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Motivated by the biological control of pests, we present discrete-time models of host-parasitoid interactions to study the effects of
external stocking upon the systems. It is assumed that density dependence of the hosts occurs first followed by parasitism.We prove
that the constant stocking can eliminate the pest population if the stocking is sufficiently large. Furthermore, stocking can simplify
the dynamics of the interaction by stabilizing the coexisting steady state.

1. Introduction

There are many natural host populations that are also pests.
Biological control is the reduction of pest populations by
natural enemies, also known as the biological control agents.
Many species of wasps and some flies are parasitoids and
most of the parasitoids have a narrow host range which can
be used as biological control agents. Biological controls often
involve supplemental release of natural enemies. Relatively
few natural enemies may be released at a critical time of
the season (inoculative release) or literally millions may be
released in a single time (inundative release) [1].

Several discrete-time mathematical models have been
proposed to study the dynamical effects of external stocking
or the inoculative release of the control agents. See, for
example, AlSharawi and Rhouma [2], Chow and Jang [3],
Elaydi and Yakubu [4], Jang and Yu [5], Kulenović and
Nurkanović [6], and references cited therein. The classical
Leslie-Gower competition model with stocking in one of
the two populations is analyzed in [6] and the Ricker type
competition system with stocking occurring in one of the
two competing population is studied in [4]. The work in [2]
investigates a multispecies population model with constant
harvesting/stocking and a model of three interacting popula-
tions with stocking in one of the two competing populations
is analyzed in [3]. The theory of optimal control is applied to
study a host-parasitoidmodel in [5]where the constant stock-
ing of parasitoids is used as a control strategy for the hosts.

Insect populations frequently suffer from some den-
sity dependent effect in addition to mortality from insect

parasitoids [7]. The ordering of density dependence and
parasitism in the host life cycle can have significant impacts
on the dynamics of the interactions [7]. In this investigation,
we propose a discrete-time host-parasitoid model to study
the effect of external stocking upon the host-parasitoid
interaction. Unlike the work in [5], where parasitism occurs
first followed by density dependence, it is assumed in the
present study that density dependence of the hosts acts first
followed by parasitism. Furthermore, the hosts are also pests
and the parasitoids are used as biological control agents to
control the pests. There is a constant level of the external
parasitoids released into the interaction at each generation.
It is shown that external stocking of the parasitoids can
eliminate the hosts population and can also simplify the
dynamics of the interaction.

In the following section, the host-parasitoid model with
no stocking is proposed and analyzed first. The correspond-
ing model with stocking is then presented and studied.
We derive sufficient conditions for the existence of interior
steady state and discuss its magnitude relative to the model
parameters for both systems. Numerical examples using
MatLab are provided to illustrate our findings. The final
section provides a brief summary.

2. The Models and Stability Analysis

In this section, we present two general host-parasitoid mod-
els, one with stocking and the other with no stocking.
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2.1. The Model of No Stocking. Let 𝑥(𝑡) and 𝑦(𝑡) denote the
host and parasitoid populations in generation 𝑡 = 0, 1, . . .,
respectively. The parasitoid has a very narrow range of hosts
and is specialized to this particular host population. It is
assumed that density dependence of the hosts occurs first
followed by parasitism. Moreover, the number of encounter
between hosts and parasitoids is distributed randomly and
the probability of an individual host escaping from being
parasitized is modeled by the zero term of a Poisson distri-
bution (cf. [7]). The parameter 𝑎 > 0 denotes the average
number of encounters per unit time per parasitoid and is also
referred to as the searching efficiency of the parasitoid. The
host-parasitoid interaction without external stocking of the
parasitoids is described by the following system:

𝑥 (𝑡 + 1) = 𝜆𝑥 (𝑡) 𝑔 (𝑥 (𝑡)) 𝑒
−𝑎𝑦(𝑡)

,

𝑦 (𝑡 + 1) = 𝛽𝑥 (𝑡) 𝑔 (𝑥 (𝑡)) (1− 𝑒−𝑎𝑦(𝑡)) ,
(1)

where 𝜆 > 0 is the intrinsic growth rate of the hosts and
𝛽 > 0 is the average number of parasitoids produced by
each parasitized host.The per capita growth rate 𝑔 of the host
population satisfies the following assumptions; namely,

(H1) 𝑔 ∈ 𝐶
2
[0,∞), 𝑔(0) = 1, 𝑔(𝑥) > 0, 𝑔(𝑥) < 0 for 𝑥 ≥ 0,

lim
𝑥→∞

𝑔(𝑥) = 0, and sup{𝑥𝑔(𝑥) : 𝑥 ≥ 0} = 𝑙 < ∞.

