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A general predator-prey model with disease in the prey and double impulsive control is proposed and investigated for the purpose
of integrated pest management. By using the Floquet theory, the comparison theorem of impulsive differential equations, and the
persistence theory of dynamical systems, we obtain that if threshold value 𝑅

0
< 1, then the susceptible pest eradication periodic

solution is globally asymptotically stable and if 𝑅
0
> 1, then the model is permanent. The numerical examples not only illustrate

the theoretical results, but also show that when the model is permanent, then it may possess a unique globally attractive 𝑇-periodic
solution.

1. Introduction

Integrated pest management (IPM) is a long term manage-
ment tactic that uses a combination of chemical, biological
strategies to reduce pests to tolerable level or below the
threshold, with less cost to the farmers and minimal effect
on the environment (see [1, 2]). Such techniques include
mechanical methods (erecting pest barriers or using pest
traps) and biological methods (breeding natural predators
of the pest or using biological insecticides). Some successful
biological control examples contain the use of the predatory
arthropod Orius sauteri against the pest Thrips palmi Karny
to protect eggplant crops in greenhouses (see [3]) and the use
of the predatory mites Phytoseiulus persimilis and Neoseiulus
californicus to regulate the red spidermiteTetranychus urticae
Koch in field-grown strawberries (see [4]).

The discontinuity of human activities and the abrupt
variation in the amount of the pest population, which
occurs immediately after successful control measures (such
as spraying pesticides, releasing natural enemies of the pest,
and freeing infective pest individuals), may be described

mathematically through making use of impulsive differential
equations (see [5–16]).

Many scholars have been devoted to the analysis of impul-
sive differential equation models describing IPM strategies
and some rich results have been obtained (see [6–15, 17]).
They assumed that the disease incidence rate should be dis-
tinguished; as far as disease transmission is concerned, non-
linear, bilinear, and standard incidence rates have often been
used in establishing ecoepidemic models, which depends on
different infective disease and environment. Georgescu and
Zhang (see [10]) investigated a predator-pest model with
incidence rate given by 𝑔(𝐼)𝑆, Pang and Chen (see [12])
discussed an 𝑆𝐼model with bilinear incidence rate 𝛽𝑆𝐼, Wang
et al. (see [13]) analyzed an 𝑆𝐼 model with incidence rate
given by𝑓(𝑆)𝐼, and so forth. Main results of these theses have
focused on conditions of pest eradication and permanence of
the system. According to the authors’ knowledge, at present
stage, there are few studies of general incidence rate. So
one of the goals of this paper is to generalize the incidence
rate.

The functional response between pests and natural ene-
mies plays an important role in assessing dynamical behavior
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of the system. People use natural enemy, as in some sense
like a pesticide, to control pest via augmentation or releasing
natural enemy once the quantity of pest has reached or
exceeded the economic threshold (see [9, 10, 14, 15]). Shi et al.
(see [14]) analyzed a predator-pest model with disease in
the pest and functional response given by Holling-II type
and the time-dependent impulsive strategy including release
of infective pest individuals and those natural predators at
different point in time; the threshold on pest eradication
was obtained. However, little of paper has been devoted
to analysis of models which combine release of infective
pest individuals and those natural predators. The approach
to biological control which we adopted is to release both
infective pest individuals and natural predators periodically
with constant amount at different point in time; what is
more, the functional response is also a more general form.
Motivated by the valuable contributions of Georgescu and
Zhang [10], Wang et al. [13], and Shi et al. [14], in this paper
general IPM model will be considered as follows:

𝑆
󸀠
(𝑡) = 𝑆 (𝑡) 𝑓 (𝑆 (𝑡) , 𝐼 (𝑡)) − 𝑔 (𝑆 (𝑡) , 𝐼 (𝑡))

− ℎ (𝑆 (𝑡) , 𝑦 (𝑡)) ,

𝐼
󸀠
(𝑡) = 𝑔 (𝑆 (𝑡) , 𝐼 (𝑡)) − 𝜔𝐼 (𝑡) ,

𝑦
󸀠
(𝑡) = 𝛿ℎ (𝑆 (𝑡) , 𝑦 (𝑡)) − 𝑑𝑦 (𝑡) ,

𝑡
𝑛

̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡
𝑛

̸= 𝑛𝑇,

𝐼 (𝑡
+

𝑛
) = 𝐼 (𝑡

𝑛
) + 𝑝1, 𝑡

𝑛
= (𝑛 + 𝑙 − 1) 𝑇, 0 < 𝑙 < 1,

𝑦 (𝑡
+

𝑛
) = 𝑦 (𝑡

𝑛
) + 𝑝2, 𝑡

𝑛
= 𝑛𝑇.

(1)

The model is based on the following assumptions:

(H
1
) The pest is divided into the susceptible and the infec-
tive, and the infective cannot produce offsprings as a
result of the disease, but the infective still consume
crop. The incidence rate of the infective is given by
function 𝑔(𝑆, 𝐼). The growth rate of the susceptible is
assumed to function 𝑆𝑓(𝑆, 𝐼).

(H
2
) Parameter 𝑝1 > 0 represents the amount of infective
pest released periodically at time 𝑡

𝑛
= (𝑛 + 𝑙 − 1)𝑇,

where 𝑛 ∈ 𝑍
+
= {1, 2, . . .} and 0 < 𝑙 < 1. Parameter

𝑝2 > 0 represents the amount of natural enemy
released periodically at time 𝑡

𝑛
= 𝑛𝑇, 𝑛 ∈ 𝑍

+
.

(H
3
) The natural enemy only hunts the susceptible and the
functional response is given by function ℎ(𝑆, 𝑦); 𝛿 >
0 is the conversion rate.

(H
4
) Positive constants 𝜔 and 𝑑 are the death rates of the
infective pest and the natural enemy, respectively.

In model (1), 𝑆(𝑡) and 𝐼(𝑡) denote the density of the
susceptible pest and the infective pest (prey) population,

respectively. 𝑦(𝑡) is the density of natural enemy (predator)
population. For model (1), in this paper we will investigate
global stability of the susceptible pest eradication periodic
solution and the permanence of model (1). In Section 2,
the positivity and boundedness of solutions are presented.
In Section 3, by using the Floquet theory for impulsive
differential equations, the theorem on the global asymptotic
stability of the susceptible pest eradication periodic solution
is established. In Section 4, by using the persistence theory of
dynamical systems, the theorem on the permanence ofmodel
(1) is established. In Section 5, we will give the numerical
simulations to illustrate the main results obtained in this
paper. Finally, in last section a brief discussion and some
possible future researches are proposed.

