝜆≤1

𝐹 (𝜆) = ∑

𝑎∈𝐴

∫

V𝜆(𝑛)𝑎

0

𝑡𝑎 (𝑥) 𝑑𝑥 + (1/𝜃) ∑

𝑝∈𝑍

∑

𝑞∈𝑍𝑝

𝑑
𝜆(𝑛)

𝑝𝑞
(ln 𝑑𝜆(𝑛)
𝑝𝑞

− 1) + ∑

𝑞∈𝑍

∫

𝐷
𝜆(𝑛)
𝑞

0

𝑀𝑞 (𝑦) 𝑑𝑦

(v) Set (k𝑛+1, d𝑛+1) := (k𝜆(𝑛), d𝜆(𝑛)) and check for convergence. Terminate if the convergence
criterion is satisfied; otherwise, update total link flows and link costs, set 𝑛 := 𝑛 + 1 and start
a new iteration of the main loop.

End for

Algorithm 1

In the restricting problem the derivatives of the model
solutions with respect to the input parameters are derived
from

∇Ox (𝜀) = [Jx]
−1
[−JO] , (15)

where Jx is an invertible Jacobian matrix with respect to the
solution variables x = (f𝐵𝑇, h𝐵𝑇, d𝑇,𝜆𝑇,𝜇𝑇, u𝑇)𝑇, in which f𝐵
and h𝐵 are the basic variables of the additional and existing
route flows, respectively. JO is the Jacobian matrix with
respect to the additional zonal productions, O. Here, 𝜆,𝜇, u
are the Lagrangemultipliers associated with the conservation
constraints (8)–(10). O is referred to as an input parameter

for the ETDA-VDC model. It is in terms of the perturbation
𝜀. The expressions of Jx and JO are as follows:

Jx =

[

[

[

[

[

[

[

[

∇
2

f 𝐿 ∇f,h𝐿 O O O −Λ
𝑇

f
∇h,f𝐿 ∇

2

h𝐿 O O −Λ
𝑇

h O
O O ∇

2

d𝐿 −Φ
𝑇 O 𝐼

O O −Φ O O O
O −Λ h O O O O
−Λ f O 𝐼 O O O

]

]

]

]

]

]

]

]

, (16)

JO = [O O O 𝐼 O O]𝑇, (17)
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where ∇2f 𝐿 = Δ
𝑇

f∇kt(k, 𝜀)Δ h, ∇h,f𝐿 = Δ
𝑇

h∇kt(k, 𝜀)Δ f , ∇
2

f 𝐿 =

Δ
𝑇

h∇kt(k, 𝜀)Δ h, ∇f,h𝐿 = Δ
𝑇

f∇kt(k, 𝜀)Δ h, and ∇
2

d𝐿 = (1/𝜃)

diag(1/𝑑𝑝𝑞) + Ψ
𝑇
∇dM; diag(1/𝑑𝑝𝑞) is a diagonal matrix

with 1/𝑑𝑝𝑞 as its diagonal elements. The superscript “𝑇”
represents the transposed matrix. “𝐼” indicates the identity
matrix. The link cost function, t(⋅), should be strongly
monotonically defined in v, which guarantees the uniqueness
of the equilibrium solution and is also a precondition for
the sensitivity analysis approach. Utilizing the restriction
approach, the derivative, ∇Ox(𝜀), is first conducted in the
restricting problem and then ∇Ok, which is defined in the
original one, can be obtained by

∇Ok = Δ f∇Of
𝐵
+ Δ h∇Oh

𝐵
. (18)

Equation (18) indicates that the variations on the link flows
can be just represented by the changes on the basic route
flows, which is the rationale of the restriction sensitivity
analysis approach.

From (15), the inverse of the matrix Jx is required to be
worked out. However, the calculation of the inverse matrix is
costly for both computation time and storage space in numer-
ical computation for large-scale problems. The dimension of
Jx (from (16)) could be about five times of the number of O-D
pairs. So the elements of Jx could totally take approximately
𝑂(25𝑛

4
) space, where 𝑛 is the amount of the traffic zones, and

thus even a medium network with hundreds of origins will
conduct a Jacobian matrix with over one hundred thousand
dimensions. For example, in a small network with about 30
traffic zones (900 O-D pairs), nearly 400MB RAM should
be expended on the storage of the Jacobian matrix (if each
element uses a double type). Consequently, the conventional
sensitivity analysis approach for the combined model is very
difficult to be utilized in the large-scale problems. Besides, the
direct calculation for the inverse of a large matrix is pretty
inefficient and inaccurate in practice.

