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We focus on solving ordinary differential equations using the evolutionary algorithm known as differential evolution (DE). The
main purpose is to obtain a closed-form solution to differential equations. To solve the problem at hand, three steps are proposed.
First, the problem is stated as an optimization problem where the independent variables are elementary functions. Second, as the
domain of DE is real numbers, we propose a grammar that assigns numbers to functions.Third, to avoid truncation and subtractive
cancellation errors, to increase the efficiency of the calculation of derivatives, the dual numbers are used to obtain derivatives of
functions. Some examples validating the effectiveness and efficiency of our method are presented.

1. Introduction

Most of the problems in engineering and physics can be
modeled as ordinary differential equations (ODEs). For this
reason there are many studies addressing their solution.
Regarding the deterministic arena, the most used meth-
ods are the Runge-Kutta methods [1–4], predictor-corrector
methods [5–7], and radial basis functions methods [8–
10]. Recently, some studies dedicated to solve differential
equations using nondeterministic methods have been pub-
lished. In [11], genetic algorithms are used to solve some
differential equations appearing in economic sciences. In [12]
a variational approach has been used in order to solve elliptic
partial differential equations, and a genetic algorithm is used
as the optimization method. In all the previously referenced
articles—deterministic or not—the solution is given in a
numerical approximated form. There are very few studies
reporting closed-form solutions to differential equations. For
example, using the evolutionary method known as grammat-
ical evolution, [13] reports a method that produces closed-
form solutions. Another approach that produces closed-form
solutions to differential equations is [14], and the method
used there is a hybrid method combining grammatical
evolution and neural networks.

In this paper we propose a method based on the DE algo-
rithm that obtains solutions to second-order ODEs as closed-
form expressions.When the exact solution is not reached, the
algorithm we propose converges to a solution that minimizes
the objective functional of an optimization problem consid-
ering both, the differential equation and the boundary condi-
tions. As DE was proposed to minimize real valued functions
(i.e., not functionals), we propose a one-to-one grammar that
assigns integer numbers to elementary functions; in this way,
we are able to use DE to minimize the objective functional,
whichmeasures if a candidate function (a candidate function
is the result of the evolution process obeying the DE algo-
rithm) satisfies or not the ODE we want to solve.

In order to compute the first and second derivatives of
the candidate function, we use the dual number approach. In
this way, the derivatives are directly obtained without the use
of a limit process, thus avoiding truncation and subtractive
cancellation errors. All the programming functions required
to solve an ODE are coded in Fortran language and they are
included in a folder, which is provided as additional material
to this paper, whose download link is as follows: http://www
.meca.cinvestav.mx/personal/cacruz/archivos-ccv/.

The rest of the paper is organized as follows. Section 2
states the optimization problem and describes the classical
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DE algorithm. Section 3 presents the proposal of the one-
to-one grammar which allows using DE for minimization of
functionals. Section 4 presents the dual number approach
to obtain the first and second derivatives of the candidate
functions. Section 5 works out several examples and applica-
tions of our method. Conclusions are presented in Section 6.
Finally, two appendixes close the paper. Appendix A presents
the way in which the candidate function is generated and
evaluated. Appendix B presents graphs of the behavior of the
DE algorithm for each worked-out example.

2. Statement of the Problem

Let us consider a second-order ordinary differential equation
(1) defined on the real interval [𝑎, 𝑏], with boundary condi-
tions (2) and (3), where 𝑥

1
< 𝑥
2
and 𝑦 ∈ 𝐶

2. Note that it is
not required that the functions 𝑓 : R4 → R, h

1
: R3 → R2,

and h
2
: R3 → R2 be differentiable:

𝑓 (𝑥, 𝑦 (𝑥) , 𝑦
󸀠
(𝑥) , 𝑦

󸀠󸀠
(𝑥)) = 0, (1)

h
1
(𝑥
1
, 𝑦 (𝑥
1
) , 𝑦
󸀠
(𝑥
1
)) = 0, (2)

h
2
(𝑥
2
, 𝑦 (𝑥
2
) , 𝑦
󸀠
(𝑥
2
)) = 0. (3)