2. Preliminaries

Denote 𝑅
+
= [0, +∞) and 𝑅

𝑛

+
= {(𝑥1, 𝑥2, . . . , 𝑥𝑛) : 𝑥

𝑖
∈

𝑅
+
, 𝑖 = 1, 2, . . . , 𝑛}. For model (1), we introduce the following

assumptions.

(A
1
) Function 𝑓(𝑥, 𝑦) is continuous on 𝑅2

+
and is nonin-

creasing for 𝑥 and 𝑦, respectively. Consider
sup
𝑥∈𝑅
+

(𝑥𝑓(𝑥, 0) + 𝛾𝑥) < ∞ with 𝛾 = min{𝜔, 𝑑}.

(A
2
) Function 𝑔(𝑥, 𝑦) is continuously differentiable for 𝑥
and 𝑦 on 𝑅

2
+
, 𝑔(0, 𝑦) = 0, and 𝜕𝑔(𝑥, 𝑦)/𝜕𝑥 ≥ 0,

𝜕𝑔(𝑥, 𝑦)/𝜕𝑦 ≥ 0 for all (𝑥, 𝑦) ∈ 𝑅2
+
.

(A
3
) Function ℎ(𝑥, 𝑦) is continuously differentiable for 𝑥
and 𝑦 on 𝑅

2
+
, ℎ(0, 𝑦) = 0, and 𝜕ℎ(𝑥, 𝑦)/𝜕𝑥 ≥ 0,

𝜕ℎ(𝑥, 𝑦)/𝜕𝑦 ≥ 0 for all (𝑥, 𝑦) ∈ 𝑅2
+
.

The solution of model (1), denoted by 𝑥(𝑡) = (𝑆(𝑡),

𝐼(𝑡), 𝑦(𝑡)) : 𝑅
+

→ 𝑅
3
+
, is piecewise continuous on ((𝑛 −

1)𝑇, (𝑛+𝑙−1)𝑇] and ((𝑛+𝑙−1)𝑇, 𝑛𝑇], 𝑛 ∈ 𝑍
+
,𝑥((𝑛+𝑙−1)𝑇+) =

lim
𝑡→ (𝑛+𝑙−1)𝑇+𝑥(𝑡), and 𝑥(𝑛𝑇

+
) = lim

𝑡→𝑛𝑇
+𝑥(𝑡) exist. The

global existence and uniqueness of solution formodel (1) with
any initial value 𝑥(0+) ≥ 0 are guaranteed by the smoothness
of the right-hand functions of model (1) (see [18]). Firstly, the
following results are obtained easily.

Lemma 1. Assume that 𝑥(𝑡) is the solution of model (1) with
𝑥(0+) ≥ 0, and then 𝑥(𝑡) ≥ 0 for all 𝑡 ≥ 0. Furthermore, if
𝑥(0+) > 0, then 𝑥(𝑡) > 0 for all 𝑡 > 0.

Lemma 2. Let 𝛼 be a positive constant. Then system

𝑢
󸀠
(𝑡) = − 𝛼𝑢 (𝑡) ,

𝑡
𝑛

̸= (𝑛 + 𝑙 − 1) 𝑇, 0 ≤ 𝑙 ≤ 1, 𝑛 ∈ 𝑍
+
,

𝑢 (𝑡
+

𝑛
) = 𝑢 (𝑡

𝑛
) + 𝑢0, 𝑡𝑛 = (𝑛 + 𝑙 − 1) 𝑇,

(2)

has a positive periodic solution

𝑢
∗
(𝑡) =

{

{

{

𝑢
∗
(0+) exp {−𝛼 [𝑡 − (𝑛 − 1) 𝑇]} , (𝑛 − 1) 𝑇 < 𝑡 ≤ (𝑛 + 𝑙 − 1) 𝑇,

(𝑢
∗
(0+) exp (−𝛼𝑙𝑇) + 𝑢0) exp {−𝛼 [𝑡 − (𝑛 + 𝑙 − 1) 𝑇]} , (𝑛 + 𝑙 − 1) 𝑇 < 𝑡 ≤ 𝑛𝑇,

(3)
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where 𝑢∗(0+) = 𝑢0/(1−exp(−𝛼𝑇)). Furthermore, any solution
𝑢(𝑡) of system (2) with initial value 𝑢(0+) can be expressed as

𝑢 (𝑡) = (𝑢 (0+) −
𝑢0

1 − exp (−𝛼𝑇)
) exp (−𝛼𝑡) + 𝑢∗ (𝑡) ,

(𝑛 − 1) 𝑇 < 𝑡 ≤ 𝑛𝑇,

(4)

and satisfies 𝑢(𝑡) → 𝑢
∗
(𝑡) as 𝑡 → +∞.

If susceptible pest 𝑆(𝑡) is absent, then model (1) reduces
to

𝐼
󸀠
(𝑡) = −𝜔𝐼 (𝑡) ,

𝑦
󸀠
(𝑡) = − 𝑑𝑦 (𝑡) ,

𝑡
𝑛

̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡
𝑛

̸= 𝑛𝑇,

𝐼 (𝑡
+

𝑛
) = 𝐼 (𝑡

𝑛
) + 𝑝1, 𝑡

𝑛
= (𝑛 + 𝑙 − 1) 𝑇, 0 < 𝑙 < 1,

𝑦 (𝑡
+

𝑛
) = 𝑦 (𝑡

𝑛
) + 𝑝2, 𝑡

𝑛
= 𝑛𝑇.

(5)

By Lemma 2, positive periodic solution (𝐼
∗
(𝑡), 𝑦
∗
(𝑡)) of

system (5) is

𝐼
∗
(𝑡) =

{

{

{

𝐼
∗
(0+) exp {−𝜔 [𝑡 − (𝑛 − 1) 𝑇]} , (𝑛 − 1) 𝑇 < 𝑡 ≤ (𝑛 + 𝑙 − 1) 𝑇,

(𝐼
∗
(0+) exp (−𝜔𝑙𝑇) + 𝑝1) exp {−𝜔 [𝑡 − (𝑛 + 𝑙 − 1) 𝑇]} , (𝑛 + 𝑙 − 1) 𝑇 < 𝑡 ≤ 𝑛𝑇,

𝑦
∗
(𝑡) = 𝑦

∗
(0+) exp {−𝑑 [𝑡 − (𝑛 − 1) 𝑇]} , (𝑛 − 1) 𝑇 < 𝑡 ≤ 𝑛𝑇,

(6)

where 𝐼∗(0+) = 𝑝1/(1 − exp(−𝜔𝑇)) and 𝑦∗(0+) = 𝑝2/(1 −
exp(−𝑑𝑇)). Furthermore, any solution (𝐼(𝑡), 𝑦(𝑡)) of system
(5) with initial values 𝐼(0+) and 𝑦(0+) can be expressed as

𝐼 (𝑡) = (𝐼 (0+) − 𝐼∗ (0+)) exp (−𝜔𝑡) + 𝐼∗ (𝑡) ,

(𝑛 − 1) 𝑇 < 𝑡 ≤ 𝑛𝑇,

𝑦 (𝑡) = (𝑦 (0+) − 𝑦∗ (0+)) exp (−𝑑𝑡) + 𝑦∗ (𝑡) ,

(𝑛 − 1) 𝑇 < 𝑡 ≤ 𝑛𝑇.