To avoid the defects of deriving the inverse matrix
directly, the usual way to solve the following linear equation
as an alternative. Equation (15) which produces the sensitivity
results can be rewritten as

Jx ⋅ ∇Ox = −JO. (19)

Then, ∇Ox is derived by solving the following series of linear
equations:

b𝑖 = Jx ⋅ z𝑖, (20)

where b𝑖 is the 𝑖th column vector in matrix of [−JO] and z𝑖
is the 𝑖th column vector in ∇Ox. Let e𝑖 be a unit vector with
one in the 𝑖th position and zeros elsewhere. The length of e𝑖
is equal to the column number of JO. Thus,

b𝑖 =

[

[

[

[

[

[

[

[

0
0
0
−e𝑖
0
0

]

]

]

]

]

]

]

]

, −JO = [. . . , b𝑖, . . .] , (21)

where 0 in bold is zero vectors associate with the zero block
in JO.

To solve (20), Jx is premultiplied by the matrices K1
and K2 in sequence and postmultiplied by K𝑇

1
and K𝑇

2

simultaneously, which is equivalent tomaking the elementary
transformation of matrix Jx. Consider

K1 =

[

[

[

[

[

[

[

[

𝐼

𝐼

𝐼

𝐼 Φ

𝐼

𝐼

]

]

]

]

]

]

]

]

,

K2 =

[

[

[

[

[

[

[

[

𝐼

𝐼

𝐼

𝐼

𝐼

−∇
2

d𝐿
−1

𝐼

]

]

]

]

]

]

]

]

.

(22)

Thus,

K2K1JxK
𝑇

1
K𝑇
2

=

[

[

[

[

[

[

[

[

[

[

∇
2

f 𝐿 ∇f,h𝐿 O −Λ
𝑇

fΦ
𝑇 O −Λ

𝑇

f
∇h,f𝐿 ∇

2

h𝐿 O O −Λ
𝑇

h O
O O ∇

2

d𝐿 O O O
−ΦΛ f O O O O O
O −Λ h O O O O
−Λ f O O O O −∇

2

d𝐿
−1

]

]

]

]

]

]

]

]

]

]

.

(23)

By using the above operations on (20), we obtain

K2K1JxK
𝑇

1
K𝑇
2
[K𝑇
2
]

−1

[K𝑇
1
]

−1

z𝑖 = K2K1b𝑖. (24)

Obviously,

y = [K𝑇
2
]

−1

[K𝑇
1
]

−1

z𝑖, K2K1b𝑖 =

[

[

[

[

[

[

[

[

0
0
0
−e𝑖
0
0

]

]

]

]

]

]

]

]

. (25)

Therefore, it is equivalent to solving the equation in terms
of y and then deriving z𝑖 by

z𝑖 = K𝑇
1
K𝑇
2
y =

[

[

[

[

[

[

[

[

[

y1
y2

y3 − ∇
2

d𝐿
−1

⋅ y6
y4
y5

y6 + Φ
𝑇
⋅ y4

]

]

]

]

]

]

]

]

]

. (26)

Since it is only concerned with the first three subvectors
of z𝑖 in the sensitivity result, we just need to find the value of
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y1, y2, y3, and y6. From (24), the following group of equations
can be obtained:

∇
2

f 𝐿 ⋅ y1 + ∇f,h𝐿 ⋅ y2 − Λ
𝑇

fΦ
𝑇
⋅ y4 − Λ

𝑇

f ⋅ y6 = 0, (27)

∇h,f𝐿 ⋅ y1 + ∇
2

h𝐿 ⋅ y2 − Λ
𝑇

h ⋅ y5 = 0, (28)

∇
2

d𝐿 ⋅ y3 = 0, (29)

−ΦΛ f ⋅ y1 = −e𝑖, (30)

−Λ h ⋅ y2 = 0, (31)

−Λ f ⋅ y1 − ∇
2

d𝐿
−1

⋅ y6 = 0. (32)

The above equation systems can be further simplified
depending on whether the incidence matrix Λ h is square.