It is clear that the classical Beverton-Holt and Ricker
type growth rates [8] satisfy (H1). Furthermore, the growth
rate of the Beverton-Holt model has the following monotone
properties:

(𝑥𝑔 (𝑥))


> 0 ∀𝑥 ≥ 0, (2)

(𝑥𝑔 (𝑥))


< 0 ∀𝑥 ≥ 0. (3)

By defining new state variable 𝑦 = 𝑎𝑦 and new parameter
̂
𝛽 = 𝛽𝑎 and by ignoring the hats, system (1) is converted into

𝑥 (𝑡 + 1) = 𝜆𝑥 (𝑡) 𝑔 (𝑥 (𝑡)) 𝑒
−𝑦(𝑡)

,

𝑦 (𝑡 + 1) = 𝛽𝑥 (𝑡) 𝑔 (𝑥 (𝑡)) (1− 𝑒−𝑦(𝑡))
(4)

with nonnegative initial conditions.
We first study system (4). Notice that system (4) always

has a trivial steady state 𝐸0
0 = (0, 0), where both populations

are extinct. Moreover, (4) has another boundary steady state
𝐸
1
0 = (𝑥, 0), if 𝜆 > 1, where 𝑥 solves 𝑔(𝑥) = 1/𝜆. The Jacobian

matrices evaluated at these two steady states 𝐸0
0 and 𝐸

1
0 are

given by

𝐽 (𝐸
0
0) = (

𝜆 0
0 0

) ,

𝐽 (𝐸
1
0) = (

1 + 𝑥𝑔 (𝑥) −𝑎𝑥

0 𝛽𝑥𝑔 (𝑥)

) ,

(5)

respectively, where 1 + 𝑥𝑔(𝑥) < 1 by (H1). In addition, if (2)
is satisfied, then 1 + 𝑥𝑔(𝑥) = (𝑥𝑔(𝑥))



|
𝑥=𝑥

> 0 and thus 𝐸0
1 is

asymptotically stable if 𝛽𝑥𝑔(𝑥) < 1.

It is straightforward to show that 𝐸0
0 is globally asymp-

totically stable for (4) if 𝜆 < 1. Furthermore, 𝐸1
0 is globally

asymptotically stable in {(𝑥, 𝑦) ∈ R2
+

: 𝑥 > 0} if 𝜆 > 1,
𝛽𝑥𝑔(𝑥) < 1, and (2) holds. Indeed, (2) implies that the map
induced by 𝑧(𝑡 + 1) = 𝜆𝑧(𝑡)𝑔(𝑧(𝑡)) is strictly increasing and
so that 𝑥 is globally asymptotically stable on (0,∞) for this
scalar equation. It follows that lim sup

𝑡→∞

𝑥(𝑡) ≤ 𝑥 for all
solutions of (4). Using the assumption of 𝛽𝑥𝑔(𝑥) < 1, one can
then prove that lim

𝑡→∞

𝑦(𝑡) = 0. Consequently,𝐸0
1 is globally

asymptotically stable in {(𝑥, 𝑦) ∈ R2
+

: 𝑥 > 0}.

Theorem 1. Solutions of (4) remain nonnegative and are
bounded for 𝑡 > 0. The following statements hold for (4).

(a) If 𝜆 < 1, then 𝐸
0
0 = (0, 0) is globally asymptotically

stable in R2
+

.
(b) If 𝜆 > 1, then 𝐸

0
0 is unstable and 𝐸

0
1 = (𝑥, 0)

exists. In addition, if (2) is satisfied, then 𝐸0
1 is globally

asymptotically stable in {(𝑥, 𝑦) ∈ R2
+

: 𝑥 > 0} if
𝛽𝑥𝑔(𝑥) < 1.

If the monotone property (2) is not assumed, then
dynamics of the host population in the absence of the par-
asitoids may be complicated. For example, the Ricker model
undergoes a cascade of period-doubling bifurcations to chaos
as the intrinsic growth rate of the population increases [8]. In
such a case, dynamics of the host-parasitoid model (4) may
not equilibrate even when 𝛽𝑥𝑔(𝑥) < 1.