(7)

It is easy to get the following conclusion.

Lemma 3. System (5) has positive periodic solutions 𝑧∗(𝑡) =
(𝐼
∗
(𝑡), 𝑦
∗
(𝑡)). For any solution 𝑧(𝑡) = (𝐼(𝑡), 𝑦(𝑡)) of system

(5) with initial value 𝑧(0+) = (𝐼(0+), 𝑦(0+)), one has 𝑧(𝑡) →

𝑧
∗
(𝑡) as 𝑡 → ∞.

On the ultimate boundedness of solutions for model (1),
we have the following conclusion.

Lemma 4. There exists a constant 𝑀 > 0 such that, for any
solution 𝑥(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝑦(𝑡)) of model (1) with initial value
𝑥(0+) = (𝑆(0+), 𝐼(0+), 𝑦(0+)) ∈ 𝑅3

+
, one has 𝑆(𝑡) ≤ 𝑀, 𝐼(𝑡) ≤

𝑀, and 𝑦(𝑡) ≤ 𝑀 with 𝑡 large enough.

Proof. Define

𝑉 (𝑡) = 𝑉 (𝑥 (𝑡)) = 𝑆 (𝑡) + 𝐼 (𝑡) +
1
𝛿
𝑦 (𝑡) . (8)

By calculating the derivative of𝑉(𝑡)with respect tomodel (1),
when 𝑡

𝑛
̸= (𝑛 + 𝑙 − 1)𝑇 and 𝑡

𝑛
̸= 𝑛𝑇,

𝐷
+
𝑉 (𝑡) = 𝑆 (𝑡) 𝑓 (𝑆 (𝑡) , 𝐼 (𝑡)) − 𝜔𝐼 (𝑡) −

𝑑

𝛿
𝑦 (𝑡)

≤ 𝑆 (𝑡) 𝑓 (𝑆 (𝑡) , 0) − 𝜔𝐼 (𝑡) − 𝑑
𝛿
𝑦 (𝑡)

≤ 𝑀̃ − 𝛾𝑉 (𝑡) ,

(9)

where 𝛾 = min{𝜔, 𝑑} and 𝑀̃ = sup
𝑆≥0{𝑆𝑓(𝑆, 0) + 𝛾𝑆} < ∞.

When 𝑡
𝑛
= (𝑛+ 𝑙−1)𝑇, 𝑉((𝑛+ 𝑙−1)𝑇+) ≤ 𝑉((𝑛+ 𝑙−1)𝑇)+𝑝1,

andwhen 𝑡
𝑛
= 𝑛𝑇,𝑉(𝑛𝑇

+
) ≤ 𝑉(𝑛𝑇)+𝑝2.By Lemma 2.2 given

in [18], it is obvious that

lim sup
𝑡→∞

𝑉 (𝑡) ≤
𝑀̃

𝛾
+
(𝑝1 + 𝑝2) exp (𝛾𝑇)

exp (𝛾𝑇) − 1
. (10)

From this, there exists a constant 𝑀 > 0 such that 𝑆(𝑡) ≤
𝑀, 𝐼(𝑡) ≤ 𝑀, and𝑦(𝑡) ≤ 𝑀 for 𝑡 large enough.This completes
the proof.

In the following, we introduce some necessary definitions
and lemma on the persistence of dynamical systems, which
will be used for the discussion of permanence of model (1).
For more details, see [19, 20].

Let𝑋 be a metric space with metric 𝑑 and let 𝑓 : 𝑋 → 𝑋

be a continuous map. For any 𝑥 ∈ 𝑋, we represent 𝑓𝑛(𝑥) =
𝑓(𝑓
𝑛−1

(𝑥)) for any integer 𝑛 > 1 and 𝑓1
(𝑥) = 𝑓(𝑥). 𝑓 is said

to be compact in𝑋 if, for any bounded set𝐻 ⊂ 𝑋, set𝑓(𝐻) =
{𝑓(𝑥) : 𝑥 ∈ 𝐻} is precompact in 𝑋. 𝑓 is said to be point
dissipative if there is a bounded set 𝐵0 ⊂ 𝑋 such that, for any
𝑥 ∈ 𝑋,

lim
𝑛→∞

𝑑 (𝑓
𝑛
(𝑥) , 𝐵0) = 0. (11)
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For any 𝑥0 ∈ 𝑋, the positive semiorbit through 𝑥0 is defined
by 𝛾+(𝑥0) = {𝑓

𝑛
(𝑥0) = 𝑥

𝑛
, 𝑛 = 1, 2, . . .}, the negative semior-

bit through 𝑥0 is defined as a sequence 𝛾−(𝑥0) = {𝑥
𝑘
} satis-

fying 𝑓(𝑥
𝑘−1) = 𝑥

𝑘
for integers 𝑘 ≤ 0, the omega limit set of

𝛾
+
(𝑥0) is defined by 𝜔(𝑥0) = {𝑦 ∈ 𝑋 : there is a sequence

𝑛
𝑘
→ ∞ such that lim

𝑘→∞
𝑥
𝑛
𝑘

= 𝑦}, and the alpha limit set
of 𝛾−(𝑥0) is defined by 𝛼(𝑥0) = {𝑦 ∈ 𝑋 : there is a sequence
𝑛
𝑘
→ −∞ such that lim

𝑘→∞
𝑥
𝑛
𝑘

= 𝑦}.
A nonempty set 𝐵 ⊂ 𝑋 is said to be invariant if 𝑓(𝐵) ⊆ 𝐵.

A nonempty invariant set𝑀 of 𝑋 is called isolated in 𝑋 if it
is the maximal invariant set in a neighborhood of itself. For a
nonempty set 𝑀 of 𝑋, set 𝑊

𝑠
(𝑀) := {𝑥 ∈ 𝑋 :

lim
𝑛→∞

𝑑(𝑓
𝑛
(𝑥),𝑀)} is called the stable set of

𝑀.