(1) If Λ h is square, consider the following.

Thus, Λ h will be constructed as an identity matrix; the
value of y2 and y3 can be computed from (29) and (31), and
thereby y2 = y3 = 0. From (32),

y6 = −∇
2

d𝐿 ⋅ Λ f ⋅ y1. (33)

Substituting (33) into (27), we obtain

(∇
2

f 𝐿 + Λ
𝑇

f∇
2

d𝐿Λ f) y1 − Λ
𝑇

fΦ
𝑇
⋅ y4 = 0. (34)

Combined with (30) we get

[

∇
2

f 𝐿 + Λ
𝑇

f∇
2

d𝐿Λ f −Λ
𝑇

fΦ
𝑇

−ΦΛ f O
] [

y1
y4
] = [

0

−e𝑖
] , (35)

where

∇
2

f 𝐿 + Λ
𝑇

f∇
2

d𝐿Λ f = [Δ
𝑇

f Λ
𝑇

f] [
∇kt (⋅)

∇
2

d𝐿
] [

Δ f
Λ f

] . (36)

Because the matrix [

∇kt(⋅)
∇
2

d𝐿
] is positive definite, the

columns of [ Δ f
Λ f
] are leaner independent from the restriction

approach. It can be easily conducted that matrix (36) is
invertible. Let

[
∇
2

f 𝐿 + Λ
𝑇

f∇
2

d𝐿Λ f −Λ
𝑇

fΦ
𝑇

−ΦΛ f O ] = [
A B𝑇
B O ] . (37)

Solving (35), we can get

y1 = A−1B𝑇(BA−1B𝑇)
−1

⋅ e𝑖. (38)

To this extent, the only effort to produce the desired
derivative results is to calculate y1, in which the inverse of
matricesA and BA−1B𝑇 should be derived.The dimension of
matrix A is equal to the numbers of the basic routes used by
the additional travel demand, which is a little more than the
number of O-D pairs from our observation in computational
experiments.The dimension of matrixBA−1B𝑇 is the same as
the number of origins and is not large.

Consequently, by utilizing (33) and y2 = y3 = 0, the first
three subvectors of z𝑖 can be obtained, which are separately
corresponding to the derivative results,∇Of𝐵,∇Oh𝐵, and∇Od,
in ∇Ox. The expressions are

∇Of
𝐵
= A−1B𝑇(BA−1B𝑇)

−1

,

∇Oh
𝐵
= 0,

∇Od = Λ f ⋅ ∇Of
𝐵
.

(39)

Thus,

∇Ok = Δ f∇Of
𝐵
. (40)

(2) If Λ h is not square, consider the following.

In this case, y2 = ∇Oh𝐵 will not be equal to zero. For
further simplification, we rewrite Λ h as

Λ h = [
Λ
󸀠

h
𝐼

] . (41)

Let 𝑅󸀠 denote the set of routes associated with Λ
󸀠

h and the
flows on these routes are represented by h󸀠. Repeating the
derivation from (33) to (35), we can get

[

[

[

[

[

∇
2

f 𝐿 + Λ
𝑇

f∇
2

d𝐿Λ f ∇f,h𝐿
󸀠
−Λ
𝑇

fΦ
𝑇 O

∇h,f𝐿
󸀠

∇
2

h𝐿
󸀠 O Λ

󸀠

h
−ΦΛ f O O O
O Λ

󸀠

h O O

]

]

]

]

]

×

[

[

[

[

y1
y󸀠
2

y4
y󸀠
5

]

]

]

]

=

[

[

[

[

0

0

−e𝑖
0

]

]

]

]

,

(42)

where the superscript “󸀠” indicates the matrices and variables
corresponding to the routes in 𝑅󸀠. Considering that the set of
𝑅
󸀠 is fairly small for network capacity problems, the equation

system is slightly larger than (35), which is also easy to be
solved. The derivative of the existing route flows is computed
by y󸀠
2
. Consider

∇Of
𝐵
= y1, (43)

∇Oh
𝐵
= y󸀠
2
, (44)

∇Od = Λ f ⋅ ∇Of
𝐵
. (45)

And thus,

∇Ok = Δ fy1 + Δ
󸀠

hy
󸀠

2
. (46)