The problem that we address in this paper is to find a closed-
form expression for𝑦(𝑥) satisfying (1), (2), and (3).Therefore,
we rewrite the problem as that of minimizing the functional
(4) under 𝑦

𝑠
(𝑥), where 𝜆

1
> 0 and 𝜆

2
> 0 are weighting

factors (chosen by the user):

𝑅 = 𝜆
1

󵄩󵄩󵄩󵄩󵄩
h
1
(𝑥
1
, 𝑦
𝑠
(𝑥
1
) , 𝑦
󸀠

𝑠
(𝑥
1
))
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆
2

󵄩󵄩󵄩󵄩󵄩
h
2
(𝑥
2
, 𝑦
𝑠
(𝑥
2
) , 𝑦
󸀠

𝑠
(𝑥
2
))
󵄩󵄩󵄩󵄩󵄩

2

+ ∫
𝑥
2

𝑥
1

𝑓
2
(𝑥, 𝑦
𝑠
(𝑥) , 𝑦

󸀠

𝑠
(𝑥) , 𝑦

󸀠󸀠

𝑠
(𝑥)) 𝑑𝑥.

(4)

If there exists a function 𝑦
𝑠
(𝑥) for which 𝑅 = 0, then

𝑦
𝑠
(𝑥) will be the solution 𝑦(𝑥) to (1), satisfying (2) and (3).

As the approach we follow to minimize (4) is evolutive, we
use the differential evolution algorithm which is a simple
yet powerful evolutionary algorithm for global optimization
introduced by Storn and Price [15], which is presented
below.

2.1. Differential Evolution. The DE algorithm has gradually
become more popular and has been used in many practi-
cal cases. It only requires information about the objective
function itself, which does not need to be a differentiable
function, and the state space of possible solutions can be
disjoint and can encompass infeasible regions [16]. Below, the
original version of themethod—known asDE/rand/1/bin—is
outlined [17].

(1) The population is described by

Px,𝑔 = (x
𝑖,𝑔
) , 𝑖 = 1, . . . , 𝑚; 𝑔 = 0, . . . , 𝑔max,

x
𝑖;𝑔
= (𝑥
𝑗

𝑖;𝑔
) , 𝑗 = 1, . . . , 𝐷,

(5)

where 𝐷, 𝑚, and 𝑔max represent the dimensionality
of x, the number of individuals, and the number of
generations, respectively.

(2) Initialization of population is as follows:

𝑥
𝑗

𝑖;0
= rand𝑗 (0, 1) ⋅ (𝑏𝑗

𝑈
− 𝑏
𝑗

𝐿
) + 𝑏
𝑗

𝐿
. (6)

Vectors b
𝑈

and b
𝐿
are the parameter limits and

rand𝑗(0, 1) is a random number in [0, 1) generated for
each parameter.

(3) Mutation is as follows:

k
𝑖;𝑔
= x
𝑟
0
;𝑔
+ 𝐹 ⋅ (x

𝑟
1
;𝑔
− x
𝑟
2
;𝑔
) . (7)

x
𝑟
0
;𝑔
is called the base vector which is perturbed by the

difference of two other vectors.
𝑟
0
, 𝑟
1
, 𝑟
2
∈ {1, 2, . . . , 𝑚}, 𝑟

1
̸= 𝑟
2

̸= 𝑟
3

̸= 𝑖. 𝐹 is a scale
factor greater than zero.

(4) Crossover is as follows.
A dual recombination of vectors is used to generate
the trial vector:

u
𝑖;𝑔
= 𝑢
𝑗

𝑖;𝑔
=
{

{

{

V𝑗
𝑖;𝑔

if rand𝑗 (0, 1) ⩽ Cr or 𝑗 = 𝑗rand
𝑥
𝑗

𝑖;𝑔
otherwise.