Let𝑀1 and𝑀2 be two isolated invariant sets and set𝑀1
is said to be chained to set 𝑀2, usually expressed as 𝑀1 →

𝑀2, if there exists a full orbit though some 𝑥 ∉ 𝑀1 ∪ 𝑀2
such that 𝜔(𝑥) ⊂ 𝑀2 and 𝛼(𝑥) ⊂ 𝑀1. A finite sequence
M = {𝑀1, . . . ,𝑀𝑛} of isolated invariant sets is called a chain
if𝑀1 → 𝑀2 → ⋅ ⋅ ⋅ → 𝑀

𝑛
, and if𝑀

𝑛
= 𝑀1 the chain is

called a cycle.
Let𝑋0 be a nonempty open set of𝑋.We denote

𝜕𝑋0 := 𝑋 \ 𝑋0,

𝑀
𝜕
:= {𝑥 ∈ 𝜕𝑋0 : 𝑓

𝑛
(𝑥) ∈ 𝜕𝑋0, ∀𝑛 ≥ 0} .

(12)

Lemma 5 (see [19, 20]). Let𝑓 : 𝑋 → 𝑋 be a continuous map.
Assume that the following conditions hold:

(C
1
) Map 𝑓 is compact and point dissipative and 𝑓(𝑋0) ⊆
𝑋0.

(C
2
) There exists a finite sequence M = {𝑀1, . . . ,𝑀𝑛} of
compact and isolated invariant sets in 𝜕𝑋0 such that

(1) 𝑀
𝑖
∩𝑀
𝑗
= ⌀ for any 𝑖, 𝑗 = 1, 2, . . . , 𝑛 and 𝑖 ̸= 𝑗;

(2) Ω(𝑀
𝜕
) := ∪

𝑥∈𝑀
𝜕

𝜔(𝑥) ⊂ ∪
𝑛

𝑖=1𝑀𝑖;

(3) no subset ofM forms a cycle in 𝜕𝑋0;

(4) 𝑊𝑠(𝑀
𝑖
) ∩ 𝑋0 = ⌀ for each 1 ≤ 𝑖 ≤ 𝑛.

Then map 𝑓 is uniformly persistent with respect to (𝑋0,
𝜕𝑋0); that is, there exists a constant 𝜂 > 0 such that
liminf

𝑛→∞
𝑑(𝑓
𝑛
(𝑥), 𝜕𝑋0) ≥ 𝜂 for all 𝑥 ∈ 𝑋0.

3. Global Stability of Susceptible Pest
Eradication Periodic Solution

FromLemma 3, we know thatmodel (1) has a susceptible pest
eradication periodic solution (0, 𝐼∗(𝑡), 𝑦∗(𝑡)). On the global
asymptotic stability of this periodic solution, we have the
following theorem.

Theorem 6. Assume that

∫

𝑇

0
{𝑓 (0, 𝐼∗ (𝑡)) −

𝜕𝑔

𝜕𝑆
(0, 𝐼∗ (𝑡)) − 𝜕ℎ

𝜕𝑆
(0, 𝑦∗ (𝑡))} 𝑑𝑡

< 0.
(13)

Then periodic solution (0, 𝐼∗(𝑡), 𝑦∗(𝑡)) of model (1) is globally
asymptotically stable.

Proof. To investigate the local stability of susceptible pest
eradication periodic solution (0, 𝐼∗(𝑡), 𝑦∗(𝑡)), let 𝑆(𝑡) = 𝑢1(𝑡),
𝐼(𝑡) = 𝑢2(𝑡) + 𝐼

∗
(𝑡), 𝑦(𝑡) = 𝑢3(𝑡) + 𝑦

∗
(𝑡). We have

Δ𝑢2 (𝑡𝑛) = 0, 𝑡
𝑛
= (𝑛 + 𝑙 − 1) 𝑇, 0 < 𝑙 < 1,

Δ𝑢3 (𝑡𝑛) = 0, 𝑡
𝑛
= 𝑛𝑇.

(14)

The corresponding linearized system is

𝑢
󸀠

1
(𝑡) = [𝑓 (0, 𝐼∗ (𝑡)) −

𝜕𝑔

𝜕𝑆
(0, 𝐼∗ (𝑡)) − 𝜕ℎ

𝜕𝑆
(0, 𝑦∗ (𝑡))]

⋅ 𝑢1 (𝑡) ,

𝑢
󸀠

2
(𝑡) =

𝜕𝑔

𝜕𝑆
(0, 𝐼∗ (𝑡)) 𝑢1 (𝑡) − 𝜔𝑢2 (𝑡) ,

𝑢
󸀠

3
(𝑡) = 𝛿

𝜕ℎ

𝜕𝑆
(0, 𝑦∗ (𝑡)) 𝑢1 (𝑡) − 𝑑𝑢3 (𝑡) .

(15)

Let Φ(𝑡) be the fundamental matrix of system (15); then

𝑑Φ (𝑡)

𝑑𝑡

=(

𝑓(0, 𝐼∗ (𝑡)) −
𝜕𝑔

𝜕𝑆
(0, 𝐼∗ (𝑡)) − 𝜕ℎ

𝜕𝑆
(0, 𝑦∗ (𝑡)) 0 0

𝜕𝑔

𝜕𝑆
(0, 𝐼∗ (𝑡)) −𝜔 0

𝛿
𝜕ℎ

𝜕𝑆
(0, 𝑦∗ (𝑡)) 0 −𝑑

)Φ(𝑡) ,

(16)

with Φ(0) = 𝐼, a 3 × 3 identity matrix. By calculating, we get

Φ (𝑡)

=(

(

exp∫
𝑡

0
[𝜌0 (𝑠)] 𝑑𝑠 0 0

𝑎21 exp∫
𝑡

0
[−𝜔] 𝑑𝑠 0

𝑎31 0 exp∫
𝑡

0
[−𝑑] 𝑑𝑠

)

)

,

(17)
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where

𝜌0 (𝑠) = 𝑓 (0, 𝐼
∗
(𝑠)) −

𝜕𝑔

𝜕𝑆
(0, 𝐼∗ (𝑠)) − 𝜕ℎ

𝜕𝑆
(0, 𝑦∗ (𝑠)) ,

𝑎21

= ∫

𝑡

0

𝜕𝑔

𝜕𝑆
(0, 𝐼∗ (𝑠)) exp{𝜔 (𝑠 − 𝑡) +∫

𝑠

0
𝜌0 (𝜏) 𝑑𝜏} 𝑑𝑠,

𝑎31

= ∫

𝑡

0
𝛿
𝜕ℎ

𝜕𝑆
(0, 𝑦∗ (𝑠)) exp{𝑑 (𝑠 − 𝑡) +∫

𝑠

0
𝜌0 (𝜏) 𝑑𝜏} 𝑑𝑠.