From the above result, it can be noted that the primal
problem to calculate the inverse ofthe entire matrix Jx is
replaced by solving a small system of linear equations.
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3.3. Restriction of the EquilibriumNetwork. When the restric-
tion sensitivity analysis approach was proposed [10], the
restricting problem was conducted by finding an extreme
point of the feasible region of the equilibrium route flow. An
equivalent linear programming was provided for solution.
However, this method has been verified usually failed, since
the linear programming may find a degenerated solution
which causes the fact that the reduced restricting problem
cannot reserve the essential information and conducts a
wrong result [16]. A rectifiedmethod is to find amaximumset
of the linear independent columns in the coefficientmatrix of
the following equation system [18]:

[

[

[

Δ
0

f Δ
0

h
Λ
0

f O
O Λ

0

h

]

]

]

[

f0
h0] =

[

[

k∗
d∗
e
]

]

. (47)

The above equation system defines the feasible region of the
equilbirum route flow under unique euqilibrium solution of
v∗ and d∗. Note that the notations are distinguishing from
the ones in (16). f0and h0 correspond to the routes that
carry positive flows,which are the equilibrated (orminimum-
cost) routes according to Assumption 2 in Du et al. [18], and
can be obtained from the results of the OB algorithm. The
superscript “0” is associated with the variables in a reduced
problem, which only consists of the equilibrated routes.

From the coefficient matrix of (47), the maximum set
of the linear independent columns corresponds to the set of
the equilibrated and linear independent routes (ELI, denoted
by 𝑅𝐵) and can be found using the row echelon form of the
coefficientmatrix.We can utilize the blocksΛ f andΛ h which
are incidence matrices with one in each column (because one
route can only serve one O-D). Since there may be more than
one equilibrated route between an O-D pair, Λ f and Λ h are
generally not column full rank. Thus, the coefficient matrix
can be rewritten as

[

[

Λf O Λ̃ f O
O Λh O Λ̃ h
Δf Δh Δ̃ f Δ̃ h

]

]

=
[

[

𝐼 Λ̃ f O
𝐼 O Λ̃ h

Δf Δh Δ̃ f Δ̃ h

]

]

󳨀→ [

𝐼 O O
O Δ̃ f − ΔfΛ̃ f Δ̃ h − ΔhΛ̃ h

] ,

(48)

where Λf and Λh are square matrices, which consist of
exactly one equilibrated route for each O-D, so they are equal
to identity matrices. Thus, the question is reduced to find
and eliminate the linear dependent columns in a submatrix.
Consider

[Δ̃ f − ΔfΛ̃ f Δ̃ h − ΔhΛ̃ h] . (49)

The columns of the above matrix are only related to the
alternative routes between every O-D. Therefore, the set 𝑅𝐵

will include the routes corresponding to Λf , Λh, and the
maximum set of the independent columns in (49).

3.4. Solution of the Maximum Trip Production Problem.
When the sensitivity results are derived, the SAB algorithm
will use this information to represent the implicit relation-
ships between v, d, and O. Thus, the bilevel problem is first-
order approximated at the given point, O∗ = 𝑓

−1
(k∗, d∗).

Let k(O∗) and d(O∗), respectively, denote the solutions to the
lower-level model atO∗. The relationship can be represented
by using the Taylor expansion:

k (O) ≈ k (O∗) + ∇Ok ⋅ (O −O∗) ,

d (O) ≈ d (O∗) + ∇Od ⋅ (O −O∗) ,
(50)

where the derivatives ∇Ok and ∇Od are obtained from the
sensitivity analysis of the ETDA-VDC model. Therefore, the
bilevel problem can be reformulated as

Max ∑

𝑝∈𝑍

𝑂𝑝

s.t. ∇Ok ⋅O ≤ C − k∗ + ∇Ok ⋅O
∗

Φ ⋅ ∇Od ⋅O ≤ Omax
−O −O∗ + Φ ⋅ ∇Od ⋅O

∗

Ψ ⋅ ∇Od ⋅O ≤ Dmax
−D −D∗ + Ψ ⋅ ∇Od ⋅O

∗
.