Let 𝜆 > 1. Note that the 𝑥 component of an interior steady
state satisfies

𝐻0 (𝑥) := ln (𝜆𝑔 (𝑥)) − 𝛽𝑥𝑔 (𝑥) +
𝛽𝑥

𝜆

= 0. (6)

Let 𝐿(𝑥) = ln(𝜆𝑔(𝑥)) and 𝑅0(𝑥) = 𝛽𝑥𝑔(𝑥) − 𝛽𝑥/𝜆. Then

𝐿 (0) = ln 𝜆 > 0,

𝐿 (𝑥) = 0,

𝐿


(𝑥) =

𝑔


(𝑥)

𝑔 (𝑥)

< 0,

𝑅0 (0) = 0,

𝑅0 (𝑥) = 0,

𝑅


0 (𝑥) = 𝛽 (𝑥𝑔 (𝑥))


−

𝛽

𝜆

.

(7)

Therefore, 𝐻0(0) = ln 𝜆 > 0, 𝐻0(𝑥) = 0, 𝐻0(0) = 𝑔


(0) +
𝛽(1/𝜆 − 1) < 0, and 𝐻



0(𝑥) = (𝑔


(𝑥)/𝑔(𝑥))(1 − 𝛽𝑥𝑔(𝑥)).
Consequently, if 𝐻0(𝑥) > 0, or equivalently, if 𝛽𝑥𝑔(𝑥) >

1, then 𝐻0(𝑥) = 0 has at least one solution 𝑥
∗

in (0, 𝑥).
Therefore, system (4) has at least one interior steady state
if 𝛽𝑥𝑔(𝑥) > 1. Next, 𝑅0 (𝑥) = 𝛽(𝑥𝑔(𝑥))

. If (3) holds,
then 𝑅0(𝑥) is concave down and we can conclude that the
positive solution 𝑥

∗ of 𝐿(𝑥) = 𝑅0(𝑥) is unique if 𝛽𝑥𝑔(𝑥) >
1. Consequently, when (2) and (3) are satisfied, then, by
Theorem 1, (4) has a unique interior steady state𝐸0

∗

= (𝑥
∗

, 𝑦
∗

)
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if and only if 𝛽𝑥𝑔(𝑥) > 1, where 0 < 𝑥
∗

< 𝑥 and 0 < 𝑦
∗

<

ln 𝜆. We summarize the discussion as the following theorem.

Theorem 2. If 𝜆 > 1 and 𝛽𝑥𝑔(𝑥) > 1, then (4) has at least
one interior steady state 𝐸0

∗

= (𝑥
∗

, 𝑦
∗

), where 0 < 𝑥
∗

< 𝑥

and 0 < 𝑦
∗

< ln 𝜆. If, in addition, (2) and (3) hold, then (4)

has a unique interior steady state 𝐸0
∗

= (𝑥
∗

, 𝑦
∗

) if and only if
𝛽𝑥𝑔(𝑥) > 1.

Let 𝜆 > 1, 𝛽𝑥𝑔(𝑥) > 1, and let 𝐸0
∗

= (𝑥
∗

, 𝑦
∗

) denote an
interior steady state of the model (4). Its magnitude relative
to the parameter 𝛽 can be obtained via

𝑑𝑥
∗

𝑑𝛽

=

𝑥
∗

𝑔
2
(𝑥
∗

) (1 − 𝑒−𝑦∗)
𝑔


(𝑥
∗

) (1 − 𝛽𝑥
∗

𝑔 (𝑥
∗

) 𝑒
−𝑦

∗) − 𝛽𝑔 (𝑥
∗

) (1 − 𝑒−𝑦∗) (𝑔 (𝑥
∗

) + 𝑥
∗

𝑔


(𝑥
∗

))

,

𝑑𝑦
∗

𝑑𝛽

=

𝑔


(𝑥
∗

)

𝑔 (𝑥
∗

)

⋅

𝑑𝑥
∗

𝑑𝛽

.

(8)

Since

𝛽𝑥
∗

𝑔 (𝑥
∗

) =

𝑦
∗

𝑒
−𝑦

∗

1 − 𝑒−𝑦∗
=

𝑦
∗

𝑒
𝑦

∗ − 1
< 1, (9)

it follows from (8) that 𝑑𝑥
∗

/𝑑𝛽 < 0 and 𝑑𝑦
∗

/𝑑𝛽 > 0 if (2)
holds.