(18)

Obviously, the eigenvalues of matrix𝑀 = Φ(𝑇) are

𝜆2 = exp{∫
𝑇

0
−𝜔𝑑𝑠} < 1,

𝜆3 = exp{∫
𝑇

0
−𝑑𝑑𝑠} < 1,

𝜆1

= exp{∫
𝑇

0
[𝑓 (0, 𝐼∗ (𝑡)) −

𝜕𝑔

𝜕𝑆
(0, 𝐼∗ (𝑡)) − 𝜕ℎ

𝜕𝑆
(0, 𝑦∗ (𝑡))] 𝑑𝑡} .

(19)

If (13) holds, then 𝜆1 < 1. By the Floquet theory (see [21]),
(0, 𝐼∗(𝑡), 𝑦∗(𝑡)) is locally asymptotically stable.

From (13), we can choose a small enough constant 𝜖1 > 0
such that

𝜌 = exp{∫
𝑇

0
[𝑓 (0, 𝐼∗ (𝑡) − 𝜖1) − min

0≤𝜉1≤𝜖1

𝜕𝑔 (𝜉1, 𝐼
∗
(𝑡) − 𝜖1)

𝜕𝑆
− min

0≤𝜉2≤𝜖1

𝜕ℎ (𝜉2, 𝑦
∗
(𝑡) − 𝜖1)

𝜕𝑆
] 𝑑𝑡} = exp{∫

𝑇

0
𝜌0 (𝑡, 𝜖1) 𝑑𝑡}

< 1.

(20)

From the second equation of model (1) and assumption (𝐴2),
we obtain

𝐼
󸀠
(𝑡) ≥ −𝜔𝐼 (𝑡) , 𝑡

𝑛
̸= (𝑛 + 𝑙 − 1) 𝑇. (21)

Consider the following impulsive differential equations:

V󸀠2 (𝑡) = −𝜔V2 (𝑡) , 𝑡
𝑛

̸= (𝑛 + 𝑙 − 1) 𝑇,

V2 (𝑡
+

𝑛
) = V2 (𝑡𝑛) + 𝑝1, 𝑡

𝑛
= (𝑛 + 𝑙 − 1) 𝑇,

(22)

and, by the comparison theorem of impulsive differential
equations (see [18]) and Lemma 3, it follows that 𝐼(𝑡) ≥ V2(𝑡)
and V2(𝑡) → 𝐼

∗
(𝑡) as 𝑡 → ∞. Therefore,

𝐼 (𝑡) ≥ V2 (𝑡) ≥ 𝐼
∗
(𝑡) − 𝜖1 (23)

for 𝑡 large enough. Similarly,

𝑦 (𝑡) ≥ 𝑦
∗
(𝑡) − 𝜖1 (24)

for 𝑡 large enough.
From assumptions (𝐴2) and (𝐴3), there exist 0 < 𝜉1 <

𝑆 and 0 < 𝜉2 < 𝑆 such that 𝑔(𝑆, 𝐼) = (𝜕𝑔(𝜉1, 𝐼)/𝜕𝑆)𝑆

and ℎ(𝑆, 𝐼) = (𝜕ℎ(𝜉2, 𝐼)/𝜕𝑆)𝑆. From (23), (24), and the first
equation of model (1), there exists a 𝑇0 > 0 such that

𝑆
󸀠
(𝑡) = 𝑆{𝑓 (𝑆, 𝐼) −

𝑔 (𝑆, 𝐼)

𝑆
−
ℎ (𝑆, 𝑦)

𝑆
}

≤ 𝑆{𝑓 (0, 𝐼∗ (𝑡) − 𝜖1) −
𝜕𝑔 (𝜉1, 𝐼

∗
(𝑡) − 𝜖1)

𝜕𝑆

−
𝜕ℎ (𝜉2, 𝑦

∗
(𝑡) − 𝜖1)

𝜕𝑆
} ≤ 𝑆{𝑓 (0, 𝐼∗ (𝑡) − 𝜖1)

− min
0≤𝜉1≤𝜖1

𝜕𝑔 (𝜉1, 𝐼
∗
(𝑡) − 𝜖1)

𝜕𝑆

− min
0≤𝜉2≤𝜖1

𝜕ℎ (𝜉2, 𝑦
∗
(𝑡) − 𝜖1)

𝜕𝑆
} ,

(25)

for all 𝑡 ≥ 𝑇0. For any 𝑡 > 𝑇0 we can choose an integer 𝑛 ≥ 0
such that 𝑡 = 𝑇0 + 𝑛𝑇 + 𝑡̃, where 𝑡̃ ∈ [0, 𝑇). Integrating the
above inequality from 𝑇0 to 𝑡, we obtain

𝑆 (𝑡) ≤ 𝑆 (𝑇0) exp{∫
𝑡

𝑇0

𝜌0 (𝑠, 𝜖1) 𝑑𝑠} = 𝑆 (𝑇0)

⋅ exp{∫
𝑇0+𝑛𝑇

𝑇0

𝜌0 (𝑠, 𝜖1) 𝑑𝑠}

⋅ exp{∫
𝑇0+𝑛𝑇+𝑡̃

𝑇0+𝑛𝑇
𝜌0 (𝑠, 𝜖1) 𝑑𝑠} ≤ 𝑆 (𝑇0) 𝑒

𝑀0𝑇𝜌
𝑛

󳨀→ 0 as 𝑛 󳨀→ ∞,

(26)
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where𝑀0 = sup
𝑡≥0𝜌0(𝑡, 𝜖1) > 0, which implies 𝑆(𝑡) → 0 as

𝑡 → ∞.
Next, we show that 𝐼(𝑡) → 𝐼

∗
(𝑡) and 𝑦(𝑡) → 𝑦

∗
(𝑡) as

𝑡 → ∞. Choose constant 𝜖2 > 0 small enough such that
𝜂 = sup0≤𝐼≤𝑀[𝑔(𝜖2, 𝐼)/𝐼] − 𝜔 < 0. From lim

𝑡→∞
𝑆(𝑡) = 0, it

follows that 𝑆(𝑡) ≤ 𝜖2 for 𝑡 large enough. From assumption
(𝐴3) and the second equation in model (1),

−𝜔𝐼 (𝑡) ≤ 𝐼
󸀠
(𝑡) ≤ 𝜂𝐼 (𝑡) , 𝑡

𝑛
̸= (𝑛 + 𝑙 − 1) 𝑇. (27)

Consequently, V2(𝑡) ≤ 𝐼(𝑡) ≤ 𝑤2(𝑡) and V2(𝑡) → 𝐼
∗
(𝑡),

𝑤2(𝑡) → 𝑤
∗

2 (𝑡) as 𝑡 → ∞, where V2(𝑡) is the solution of
(22) and 𝑤2(𝑡) is the solution of the following system:

𝑤
󸀠

2 (𝑡) = 𝜂𝑤2 (𝑡) , 𝑡
𝑛

̸= (𝑛 + 𝑙 − 1) 𝑇,

𝑤2 (𝑡
+

𝑛
) = 𝑤2 (𝑡𝑛) + 𝑝1, 𝑡

𝑛
= (𝑛 + 𝑙 − 1) 𝑇,

𝑤
∗
(𝑡) =

{{{{

{{{{

{

𝑝1
1 − exp (𝜂𝑇)

exp {𝜂 [𝑡 − (𝑛 − 1) 𝑇]} , (𝑛 − 1) 𝑇 < 𝑡 ≤ (𝑛 + 𝑙 − 1) 𝑇,

[
𝑝1 exp (𝜂𝑙𝑇)
1 − exp (𝜂𝑇)

+ 𝑝1] exp {𝜂 [𝑡 − (𝑛 + 𝑙 − 1) 𝑇]} , (𝑛 + 𝑙 − 1) 𝑇 < 𝑡 ≤ 𝑛𝑇.

(28)

Since lim
𝜖2→ 0𝜂 = −𝜔, then

lim
𝜖2→ 0

𝑤
∗

2 (𝑡) = 𝐼
∗
(𝑡) . (29)

Therefore, for any 𝜖3 > 0 small enough, we have 𝐼∗(𝑡) − 𝜖3 ≤
𝐼(𝑡) ≤ 𝐼

∗
(𝑡) + 𝜖3 for 𝑡 large enough, which implies 𝐼(𝑡) →

𝐼
∗
(𝑡) as 𝑡 → ∞.
Lastly, a similar argument as from (27) to (29), we also

can obtain that 𝑦(𝑡) → 𝑦
∗
(𝑡) as 𝑡 → ∞.This completes the

proof.

Corollary 7. When the right-hand functions in model (1) are

𝑓 (𝑆, 𝐼) = 𝑟 {1− 𝑆 + 𝜃𝐼
𝐾

} ,

𝑔 (𝑆, 𝐼) = 𝛽𝑆𝐼
𝑞
,

ℎ (𝑆, 𝑦) = 𝑎𝑆𝑦,

(30)

then condition (13) is equivalent to the following form:

𝑟𝑇 <
𝑟𝜃𝑝1
𝐾𝜔

+
𝛽𝑝
𝑞

1
𝑞𝜔

1 − exp (−𝑞𝜔𝑇)
[1 − exp (−𝜔𝑇)]𝑞

+
𝑎𝑝2
𝑑
, (31)

where 𝑟, 𝜃, 𝐾, 𝛽, 𝑞, and 𝑎 are positive constants.

Remark 8. In (31), if 𝑝1 = 0, then 𝑝2 > 𝑑𝑟𝑇/𝑎, which means
that if only natural enemies are released periodically, then
the release amount must be larger than 𝑑𝑟𝑇/𝑎 to ensure the
eradication of the pest. If 𝑝2 = 0, then the release amount
must satisfy the inequality

𝑟𝑇 <
𝑟𝜃𝑝1
𝐾𝜔

+
𝛽𝑝
𝑞

1
𝑞𝜔

1 − exp (−𝑞𝜔𝑇)
[1 − exp (−𝜔𝑇)]𝑞

(32)

to ensure the eradication of the pest.

4. Permanence of the Model

Theorem 9. Assuming that

∫

𝑇

0
{𝑓 (0, 𝐼∗ (𝑡)) −

𝜕𝑔

𝜕𝑆
(0, 𝐼∗ (𝑡)) − 𝜕ℎ

𝜕𝑆
(0, 𝑦∗ (𝑡))} 𝑑𝑡

> 0,
(33)

then model (1) is permanent.

Proof. Since the impulsive effects in model (1) are periodic,
model (1) can be regarded as periodic model with period 𝑇.
Therefore, we can use the persistence theory of dynamical
systems to discuss the permanence of model (1). Define

𝑋 = {(𝑆, 𝐼, 𝑦) : 𝑆 ≥ 0, 𝐼 ≥ 0, 𝑦 ≥ 0} ,
𝑋0 = {(𝑆, 𝐼, 𝑦) ∈𝑋 : 𝑆 > 0, 𝐼 ≥ 0, 𝑦 ≥ 0} .

(34)

Thus

𝜕𝑋0 = 𝑋 \ 𝑋0 = {(𝑆, 𝐼, 𝑦) ∈𝑋 : 𝑆 = 0} . (35)

From Lemma 1, we claim that 𝑋 and 𝑋0 are positively
invariant with respect to model (1). 𝜕𝑋0 is a relatively closed
set in𝑋.

Let 𝑃 : 𝑋 → 𝑋 be a Poincaré map associated with model
(1); that is,

𝑃 (𝑆0, 𝐼0, 𝑦0) = 𝑢 (𝑇, 𝑆0, 𝐼0, 𝑦0) , (𝑆0, 𝐼0, 𝑦0) ∈ 𝑋, (36)

where 𝑢(𝑡, 𝑆0, 𝐼0, 𝑦0) is the unique solution of model (1) with
initial value 𝑢(0+, 𝑆0, 𝐼0, 𝑦0) = (𝑆0, 𝐼0, 𝑦0). By Lemma 4,
Poincaré map 𝑃 is compact and point dissipative on 𝑋.
Therefore, condition (𝐶1) of Lemma 5 holds.

Let

𝑀
𝜕
= {(𝑆0, 𝐼0, 𝑦0) ∈ 𝜕𝑋0 : 𝑃

𝑛
(𝑆0, 𝐼0, 𝑦0) ∈ 𝜕𝑋0, 𝑛

= 1, 2, . . .} ,
(37)

where 𝑃𝑛 = 𝑃(𝑃𝑛−1), 𝑛 > 1, and 𝑃1
= 𝑃.
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Firstly, we will testify

𝑀
𝜕
= 𝜕𝑋0. (38)

Clearly, 𝑀
𝜕
⊆ 𝜕𝑋0. For any (0, 𝐼0, 𝑦0) ∈ 𝜕𝑋0, by 𝑆0 = 0,

the solution (𝑆(𝑡), 𝐼(𝑡), 𝑦(𝑡)) of model (1) with initial value
(𝑆(0+), 𝐼(0+), 𝑦(0+)) = (0, 𝐼0, 𝑦0) satisfies 𝑆(𝑡) = 0, 𝐼(𝑡) ≥ 0,
and 𝑦(𝑡) ≥ 0 for all 𝑡 ≥ 0. Therefore, for any integer 𝑛 > 0, we
obtain

𝑃
𝑛
(0, 𝐼0, 𝑦0) ∈ 𝜕𝑋0. (39)

This implies (0, 𝐼0, 𝑦0) ∈ 𝑀𝜕.Therefore, (38) holds.
Model (1) can be simplified as model (5) in 𝜕𝑋0. By

Lemma 3, model (1) has globally attractive periodic solution
(0, 𝐼∗(𝑡), 𝑦∗(𝑡)) in 𝜕𝑋0. This shows that map 𝑃 has a global
attractor 𝑀1 = {(0, 𝐼∗(0), 𝑦∗(0))} in 𝜕𝑋0. It is clear that, in
𝜕𝑋0, {𝑀1} is isolated, invariant, and does not form a cycle.
Therefore, conditions (1)–(3) of (𝐶2) in Lemma 5 hold.