(8)

The crossover probability, Cr ∈ [0, 1], is a user-
defined value, 𝑗rand ∈ [1, 𝐷].

(5) Selection is as follows.
The selection is made according to

x
𝑖;𝑔+1

=
{

{

{

u
𝑖;𝑔

if 𝑓 (u
𝑖;𝑔
) ⩽ 𝑓 (x

𝑖;𝑔
)

x
𝑖;𝑔

otherwise.
(9)

In our studywe use theDE/rand/1/binmethodwith the dither
variant, which means that the parameter 𝐹 is taken to be a
random number—in our case 𝐹 ∈ (0, 1).

3. Construction of Functions

As we can see, the DE method was designed to seek the opti-
mum individual x on a real continuum domain. Since we are
interested in solving differential equations (i.e., minimizing
a functional), our individuals are functions. Therefore, we
associate a function with a real vector; once this is done, the
DE method can be applied as usual.

In order to assign a function to a real vector we propose
the grammar shown in Table 1. The relation between a set of
numbers and a function can be done by using a parse tree.
This parse tree should be read from top to down and from left
to right. Table 2 shows an example of a function construction
and Figure 1 shows the corresponding parse tree. We can
get an easy understanding of the function construction by
conceptualizing the operators +, ∗, /, as functions of two
arguments. For example, the expression 1 + 2 can be seen as
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Table 1: Proposed grammar.

String Associated number
Integer from one to ten 1 : 10
𝑥 11
+ 12
∗ 13
/ 14
pow() 15
−() 16
sin() 17
cos() 18
exp() 19
log() 20
√() 21
tan() 22
arcsin() 23
arccos() 24
arctan() 25
erf() 26
sinh() 27
cosh() 28
tanh() 29

Table 2: Construction of the function 𝑓(𝑥) = sin𝑥 + cos 𝑥.

Chromosome String
12: +

12, 17: sin()+
12, 17, 11: sin(𝑥) +
12, 17, 11, 18: sin(𝑥) + cos()
12, 17, 11, 18, 11: sin(𝑥) + cos(𝑥)

plus(1, 2) where the plus function is defined as plus(𝑥, 𝑦) =
𝑥 + 𝑦.

The set of integers related to a mathematical function can
be manipulated by the DEmethod but the mutation operator
will produce a set of real numbers that will not necessarily be
a set of integers. This is addressed by taking the integer part
of the numbers or by using the floor (ceiling) function.

4. Evaluation of the Constructed Function
and Its Derivatives

For the evaluation of the constructed function we have
written a Fortran parse function that receives the integer
vector generated by the proposed grammar and produces
a candidate function and its derivatives (first and second)
evaluated at some specified point. The construction of this
programming function is explained in Appendix A.

Traditionalmethods for calculating numerical derivatives
(finite-difference) are subject to both truncation and subtrac-
tive cancellation errors. These problems are avoided by using
dual functions. The approach to obtain first order derivatives
by using dual functions is well known [18–20]. However, in

+

sin cos

xx

Figure 1: Parse tree for the function 𝑓(𝑥) = sin𝑥 + cos 𝑥.

order to make the paper self-contained this section presents
the essential ideas as follows [20].