The stability of 𝐸0
∗

depends on the Jacobian matrix of (4)
evaluated at 𝐸0

∗

given by

𝐽 (𝐸
0
∗

) = (

𝜆 (𝑔 (𝑥) + 𝑥𝑔


(𝑥)) 𝑒
−𝑦

−𝜆𝑥

𝛽𝑔 (𝑥 + 𝑥𝑔 (𝑥)) (1 − 𝑒−𝑦) 𝛽𝑥𝑔 (𝑥) 𝑒
−𝑦

) , (10)

where𝑥 = 𝑥
∗

and𝑦 = 𝑦
∗

. For simplicity, (10) can be rewritten
as

(

𝑎 𝑏

𝑐 𝑑

) = 𝐽
0
∗

. (11)

According to the Jury conditions [8], 𝐸0
∗

is asymptotically
stable if | tr 𝐽0

∗

| < 1 + det 𝐽0
∗

< 2. If (2) is assumed, then 𝑎 > 0
and hence tr 𝐽0

∗

> 0. Moreover, | tr 𝐽0
∗

| = tr 𝐽0
∗

< 1 + det 𝐽0
∗

is equivalent to (1 − 𝑎)(1 − 𝑑) − 𝑏𝑐 > 0, which holds trivially
since 𝑎 < 1, 𝑑 < 1, and 𝑏𝑐 < 0.Therefore, 𝐸∗0 is asymptotically
stable if

det 𝐽0
∗

= 𝑥 (𝑥𝑔 (𝑥))






𝑥=𝑥
∗

< 1. (12)

Differentiating det 𝐽0
∗

with respect to 𝛽, we have

𝑑 det 𝐽0
∗

𝑑𝛽

= ((𝑥 +𝛽𝑥


) (𝑥𝑔 (𝑥))


+𝛽𝑥𝑥


(𝑥𝑔 (𝑥))


)






𝑥=𝑥

∗

,

(13)

where 𝑥 = 𝑑𝑥
∗

/𝑑𝛽.
Observe that 𝑅0(𝑥) < 0 and det 𝐽0

∗

< 1 are equivalent to
(𝑥𝑔(𝑥))



< 1/𝜆 and (𝑥𝑔(𝑥)) < 1/𝛽𝑥, respectively. Moreover,
1/𝜆 = 𝑔(𝑥)𝑒

−𝑦 and 1/𝛽𝑥 = 𝑔(𝑥)(1 − 𝑒
−𝑦

)/𝑦 hold at any
interior steady state (𝑥, 𝑦). A direct computation shows that
𝑔(𝑥)𝑒
−𝑦

< 𝑔(𝑥)(1 − 𝑒
−𝑦

)/𝑦 is equivalent to 𝑦 < 𝑒
𝑦

− 1,
which holds trivially. Therefore, if the interior steady state is

at the intersection point of 𝐿(𝑥) = 𝑅0(𝑥) for which 𝑅0(𝑥) is
decreasing, then such a steady state is asymptotically stable.
However, the converse is not true. Indeed, since 1/𝜆 < 1/𝛽𝑥
at any interior steady state (𝑥, 𝑦), it is possible that det 𝐽0

∗

< 1,
while 𝑅0(𝑥) > 0.

Proposition 3. Let 𝜆 > 1 and let 𝛽𝑥𝑔(𝑥) > 1 and assume
(2). Then an interior steady state 𝐸0

∗

= (𝑥
∗

, 𝑦
∗

) of model
(4) is asymptotically stable if (12) holds. In particular, 𝐸0

∗

is
asymptotically stable if 𝑅0(𝑥

∗

) < 0. Moreover, 𝑥
∗

and 𝑦
∗

are
decreasing and increasing functions of 𝛽, respectively.

If the per capita growth rate 𝑔 of the hosts follows the
Beverton-Holt model, 𝑔(𝑥) = 1/(1 + 𝑘𝑥), 𝑘 > 0, then 𝑥 =

(𝜆 − 1)/𝑘, and (2) and (3) hold. Moreover,

det 𝐽0
∗

=

𝛽𝑥

(1 + 𝑘𝑥)2
,

𝑑 det 𝐽0
∗

𝑑𝑥

=

𝛽 (1 − 𝑘𝑥)
(1 + 𝑘𝑥)3

,

𝑑 det 𝐽0
∗

𝑑𝛽

=

𝑥 (1 + 𝑘𝑥) + 𝛽 (1 − 𝑘𝑥) 𝑥

(1 + 𝑘𝑥)3
.