Secondly, let 𝑥0 = (𝑆0, 𝐼0, 𝑦0) ∈ 𝑋0. By the continuity of
solutions with respect to the initial value, for any 𝜀 > 0, there
is a 𝛿1 > 0; when ‖𝑥0 −𝑀1‖ ≤ 𝛿1, we have

󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑥0) − 𝑢 (𝑡,𝑀1)
󵄩󵄩󵄩󵄩 < 𝜀, ∀𝑡 ∈ [0, 𝑇] . (40)

Now, we claim that

lim sup
𝑛→∞

𝑑 (𝑃
𝑛
(𝑥0) ,𝑀1) ≥ 𝛿1. (41)

Suppose the conclusion is not true; then we have

lim sup
𝑛→∞

𝑑 (𝑃
𝑛
(𝑥0) ,𝑀1) < 𝛿1 (42)

for some 𝑥0 ∈ 𝑋0. For the sake of simplicity, one may assume
that

𝑑 (𝑃
𝑛
(𝑥0) ,𝑀1) < 𝛿1 ∀𝑛 ≥ 0. (43)

Also, from (40) we obtain

󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑃
𝑛
(𝑥0)) − 𝑢 (𝑡,𝑀1)

󵄩󵄩󵄩󵄩 < 𝜀 ∀𝑛 ≥ 0, 𝑡 ∈ [0, 𝑇] . (44)

Then, for any 𝑡 ≥ 0, let 𝑡 = 𝑛𝑇 + 𝑡̃, where 𝑡̃ ∈ [0, 𝑇) and
𝑛 = [𝑡/𝑇] is the greatest integer less than or equal to 𝑡/𝑇; we
can get

󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑥0) − 𝑢 (𝑡,𝑀1)
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑢 (𝑡̃, 𝑃

𝑛
(𝑥0)) − 𝑢 (𝑡̃,𝑀1)

󵄩󵄩󵄩󵄩 < 𝜀.

(45)

Since 𝑢(𝑡, 𝑥0) = (𝑆(𝑡), 𝐼(𝑡), 𝑦(𝑡)) and 𝑢(𝑡,𝑀1) = (0, 𝐼∗(𝑡),
𝑦
∗
(𝑡)), (45) signifies that

0 < 𝑆 (𝑡) ≤ 𝜀,

𝐼 (𝑡) ≤ 𝐼
∗
(𝑡) + 𝜀,

𝑦 (𝑡) ≤ 𝑦
∗
(𝑡) + 𝜀

(46)

for all 𝑡 ≥ 0. By condition (33), we can choose constant 𝜀 > 0
such that

󰜚 = exp{∫
𝑇

0
[𝑓 (𝜀, 𝐼

∗
(𝑡) + 𝜀) − max

0≤𝜃1≤𝜀

𝜕𝑔 (𝜀, 𝐼
∗
(𝑡) + 𝜀)

𝜕𝑆
− max

0≤𝜃1≤𝜀

𝜕ℎ (𝜀, 𝑦
∗
(𝑡) + 𝜀)

𝜕𝑆
] 𝑑𝑡} = exp{∫

𝑇

0
󰜚0 (𝑡, 𝜀) 𝑑𝑡} > 1. (47)

Further, from assumptions (𝐴1) and (𝐴2) and inequalities
(46), we have

̇𝑆 (𝑡) = 𝑆{𝑓 (𝑆, 𝐼) −
𝑔 (𝑆, 𝐼)

𝑆
−
ℎ (𝑆, 𝑦)

𝑆
}

≥ 𝑆{𝑓 (𝜀, 𝐼
∗
(𝑡) + 𝜀) −

𝜕𝑔 (𝜃1, 𝐼
∗
(𝑡) + 𝜀)

𝜕𝑆

−
𝜕ℎ (𝜃2, 𝑦

∗
(𝑡) + 𝜀)

𝜕𝑆
} ≥ 𝑆{𝑓 (𝜀, 𝐼

∗
(𝑡) + 𝜖)

− max
0≤𝜃1≤𝜖

𝜕𝑔 (𝜃1, 𝐼
∗
(𝑡) + 𝜀)

𝜕𝑆

− max
0≤𝜃2≤𝜖

𝜕ℎ (𝜃2, 𝑦
∗
(𝑡) + 𝜀)

𝜕𝑆
} ,

(48)

where 0 < 𝜃1, 𝜃2 < 𝑆. For any 𝑡 ≥ 0, choose an integer 𝑘 ≥ 0
such that 𝑡 = 𝑘𝑇 + 𝑡̂, where 𝑡̂ ∈ [0, 𝑇). Integrating (48) from 0
to 𝑡 and noticing (47), then

𝑆 (𝑡)

≥ 𝑆 (0+) exp(∫
𝑡

0
󰜚0 (𝑠, 𝜀) 𝑑𝑠)

= 𝑆 (0+) exp(𝑘∫
𝑇

0
󰜚0 (𝑠, 𝜀) 𝑑𝑠 +∫

𝑘𝑇+𝑡̂

𝑘𝑇

󰜚0 (𝑠, 𝜀) 𝑑𝑠)

≥
𝑆 (0+)

exp (𝑇𝑁0)
󰜚
𝑘
,

(49)

where 𝑁0 = sup
𝑡≥0󰜚0(𝑡, 𝜖) > 0. Thus, lim

𝑡→∞
𝑆(𝑡) = ∞,

which is a contradiction with 0 ≤ 𝑆(𝑡) ≤ 𝜀 for all 𝑡 ≥ 0. Hence,
claim (41) holds. This shows 𝑊𝑠(𝑀1) ∩ 𝑋0 = 0. Therefore,
condition (4) of (𝐶2) holds. Consequently, by Lemma 5, 𝑃 is
uniformly persistent with respect to (𝑋0, 𝜕𝑋0).
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Figure 1: Time sires of 𝑆(𝑡) (a), 𝐼(𝑡) (b), 𝑦(𝑡) (c), and phase portrait (d) in model (1) with the initial values 𝑆(0+) = 0.1+0.5𝑘, 𝐼(0+) = 2+0.4𝑘,
and 𝑦(0+) = 3 + 0.4𝑘, 𝑘 = 1, 2, 3, 4, 5.