A dual number is a number of the form 𝑥 = 𝛼+ 𝜖𝛽 where
𝛼, 𝛽 ∈ R, the field of the real numbers, and 𝜖2 = 0. From the
Taylor theorem if a function 𝑦(𝑥) is analytic, then

𝑦 (𝑥 + ℎ) = 𝑦 (𝑥) + 𝑦
󸀠
(𝑥) ℎ +

𝑦
󸀠󸀠
(𝑥)

2
ℎ
2
+ ⋅ ⋅ ⋅ ; (10)

a substitution of 𝑥+ℎ → 𝑥+𝜖 in the above formula will give

𝑦 (𝑥 + 𝜖) = 𝑦 (𝑥) + 𝑦
󸀠
(𝑥) 𝜖. (11)

The function 𝑦(𝑥 + 𝜖) is called a dual function 𝑦 of the dual
variable𝑥 = 𝑥+𝜖. So if we substitute all of our real numbers by
dual numbers and make the coefficient 𝛽 of the dual variable
equal to one, we end up with a dual function whose real term
is the original function and the dual term is its derivative.
Another convenient notation for the function 𝑦 is

𝑦 (𝑥) = {𝑦
0
, 𝑦
1
} , (12)

where 𝑦
0
= 𝑦(𝑥) and 𝑦

1
= 𝑦
󸀠
(𝑥).

Applying the chain rule we can dualize the composition
of 𝑦(𝑥) with the function 𝑢(𝑥):

𝑦 (𝑢̂) = {𝑦
0
(𝑢
0
) , 𝑦
1
(𝑢
0
) 𝑢
1
} . (13)

From this, a generalization to second derivatives is straight-
forward. Using a tilde to denote such a generalizationwe have

𝑥 = {𝑥, 1, 0} ,

𝑦 (𝑥) = {𝑦
0
, 𝑦
1
, 𝑦
2
} ,

(14)

where 𝑦
0
= 𝑦(𝑥), 𝑦

1
= 𝑦
󸀠
(𝑥), and 𝑦

2
= 𝑦
󸀠󸀠
(𝑥). Similarly, for

the composition 𝑦(𝑢(𝑥)), we will have

𝑦 (𝑢̃) = {𝑦
0
(𝑢
0
) , 𝑦
1
(𝑢
0
) 𝑢
1
, 𝑦
2
(𝑢
0
) 𝑢
2

1
+ 𝑦
1
(𝑢
0
) 𝑢
2
} . (15)

5. Experimental Results

This section presents the results that are obtained when we
apply our proposal to obtain closed-form solutions to the
case studies considered in [13]. All the cases with closed-form
solutions were reproduced. Below, we present our results for
some interesting cases.

The experiments were performed on an Intel Core i5-
3230M @ 2.60GHz processor running Debian GNU/Linux
and using the Intel Fortran Compiler. In all the cases we used
100 equally spaced points to evaluate (4), 𝜆

1
= 𝜆
2
= 10, and

a crossover probability of 0.2.
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Exact solution
Approximate DE solution
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f
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Figure 2: Exact and approximate solution for 𝑦
󸀠󸀠
+ 𝑦
󸀠
/𝑥 −

(1/𝑥) cos 𝑥 = 0 with 𝑦(0) = 0 and 𝑦󸀠(0) = 1.

Case 1. In this case, we want to find a closed-form solution to
the differential equation (16), subject to boundary conditions
𝑦(0) = 0 and 𝑦󸀠(0) = 1, with 𝑥 ∈ [0, 1]:

𝑦
󸀠󸀠
+
𝑦
󸀠

𝑥
−
1

𝑥
cos𝑥 = 0. (16)

Since for the present case

lim
𝑥→0

(
𝑦
󸀠

𝑥
−
1

𝑥
cos𝑥) = 0, (17)

it is not difficult to prove that (16) is equivalent to

𝑥𝑦
󸀠󸀠
+ 𝑦
󸀠
− cos𝑥 = 0. (18)

Even when both equations are equivalent, (18) is more
adequate to the minimization of (4). The exact solution to
(16), (18) is given by (19) and the approximated closed-form
solution we have found is given by (20):

𝑦 (𝑥) = ∫
𝑥

0

sin 𝑡
𝑡
𝑑𝑡, (19)

𝑦
𝑠
(𝑥) = 𝑥 cos [ 𝑥

5 cos (cos 9)
] . (20)

Since the exact solution is known we can quantify the error
in the interval 𝑥 ∈ [0, 1] as (21), which for this case resulted
as 𝐸2 = 2.83 × 10−7:

𝐸
2
= ∫
𝑏

𝑎

[𝑦(𝑥) − 𝑦
𝑠
(𝑥)]
2

𝑑𝑥. (21)

In Figure 2, we show the exact and approximated solutions in
the interval [0, 2.5], since the error in the interval [0, 1] is not
enough to recognize any difference between both solutions.
For this case we used a population of 100 individuals of
dimension 20 and 5 000 generations.