(51)

The solution of this linear programming can be easily derived
using the simplex method. However, because the linear
programming problem is just locally approximated, the new
solution might be infeasible to the original problem. At
an infeasible point of O∗ the lower-level trip distribution
and assignment results may not satisfy the upper-level con-
straints. In extreme cases, for example, some link flow V∗

𝑎

may be much greater than its capacity 𝐶𝑎, which could cause
the capacity constraints to fail for any nonnegative O. In
consequence, the new linear approximation will have no
solution.

In consideration of this flaw, we modified the conven-
tional SAB algorithm by restraining the solution to be always
located within the feasible region. A trip distribution and
assignment step is implemented at the solution of the above
linear programming, O∗, and then the results are checked
with the capacity conditions. If any capacity constraint is
violated, the new solution should be updated by a convex
combination of the solution from last iteration, O(𝑛), and
O∗(𝑛). Therefore, let ̂O be the solution to the approximate
linear problem above; the maximum step size 𝜆 = 2

−𝑘
(𝑘 =

0, 1, 2, . . .) is chosen which ensures the capacity constraint
is satisfied at any link or traffic zone. The new solution is
updated by

O(𝑛+1) := O(𝑛) + 2
−𝜆

(
̂O(𝑛) −O(𝑛)) . (52)

3.5. A Heuristic Solution Process. In summary, the modified
SAB algorithm involves an iterative process between the
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Optimal solution

Step 5

Convergence
criterion
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Restriction approach
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Updating solution
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∙ Zonal production O(0)
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∙ Auxiliary solution Ô(n)
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∙ Link flow derivatives ∇Ov
∙ OD demand derivatives ∇Od ∙ Link capacity constraint

∙ Trip production constraint
∙ Trip attraction constraint

∙ O(n+1)
:= O(n)

+ 2
−𝜆 Ô(n)

− O(n)( )

Figure 2: Flowchart of sensitivity analysis based algorithm for network capacity model.

upper-level and lower-level problems and can be summarized
as follows.

Step 0 (initialization). Determine an initial value of trip
production patternO(0). Set 𝑛 := 0.

Step 1 (solving lower-level problem). Solve the ETDA-VDC
model in lower-level for the givenO(𝑛), by which the equilib-
rium link flows v(𝑛) and O-D demand d(𝑛) are obtained. The
set of all equilibrated routes can be derived at the equilibrium
point.

Step 2 (sensitivity analysis). Calculate the partial derivatives,
∇Ok and ∇Od, using the sensitivity method for the ETDA-
VDC model.

Step 3 (local linear approximation). Formulate local linear
approximations of the upper-level capacity constraints using
the derivative information and solve the approximate linear
programming problem to produce an auxiliary trip produc-
tion ̂O(𝑛).

Step 4 (updating solution). Let O(𝑛+1) := O(𝑛) + 2
−𝜆
(
̂O(𝑛) −

O(𝑛)), where 𝜆 = 0, 1, 2, . . ., until the capacity constraints are

satisfied by solving the ETDA-VDC problem withO(𝑛+1). Set
𝑛 := 𝑛 + 1.

Step 5 (convergence criterion). If |𝑂(𝑛+1)
𝑝

−𝑂
(𝑛)

𝑝
| ≤ 𝜅 for all𝑝 ∈

𝑍 then stop, where 𝜅 is a predetermined tolerance. Otherwise,
return to Step 1.

The above process is a modification of the conventional
SAB approach. The flowchart is shown in Figure 2. It should
be noted that without the step-size adaption in Step 4 the
SAB method only works in very small networks but could
fail in larger examples. The set of all equilibrated routes is
used to apply the restriction approach for sensitivity analysis.
In this study, the modified OB algorithm for the ETDA-VDC
problem is used for this purpose. In addition, the derivative
results of the sensitivity analysis can give a precise local linear
approximation to the upper-level capacity constraints, which
is very important to make the heuristic search converge to a
considerable good solution.

In addition, given the nonconvexity of the bilevel prob-
lem, the SAB algorithmwill converge to a local optimal point
[2]. However, as shown in Yang et al. [28], for MPECmodels,
if the upper-level objective function is a linear function of
its decision variables, the heuristic algorithm can at least
find a noninferior optimal solution. So the SAB algorithm is
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supposed to be able to find a satisfying solution for the road
network capacity problem in practice.