Lastly, since model (1) is periodic, we obtain that model
(1) is uniformly persistent. From Lemma 4, model (1) also is
permanent. This completed the proof.

Corollary 10. When functions 𝑓(𝑆, 𝐼), 𝑔(𝑆, 𝐼), and ℎ(𝑆, 𝑦) are
given in (30), then condition (33) is equivalent to the following
condition:

𝑟𝑇 >
𝑟𝜃𝑝1
𝐾𝜔

+
𝛽𝑝
𝑞

1
𝑞𝜔

1 − exp (−𝑞𝜔𝑇)
[1 − exp (−𝜔𝑇)]𝑞

+
𝑎𝑝2
𝑑
. (50)

Remark 11. In (50), if𝑝1 = 0, thenwe have𝑝2 < 𝑑𝑟𝑇/𝑎, which
means that if only natural enemies are released periodically
and the amount is less than 𝑑𝑟𝑇/𝑎, then the system is
permanent and the pest will not be eradicated. If 𝑝2 = 0, then
the release amount satisfies

𝑟𝑇 >
𝑟𝜃𝑝1
𝐾𝜔

+
𝛽𝑝
𝑞

1
𝑞𝜔

1 − exp (−𝑞𝜔𝑇)
[1 − exp (−𝜔𝑇)]𝑞

(51)

to ensure the system is permanent and the pest will not be
eradicated.

Remark 12. Applying Theorem 1 given in [16], it is clear that
when condition (33) holds, model (1) at least has one positive
𝑇-periodic solution.

Remark 13. Taking the functions in model (1) as

𝑓 (𝑆, 𝐼) = 𝑟 {1− 𝑆 + 𝐼
𝐾

} ,

𝑔 (𝑆, 𝐼) = 𝛽𝑆𝐼,

ℎ (𝑆, 𝑦) =
𝑎𝑆𝑦

1 + 𝜔𝑆
,

(52)

the model has been discussed in [14]. Furthermore, noticing
(30), we have reason to confirm that our study makes the
model in [14] more general.

Corollary 14. Define constant
𝑅0

= exp{∫
𝑇

0
(𝑓 (0, 𝐼∗ (𝑡)) −

𝜕𝑔

𝜕𝑆
(0, 𝐼∗ (𝑡) − 𝜕ℎ

𝜕𝑆
(0, 𝑦∗ (𝑡)))) 𝑑𝑡} .

(53)
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Figure 2: Time sires of 𝑆(𝑡) (a), 𝐼(𝑡) (b), 𝑦(𝑡) (c), and phase portrait (d) in model (1) with the initial values 𝑆(0+) = 0.1+0.5𝑘, 𝐼(0+) = 2+0.4𝑘,
and 𝑦(0+) = 3 + 0.4𝑘, 𝑘 = 1, 2, 3, 4, 5.

If 𝑅0 < 1, then susceptible pest eradication periodic solution
(0, 𝐼∗(𝑡), 𝑦∗(𝑡)) of model (1) is globally asymptotically stable,
and if 𝑅0 > 1, then model (1) is permanent.

5. Numerical Example

In this section, we give some examples and numerical
simulations to confirm the above theoretical analysis. Let us
consider model (1) with functions 𝑓(𝑆, 𝐼), 𝑔(𝑆, 𝐼), and ℎ(𝑆, 𝑦)
given in (30) and parameters as follows.

Example 1. Take 𝑟 = 1.5, 𝐾 = 20, 𝜃 = 0.5, 𝛽 = 0.8, 𝑞 = 2,
𝛿 = 0.5, 𝑑 = 0.2, 𝜔 = 0.5, 𝑎 = 0.7, 𝑝1 = 0.5, 𝑝2 = 0.6, and
𝑇 = 1.5. By computing, we have

𝑟𝑇 = 2.25 <
𝑟𝜃𝑝1
𝐾𝜔

+
𝛽𝑝
𝑞

1
𝑞𝜔

1 − exp (−𝑞𝜔𝑇)
[1 − exp (−𝜔𝑇)]𝑞

+
𝑎𝑝2
𝑑

≈ 5.31.

(54)

Therefore, inequality (31) holds; from Theorem 6, periodic
solution (0, 𝐼∗(𝑡), 𝑦∗(𝑡)) of model (1) is globally asymptoti-
cally stable, which is illustrated in Figure 1.

Example 2. Take 𝑟 = 6, 𝐾 = 13, 𝜃 = 0.5, 𝛽 = 0.3, 𝑞 = 2,
𝛿 = 0.8, 𝑑 = 0.4, 𝜔 = 0.6, 𝑎 = 1, 𝑝1 = 2, 𝑝2 = 2, and 𝑇 = 2. By
computing,𝑀 ≈ 63,𝑚 ≈ 1.5 in Lemma 4, and

𝑟𝑇 = 12 >
𝑟𝜃𝑝1
𝐾𝜔

+
𝛽𝑝
𝑞

1
𝑞𝜔

1 − exp (−𝑞𝜔𝑇)
[1 − exp (−𝜔𝑇)]𝑞

+
𝑎𝑝2
𝑑

≈ 9.57. (55)

Therefore, inequality (50) holds; from Theorem 9, model (1)
is permanent. Numerical simulation (see Figure 2) shows
that there exists a unique positive 𝑇-periodic solution
(𝑆(𝑡), 𝐼(𝑡), 𝑦(𝑡)) of model (1) which is globally attractive.

From the above example, we can guess that only inequal-
ity (33) holds; thenmodel (1) has a unique positiveT-periodic
solution which is globally attractive.

6. Discussion

In this paper, a general ecoepidemic model with impulsive
control strategy is proposed and its dynamical behavior is
analyzed for the purpose of integrated pest management.
Meanwhile, the model which the researchers obtained in [14]
was generalized. By using Floquet theorem and theory of
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persistence of dynamical systems, we show that if condition
(13) holds, the susceptible pest eradication periodic solution
(0, 𝐼∗(𝑡), 𝑦∗(𝑡)) is globally asymptotically stable (see Figure 1),
which means that the pest has been eradicated; when condi-
tion (33) holds, model (1) is permanent (see Figure 2), which
means the pest and their natural enemy can coexist in the
area. Furthermore, fromRemark 12, model (1) has at least one
positive 𝑇-periodic solution.

Further study includes investigating whether or not a
nontrivial periodic solution emergeswhen the threshold𝑅0 =
1 holds and analyzing dynamical behavior about model with
delay.
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