(14)

The maximum of det 𝐽0
∗

occurs at 𝑥 = 𝑥
𝑚

:= 1/𝑘 with
max(det 𝐽0

∗

) = 𝛽/4𝑘. Let 𝛽0 = 𝑘𝜆/(𝜆−1) and notice 𝛽𝑥𝑔(𝑥) >
1 is equivalent to 𝛽 > 𝛽0. Therefore, if 𝛽0 < 𝛽 < 4𝑘, then
𝐸
0
∗

is asymptotically stable, where we implicitly assumed that
𝜆 > 4/3. On the other hand, if either 𝜆 ≤ 4/3 or 𝜆 > 4/3
and 𝛽 > 4𝑘 hold, then max(det 𝐽0

∗

) > 1 and 𝐸
0
∗

is unstable
for some parameter 𝛽 region. It is expected that a Neimark-
Sacker bifurcation occurs when det 𝐽0

∗

= 1 [9, 10].
We use a numerical example with 𝜆 = 2 and 𝑘 = 1

to illustrate this observation. Then 𝛽0 = 2 and the unique
interior steady state 𝐸0

∗

exists if 𝛽 > 𝛽0 = 2. Moreover, 𝐸0
∗

is
asymptotically stable if 𝛽 < 4𝑘 = 4. Figures 1(a) and 1(b) plot
bifurcation diagrams of model (4) using 𝛽 as the bifurcation
parameter. We see that 𝐸0

∗

is asymptotically stable if 𝛽 < 6.
Furthermore, the 𝑥 component of 𝐸0

∗

is decreasing, while the
𝑦 component is increasing as the parameter 𝛽 increases.
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Figure 1: Bifurcation diagrams for system (4) with a Beverton-Holt growth rate. Parameter values are 𝜆 = 2 and 𝑘 = 1.

2.2. The Model with Stocking. Since the host population is
regarded as a pest and the biological control of inoculative
release of parasitoids is implemented, the model of host-
parasitoid interaction is now given by

𝑥 (𝑡 + 1) = 𝜆𝑥 (𝑡) 𝑔 (𝑥 (𝑡)) 𝑒
−𝑦(𝑡)

,

𝑦 (𝑡 + 1) = 𝛽𝑥 (𝑡) 𝑔 (𝑥 (𝑡)) (1− 𝑒−𝑦(𝑡)) + 𝑢,
(15)

where 𝑔 satisfies (H1) and 𝑢 > 0 denotes the constant external
stocking of the parasitoids. Notice that, similar to model (4),
the parameter 𝑢 has been rescaled with �̂� = 𝑎𝑢 and the hat is
dropped.

System (15) always has a unique boundary steady state
𝐸0 = (0, 𝑢), where the host population is extinct and the
parasitoid population is stabilized at the constant stocking
level 𝑢. The stability of 𝐸0 depends on the Jacobian matrix
at 𝐸0,

𝐽 (𝐸0) = (

𝜆𝑒
−𝑢 0

𝛽 (1 − 𝑒−𝑢) 0
) . (16)

Since 𝑦(𝑡) ≥ 𝑢 for 𝑡 ≥ 1 implies 𝑥(𝑡 + 1) ≤ 𝜆𝑥(𝑡)𝑔(𝑥(𝑡))𝑒
−𝑢

≤

𝜆𝑥(𝑡)𝑒
−𝑢 for 𝑡 ≥ 1, we see that 𝐸0 is globally asymptotically

stable in R2
+

if 𝜆𝑒−𝑢 < 1.
Let 𝜆𝑒−𝑢 > 1. Then 𝐸0 is a saddle point with its stable

manifold lying on the nonnegative 𝑦-axis. The 𝑥 component
of an interior steady state of (15) can be shown to satisfy

𝐻(𝑥) := ln (𝜆𝑔 (𝑥)) − 𝛽𝑥𝑔 (𝑥) +
𝛽𝑥

𝜆

− 𝑢 = 0. (17)

Let𝐿(𝑥) = ln(𝜆𝑔(𝑥)) be defined as inmodel (4) and let𝑅(𝑥) =
𝛽𝑥𝑔(𝑥) − 𝛽𝑥/𝜆 + 𝑢. Then

𝑅 (0) = 𝑢,

𝑅 (𝑥) = 𝑢,

𝑅


(𝑥) = 𝛽 (𝑥𝑔 (𝑥))


−

𝛽

𝜆

,

𝑅


(𝑥) = 𝛽 (𝑥𝑔 (𝑥))


.