Approximate DE solution

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

x

f
(x
)

Figure 3: Approximate solution for (𝑥2 + 1)𝑦󸀠󸀠 − 2𝑥𝑦 − 𝑥2 − 1 = 0

with 𝑦(0) = 0 and 𝑦󸀠(0) = 1.

Case 2. Let us consider the ODE

(𝑥
2
+ 1) 𝑦

󸀠󸀠
− 2𝑥𝑦 − 𝑥

2
− 1 = 0 (22)

with 𝑥 ∈ [0, 1] and initial conditions 𝑦(0) = 0 and 𝑦󸀠(0) =
1. For this case a closed-form solution is not known. The
approximate solution we found is

𝑦
𝑠
(𝑥) = 𝑒

𝑥
− 𝑒

sin4[𝑥/(𝑥+sin 8)]
, (23)

giving a value of 1.76 × 10−4 for (4). In order to obtain (23)
we used a population of 80 individuals of dimension 20 and
15 000 generations. In Figure 3 we show the approximate
solution we found.

Case 3. Let us consider the ODE studied in [21]:

𝑦
󸀠
+ 𝑦
2
= 2 + 𝑥

2
+ 2𝑥 tanh (𝑥) (24)

with 𝑥 ∈ [0, 1] and initial condition 𝑦(0) = 0. The proposed
method is able to find the exact solution 𝑦(𝑥) = 𝑥 + tanh𝑥,
when the population size is 100 individuals of dimension 30
and using 100 generations. Clearly the final value for objective
functional (4) is zero.

Case 4. Let us consider the nonlinear differential equation
[22]:

𝑦
󸀠󸀠
− 𝑦𝑦
󸀠󸀠
− 0.5𝑦

󸀠2
− 0.5 = 0 (25)

with 𝑥 ∈ [0, 1] and boundary conditions 𝑦(0) = 0 and 𝑦(1) =
−0.5. The approximate solution we obtained with a value of
3 × 10

−3 for (4) using 100 individuals of dimension 30 and
10 000 generations was

𝑦
𝑠
(𝑥) = 0.125𝑥𝑒

− sinh(erf(cosh(𝑥)))

− erf (0.999978 − 0.479426𝑥) .
(26)

In Figure 4 we show the approximate solution we found.
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Approximate DE solution

0.0

0.0

0.2 0.4 0.6 0.8 1.0

x

f
(x
)

−0.5

−0.4

−0.3

−0.2

−0.1

Figure 4: Approximate solution for 𝑦󸀠󸀠 −𝑦𝑦󸀠󸀠 −0.5𝑦󸀠2 −0.5 = 0with
𝑦(0) = 0 and 𝑦(1) = −0.5.

Case 5. Let us consider the temperature distribution equation
on a uniformly thick rectangular fin radiation to free space
studied in [23, 24]:

𝑦
󸀠󸀠
− 2𝑦
4
= 0 (27)

with 𝑥 ∈ [0, 1] and boundary conditions𝑦(1) = 1 and𝑦󸀠(0) =
0.

For this case, the approximate solution that the proposed
methodology has obtained is

𝑦
𝑠
(𝑥) = sin (𝑥) tan−1 (0.25 tan (𝑥)) + 0.693147, (28)

when we use 300 individuals of dimension 30 and 10 000
generations. A final value of 9 × 10

−4 was obtained for the
objective functional (4). In Figure 5 we show the approximate
solution we found.