4. Numerical Experiments

Numerical experiments are conducted in this section. In the
numerical experiments the link cost function employs the
Bureau of Public Roads (BPR) function:

𝑡𝑎 (V𝑎) = 𝑡
free
𝑎

[1 + 0.15(

V𝑎
𝐶𝑎

)

4

] . (53)

The destination cost function is defined, referring to Chen
and Kasikitwiwat [8], as follows:

𝑀𝑞 (𝐷𝑞) = 𝑘𝑞
[

[

∑

𝑝∈𝑍𝑞

(𝑒𝑝𝑞 + 𝑑𝑝𝑞)
]

]

𝜔𝑞

− 𝑚𝑞,
(54)

where 𝑘𝑞 is a scaling factor between demand and service cost;
𝜔𝑞 is a dimensionless parameter related to the severity of
congestion; and𝑚𝑞 represents a fixed attraction at destination
𝑞.

The experiments were implemented on Intel Core i5
CPU 3.20GHz, 4GBRAM, using the Microsoft Windows 7
operating system. All of the coding was carried out in Visual
C#. The solution accuracy is measured in each iteration 𝑛 by
the relative error of the trip productionsO𝑛 (RE) as follows:

RE𝑛 =
󵄩
󵄩
󵄩
󵄩
󵄩
O(𝑛) −O(𝑛−1)󵄩󵄩󵄩󵄩

󵄩

󵄩
󵄩
󵄩
󵄩
O(𝑛)󵄩󵄩󵄩

󵄩

. (55)

4.1. Convergent Rate. To testify the efficiency of the SAB
method, the Sioux Falls and Anaheim networks are used
for the solution of the network capacity model. The IEA
algorithm [1] is also employed as a reference in the
test. The Sioux Falls is an aggregated network with 24
zones, 24 nodes, and 76 links. The Anaheim is a medium
network that consists of 38 zones, 416 nodes, and 914
links (http://www.bgu.ac.il/∼bargera/tntp/). The exiting O-
D matrix is adapted to make the current traffic flow be
unsaturated. The parameters of the destination cost function
are given by default. The two algorithms, SAB and IEA,
are implemented on these two networks to compare their
convergence performances, and the results are listed in
Table 1. The stopping tolerance is set to be 10−7.

From the tests, although SAB algorithm shows a slower
speed to reach a local optimum, it always produces much
better solutions compared to IEA algorithm. In the tests on
the Anaheim network, IEA has not converged and tended
to zigzag after a few cycles of computation. Since IEA can
quickly produce the approximate derivatives at current point,
the CPU time taken in each iteration is much less than SAB
algorithm. However, IEA could easily stop at a nonoptimal
solution or not converge. This indicates that the accuracy
of the derivative results has a significant influence on the
convergence of the heuristic search for the network capacity
model. The converging processes of the two algorithms
on the two networks are illustrated in Figure 3. Note that

Table 1: Computational result test networks.

Test networks Observations SAB algorithm IEA algorithm

Sioux Falls
CPU time (sec) 320 162

Iterations 18 37
𝐹
1 158498.9 126093.8

Anaheim
CPU time (sec) 650 >6502

Iterations 20 >1632

𝐹
1 137853.3 122039.02

1
𝐹 is the value of the objective function when the algorithm terminates.

2IEA does not meet the convergence criteria on the Anaheim network.

the conventional SAB algorithm failed in both networks in
our tests.

4.2. Convergent Stability. Since the characteristic of the
heuristic search, little can be said theoretically about the
convergence of the SAB algorithm. In this study, we imple-
ment SAB algorithm from different start points to observe
the converging process. On both the Sioux Falls and Ana-
heim networks, SAB algorithm can find a sufficient good
solution given any arbitrary initial solution. We select the
converging processes from five different start points on
Anaheim network and plot the results in Figure 4. All the
computations were implemented in 20 times of iterations.
The final solutions from the five computations are shown in
Figure 5.