(18)

It follows that 𝐻(0) = ln 𝜆 − 𝑢 > 0 and 𝐻(𝑥) = −𝑢 < 0.
Therefore, 𝐻(𝑥) = 0 has at least one positive solution 𝑥

∗

in (0, 𝑥) and thus (15) has at least one interior steady state.
Similar tomodel (4), if (3) is assumed, then the interior steady
state is unique. Notice that the existence of an interior steady
state only depends on 𝜆 and 𝑢 but not on 𝛽.

Theorem 4. The following statements hold for model (15).

(a) If 𝜆𝑒−𝑢 < 1, then 𝐸0 = (0, 𝑢) is globally asymptotically
stable in R2

+

.
(b) If 𝜆𝑒−𝑢 > 1, then𝐸0 is unstable and (15) has at least one

interior steady state 𝐸∗ = (𝑥
∗

, 𝑦
∗

), where 0 < 𝑥
∗

< 𝑥

and 𝑢 < 𝑦
∗

< ln 𝜆. If in addition (3) is satisfied, then
the interior steady state 𝐸∗ = (𝑥

∗

, 𝑦
∗

) is unique.

The Jacobin matrix of (15) evaluated at an interior steady
state𝐸∗, 𝐽∗, is the same as that of (10)with𝑥 = 𝑥

∗ and𝑦 = 𝑦
∗.

Observe that

𝛽𝑥
∗

𝑔 (𝑥
∗

) 𝑒
−𝑦

∗

=

𝑒
−𝑦

∗

(𝑦
∗

− 𝑢)

1 − 𝑒−𝑦∗
< 1. (19)

If (2) is assumed, then tr 𝐽∗ = | tr 𝐽∗| < 1+det 𝐽∗ holds and𝐸∗
is locally asymptotically stable if det 𝐽∗ = 𝛽𝑥(𝑥𝑔(𝑥))



|
𝑥=𝑥

∗ <

1. The magnitude of the interior steady state with respect to
the constant stocking 𝑢 can be shown to satisfy
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Figure 2: Bifurcation diagrams for system (15) with a Beverton-Holt growth rate. Parameter values are 𝜆 = 2, 𝑘 = 1, and 𝛽 = 7.

𝑑𝑥
∗

𝑑𝑢

=

𝑔 (𝑥
∗

)

𝑔


(𝑥
∗

) (1 − 𝛽𝑥∗𝑔 (𝑥∗) 𝑒−𝑦∗) − 𝛽𝑔 (𝑥∗) (1 − 𝑒−𝑦∗) (𝑔 (𝑥∗) + 𝑥∗𝑔 (𝑥∗))
,

𝑑𝑦
∗

𝑑𝑢

=

𝑔


(𝑥
∗

)

𝑔 (𝑥
∗

)

⋅

𝑑𝑥
∗

𝑑𝑢

.

(20)

Consequently, 𝑑𝑥∗/𝑑𝑢 < 0 and 𝑑𝑦∗/𝑑𝑢 > 0 if (2) is satisfied.
Observe that 𝑅(𝑥) < 0 and det 𝐽∗ < 1 are equivalent

to (𝑥𝑔(𝑥)) < 1/𝜆 and (𝑥𝑔(𝑥)) < 1/𝛽𝑥, respectively. At any
interior steady state (𝑥, 𝑦), we have 1/𝜆 = 𝑔(𝑥)𝑒

−𝑦 and 1/𝛽𝑥 =

𝑔(𝑥)(1 − 𝑒
−𝑦

)/(𝑦 − 𝑢). It can be verified that 1/𝜆 < 1/𝛽𝑥 for
any interior steady state (𝑥, 𝑦). We therefore conclude that
𝑅


(𝑥
∗

) < 0 implies det 𝐽∗ < 1.