Case 6. Consider the differential equation modeling the
cooling process of a lumped system by combined convection
and radiation [25]:

𝑦
󸀠
+ 𝑦
4
+ 𝑦 = 0 (29)

with 𝑥 ∈ [0, 1] and initial condition 𝑦(0) = 1.

Applying the proposed methodology we obtained the
approximate solution

𝑦
𝑠
(𝑥) =

1

[erf(𝑥)]𝑒
𝑥

+ 𝑒𝑥
. (30)

For this case the value of (4) was 2 × 10−4, when using 500
individuals of dimension 30 and 5 000 generations.

In Figure 6 we show the approximate solution we found.

Case 7. Consider the Duffing equation studied in [26]:

𝑦
󸀠󸀠
(𝑥) + 0.4𝑦

󸀠
(𝑥) + 1.1𝑦 (𝑥) + 𝑦

3
(𝑥) = 2.1 cos (1.8𝑥) ,

(31)

0.0 0.2 0.4 0.6 0.8 1.0
0.7

0.8

0.9

1.0

1.1

Approximate DE solution

x

f
(x
)

Figure 5: Approximate solution for 𝑦󸀠󸀠 − 2𝑦4 = 0 with 𝑦(1) = 1 and
𝑦
󸀠
(0) = 0.
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0.3
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0.6
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Approximate DE solution

x

f
(x
)

Figure 6: Approximate solution for 𝑦󸀠 + 𝑦4 + 𝑦 = 0 with 𝑦(0) = 1.

but with boundary conditions 𝑦(0.5) = 0, 𝑦(1) = 1. The
approximate solution we found is

𝑦
𝑠
(𝑥) = arctan (ln (𝑥tanh(cos

5
(tan(9+3+𝑥)))

))

+ ln (sin (arctan (3𝑥 + √4))) + 𝑥 + 𝑒−4,
(32)

giving a value of 5.2 × 10
−4 for (4). In order to obtain (32)

we used a population of 500 individuals of dimension 30
and 15 000 generations. In Figure 7 we show the approximate
solution we found.

Case 8. We close this section considering three examples of
the Van der Pol equation:

𝜀𝑦
󸀠󸀠
+ (𝛿 + 𝛽𝑦

2
) 𝑦
󸀠
− 𝜇𝑦 = 𝐹 sin (𝜔𝑡) (33)

studied in [27].
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Approximate DE solution

x

f
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Figure 7: Approximate solution for 𝑦󸀠󸀠(𝑥) + 0.4𝑦
󸀠
(𝑥) + 1.1𝑦(𝑥) +

𝑦
3
(𝑥) = 2.1 cos(1.8𝑥), with 𝑦(0.5) = 0 and 𝑦(1) = 1.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

Approximate DE solution

x

f
(x
)

Figure 8: Approximate solution for 𝑦󸀠󸀠 −0.05(1−𝑦2)𝑦󸀠 +𝑦 = 0with
𝑦(0) = 0 and 𝑦󸀠(0) = 0.5.

Let us consider 𝜀 = 1, 𝛿 = −0.05, 𝛽 = 0.05, 𝜇 = −1, and
𝐹 = 0, so we have

𝑦
󸀠󸀠
− 0.05 (1 − 𝑦

2
) 𝑦
󸀠
+ 𝑦 = 0. (34)

By applying the proposed methodology to this equation and
considering boundary conditions 𝑦(0) = 0 and 𝑦󸀠(0) = 0.5,
we obtain

𝑦
𝑠
(𝑥) = 0.00182376 + 0.5 sin𝑥. (35)

For this case the final value of the objective functional (4)
is 3 × 10

−4, when using 300 individuals of dimension 30
and 5 000 generations. In Figure 8 we show the approximate
solution we have found.