The experiment result in Figure 4 indicates that the
solutions by our SAB algorithm can reach a sufficient high
precision. All the solutions in Figure 5 are very close, which
reflects that the SAB algorithm is comparatively stable for
the network capacity problem. Consequently, the proposed
SAB algorithm is testified to probably converge to a sub-
optimal solution from any appropriate feasible start point
for the network capacity model. Since the bilevel problem
is not convex, the suboptimal solution can be regarded as
a satisfying approximation. This solution might be quite
close to the global optimum according to the aforementioned
characteristics of the network capacity model. Since it only
takes a few (less than 30) times of iterations to reach the
local optimum, the whole computation of the SAB algorithm
can be completed in a considerable CPU time, which is
quite superior to the global optimization, for example, genetic
algorithm. Thus, the modified SAB method could be a
valuable tool for the estimation of the road network capacity
in practice.

5. Conclusions

This paper has presented an effective SAB method for the
solution of the transportation network capacity problem. An
OB algorithm for ETDA-VDC problem is presented to solve
the lower-level problem rapidly and efficiently. The primal
problem of sensitivity analysis has been simplified, so the
inverse calculation of a full-size matrix has been converted to
solving corresponding linear systems of equations. To ensure
the heuristic search can proceed properly, the solution from
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Figure 3: Value of objective function versus CPU time.
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the local linear approximation is rectified to be restrained in
its feasible region. Based on these improvements, the SAB
method is able to be applied to estimate the capacity of the
large-scale real networks. The performance of the proposed
SAB method has been demonstrated on two experimental
networks.

Based on the method in this paper, the network capacity
model could be used to provide an ideal travel demand
pattern for a given transportation system, by which the
traffic resources can be utilized in maximum. From the
model results, the traffic engineers can evaluate the design
scheme of a transportation network more accurately before
its construction. The results can also be used as a reference
for the layout of land use in the new developing areas.
In addition, the traffic flow pattern at full saturation may
reflect the potential bottleneck of the given network. Further
applications of the network capacity model could be detected
based on the proposed estimation method.

Notation

𝐴: Set of nodes in the network
𝐴𝑝: Restricting subnetwork for origin 𝑝

𝐶𝑎: Capacity of link 𝑎
𝐷𝑞: Existing trip attraction at destination 𝑞

𝐷𝑞: Additional trip attraction at destination 𝑞

𝐷
max
𝑞

: Upper limit of trip attraction at
destination 𝑞

𝑀𝑞: Cost at destination 𝑞

𝑂𝑝: Existing trip production at origin 𝑝

𝑂𝑝: Additional trip production at origin 𝑝

𝑂
max
𝑝

: Upper limit of trip production at origin 𝑝

𝑅𝑝𝑞: Set of routes from 𝑝 to 𝑞
𝑍: Set of zones in the network
𝑍𝑝: Set of all destination for origin 𝑝

𝑍𝑞: Set of all origins for destination 𝑞

𝑎: Link index, 𝑎 ∈ 𝐴

𝑑𝑝𝑞: Additional demand from origin 𝑝 to
destination 𝑞

𝑒𝑝𝑞: Existing demand from origin 𝑝 to
destination 𝑞

𝑓
𝑝𝑞

𝑟
: Flow on route 𝑟 from 𝑝 to 𝑞 associated

with elastic demand
ℎ
𝑝𝑞

𝑟
: Flow on route 𝑟 from 𝑝 to 𝑞 associated

with fixed demand
𝑝: Origin index, 𝑝 ∈ 𝑍

𝑞: Destination index, 𝑞 ∈ 𝑍

𝑟: Route index, 𝑟 ∈ 𝑅𝑝𝑞

𝑡𝑎: Travel cost on link 𝑎 and the function of
all link flows x

𝑡
free
𝑎

: Free flow travel time on link 𝑎
V𝑎: Flow on link 𝑎
V𝑎𝑝: Traffic flow on link 𝑎 from origin 𝑝

𝛼𝑎𝑝: Approach proportion of link 𝑎 from origin
𝑝

𝜃: Impedance parameter for trip distribution
𝜏𝑝𝑞: The minimum route cost from 𝑝 to 𝑞

𝛿
𝑝𝑞

𝑎,𝑟
: Link/route incidence indicator, 1 if link 𝑎 is
on route 𝑟 from origin 𝑝 to destination 𝑞; 0,
otherwise

Δ: Link/route incidencematrix;Δ f andΔ h corre-
spond to route flows f and h, respectively

Λ: O-D/route incidence matrix; Λ f and Λ h cor-
respond to route flows f and h, respectively

Φ: Origin/O-D incidence matrix
Ψ: Destination/O-D incidence matrix.
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