Proposition 5. Let 𝜆𝑒−𝑢 > 1. If (2) is satisfied, then an interior
steady state 𝐸∗ = (𝑥

∗

, 𝑦
∗

) of model (15) is asymptotically
stable if (12) holds. In particular, 𝐸∗ is asymptotically stable if
𝑅


(𝑥
∗

) < 0. Moreover, 𝑥∗ and 𝑦∗ are decreasing and increasing
functions of 𝑢, respectively.

Let 𝜆𝑒−𝑢 > 1. For the Beverton-Holt growth rate 𝑔(𝑥) =
1/(1 + 𝑘𝑥), 𝑘 > 0, system (15) has a unique interior steady
state 𝐸∗. We also have

det 𝐽∗ =
𝛽𝑥

(1 + 𝑘𝑥)2
,

𝑑 det 𝐽∗

𝑑𝑥

=

𝛽 (1 − 𝑘𝑥)
(1 + 𝑘𝑥)3

,

𝑑 det 𝐽∗

𝑑𝑢

=

𝛽 (1 − 𝑘𝑥)
(1 + 𝑘𝑥)3

⋅

𝑑𝑥

𝑑𝑢

.

(21)

The maximum of det 𝐽∗ occurs at 𝑥 = 𝑥
𝑚

:= 1/𝑘 with
max(det 𝐽∗) = 𝛽/4𝑘. In particular, if 𝛽 < 4𝑘, then 𝐸

∗ is

asymptotically stable.Therefore, stocking has no effect on the
stability of the interior steady state if𝛽 < 4𝑘. If𝛽 > 4𝑘 and𝜆 ≤
2, then 1/𝑘 ≥ 𝑥 and thus 𝑑 det 𝐽∗/𝑑𝑥 > 0 on (0, 𝑥). It follows
that 𝑑 det 𝐽∗/𝑑𝑢 < 0 and stocking can stabilize the interior
steady state 𝐸∗. If 𝛽 > 4𝑘 and 𝜆 > 2, then max(det 𝐽∗) > 1.
Since 𝑥∗ is a decreasing function of 𝑢, it is expected that
stocking can stabilize the interior steady state by (21).

Consider a numerical example with 𝜆 = 2, 𝑘 = 1, and
𝛽 = 7 > 4𝑘. Then the unique interior steady state 𝐸∗ exists
if 𝑢 < ln 𝜆 ≈ 0.6931. From Figure 1, it is known that the
interior steady state of model (4) is unstable when there is no
stocking.We then use 𝑢 as the bifurcation parameter. Figure 2
illustrates that stocking can stabilize the host-parasitoid
interaction. Moreover, 𝑥 and 𝑦 components of 𝐸∗ are clearly
decreasing and increasing functions of 𝑢, respectively.

3. Discussion

Pests are animals that are detrimental to humans or to human
concerns. They cause damage to agriculture by feeding on
crops or parasitising livestock. Biological control is the reduc-
tion of pest populations by natural enemies that typically
involves an active human role. Very often biological control
requires supplemental release of natural enemies. Relatively
few natural enemies may be released at a critical time of the
season. Such an augmentation is termed as an inoculative
release or a stocking [1].
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Natural enemies of insect pests are often parasitoids.
Since insects have distinctive life stages, we propose discrete-
time host-parasitoid models to study the effects of constant
stocking of parasitoids upon the host-parasitoid interaction.
The novelty of this work is that density dependence of the
hosts occurs first followed by parasitism. This assumption is
revealed in the parasitoid equation of models (5) and (15).
It is shown that the stocking clearly eliminates the steady
state for which the host survives and the parasitoid is extinct.
Therefore, with the biological control strategy of stocking,
it is impossible for the hosts to survive alone without the
parasitoids. On the other hand, it is possible to eliminate the
host population if the stocking is large. Moreover, stocking
can simplify the host-parasitoid interaction by stabilizing
the coexisting steady state. In such case, the host and the
parasitoid densities at the steady state are decreasing and
increasing functions of the stocking, respectively.

We conclude from this study that stocking of the para-
sitoids can drive the pests to extinction even if parasitism
occurs after density dependence. This is consistent with the
model studied in [5], where parasitism occurs prior to density
dependence.However, itmay take a longer or a shorter period
of time to eliminate the pests depending on whether density
dependence occurs first or after the parasitism.
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