Case 9. If we now consider 𝜀 = 0.1, 𝛿 = 1, 𝛽 = −1, 𝜇 = −1,
and 𝐹 = 0 for (33), we obtain

0.1𝑦
󸀠󸀠
+ (1 − 𝑦

2
) 𝑦
󸀠
+ 𝑦 = 0. (36)

0.0 0.2 0.4 0.6 0.8 1.0

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Approximate DE solution

x

f
(x
)

Figure 9: Approximate solution for 0.1𝑦󸀠󸀠 + (1 − 𝑦2)𝑦󸀠 + 𝑦 = 0 with
𝑦(0) = 0.5 and 𝑦󸀠(0) = 1.

Considering boundary conditions 𝑦(0) = 0.5 and 𝑦
󸀠
(0) =

1 and applying the proposed methodology, we obtain the
approximate solution

𝑦
𝑠
(𝑥) = tanh (arctan (𝑥))

+ arctan (cos (coshcosh
0.205087
(𝑥)

⋅ (arctan (3.49384𝑥)))) .

(37)

For this case, the final value for the objective functional (4)
is 7 × 10

−3, when using a population of 150 individuals of
dimension 15 and 70 000 generations. In Figure 9 we show
the approximate solution we have found.

Case 10. Taking 𝜀 = 1000, for (33) and considering the same
boundary conditions and values for the other parameters as
in the previous case, we have

1000𝑦
󸀠󸀠
+ (1 − 𝑦

2
) 𝑦
󸀠
+ 𝑦 = 0. (38)

By applying the proposedmethodology to solve this equation,
we obtain the approximate solution

𝑦
𝑠
(𝑥) = (𝑥 + 0.498241)

0.99918
. (39)

For this case the value of (4) is 2 × 10−2, when using 300
individuals of dimension 30 and 20 000 generations. Figure 10
shows the found approximate solution.

As a final remark, we want to point out that all the
approximate solutions shown in this section were practically
the same to those obtained by applying the Runge-Kutta (RK)
algorithm. It is well known that the RK algorithm is by far the
most used and in our opinion the best choice, for numerically
solving a differential equation. Nevertheless, the proposed
evolutionary approach is useful for cases when a closed-form
solution is needed.Moreover, the introduced algorithmswith
dual numbers open a door for many applications.
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Figure 10: Approximate solution for 1000𝑦󸀠󸀠 + (1 − 𝑦2)𝑦󸀠 + 𝑦 = 0

with 𝑦(0) = 0.5 and 𝑦󸀠(0) = 1.

6. Conclusions

We have demonstrated the use of the differential evolution
algorithm in order to obtain closed-form solutions to second-
order differential equations.Themain drawback for the appli-
cation of the differential evolution algorithm to find exact
closed-form solutions to differential equations was handled
by constructing a function associated with a real vector. This
function was constructed using a simple grammar and the
concept of parse tree.This evolutionary algorithm along with
the use of dual numbers in order to obtain the derivatives
of a function produces an approximate solution expressed as
a closed-form expression, even if the exact solution cannot
be found (or it is not known as a closed-form expression).
Thus, the proposed method could be efficient and useful for
practical applications.

All the programming functions needed for the solution of
the differential equations were coded in the Fortran language
and provided as additional material to this paper.

Appendices

A. Parse Function

The function that maps the integer vector x associated with a
function and evaluates it in the dual number xval is the func-
tion parsv(x,xval) and is coded in the module parsef
mod.f90 of the additional material. Below we describe the
construction of this function.

In what follows, NaN stands for not a number, ñan stands
for a dual number with, at least, its real component a NaN.
The dual version of a number 𝑎 is written as 𝑎; for instance,
the dual version of the number 2 is written as 2̃ and in our
work is treated as the vector [2, 0, 0].

The parsv function requires the following functions:

(i) mynan()

A NaN implementation.
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Figure 11: Performance graph for Case 1.

(ii) narg(x)
Function that calculates the number of arguments
for the elements of the grammar. For example,
narg(13)= 2.

(iii) operf(x,xval)
Function that evaluates the functions of one argu-
ment in the dual point xval and then changes
the real component of xval to NaN. For instance,
operf(17,xval) will return sindual(xval) and
the xval number is changed to ñan.

(iv) operf2(x,vecval)
Function that evaluates the functions of two argu-
ments, that is, +, ∗, /, power. vecval is an array
with dual numbers, possibly with NaN components.
This function operates on the first two dual no-
ñan components of the vecval array and then
changes its real components to NaN components. For
instance, operf2(12,[ñan,sindual(𝑧̃), ñan,1̃])
will return sindual(𝑧̃) + 1̃ and then vecval =
[ñan, sindual(𝑧̃),ñan,1̃] is changed to [ñan,
ñan, ñan, ñan].

The Fortran code for the parsv function is shown in
Algorithm 1.

Let us analyze the above code for the case when x =
[12,17,13,2,11,20,18,14,11,5] and xval = [1.1, 1, 0].
In this particular case, the dimension length of the vector x
is length= 10 and x represents the function𝑓(𝑥) = sin(2𝑥)+
log(cos(𝑥/5)).

For the sake of concreteness, we will exemplify taking
into account only the real component. The dual components
will be omitted; notice however that the parsv function coded
above takes into account such dual components.

The instruction auxv = mynan() sets auxv to auxv
= [N,N,N,N,N,N,N,N,N,N] where N stands for NaN. In
fact auxv is a 3 × 10 matrix but as we said before, we are
ignoring the dual components.

The first loop evaluates the functions of zero arguments
changing auxv to auxv = [N,N,N,2,1.1,N,N,N,1.1,5]
as shown in Algorithm 2.
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(1) function parsv(x,xval) result(f result)

(2) implicit none

(3) integer, intent(in):: x(:)

(4) integer:: length, k

(5) real(8), intent(in), dimension(3):: xval

(6) real(8), dimension(3):: f result

(7) real(8), dimension(3,size(x)):: auxv

(8)
(9) length = size(x)

(10)
(11) auxv = mynan()

(12) f result = auxv(:,1)

(13)
(14) do k=1,length

(15) if(x(k).ge.1.and. x(k).le. 10) auxv(:,k) = [1.d0∗x(k), 0.d0, 0.d0]

(16) if(x(k).eq.11) auxv(:,k) = xval

(17) end do

(18)
(19) f result = auxv(:,1)

(20)
(21) do k=length-1,1,-1

(22) if(.not. isnan( auxv(1,k+1) ).and. narg(x(k)).eq. 0 ) then

(23) cycle

(24)
(25) elseif(.not. isnan( auxv(1,k+1) ).and. narg(x(k)).eq. 1 ) then

(26) auxv(:,k) = operf(x(k),auxv(:,k+1))

(27) if( isnan(auxv(1,k)) ) return

(28)
(29) elseif(.not. isnan( auxv(1,k+1) ).and. narg(x(k)).eq.2)then

(30) auxv(:,k) = operf2(x(k),auxv(:,k+1:length))

(31)
(32) if( isnan(auxv(1,k)) ) return

(33) end if

(34) end do

(35)
(36) f result = auxv(:,1)

(37)
(38) end function parsv

Algorithm 1

do k=1,length

if(x(k).ge.1.and. x(k).le. 10) auxv(:,k) = [1.d0∗x(k), 0.d0, 0.d0]

if(x(k).eq.11) auxv(:,k) = xval

end do

Algorithm 2

The second loop is a little more complicated but essen-
tially evaluates the functions of one argument and two
arguments. Let us analyze it in detail as shown inAlgorithm 3.

For 𝑘= 9 the if condition is satisfied; thus the auxv vector
is not changed.

For 𝑘 = 8 the second elseif condition is satisfied and
the auxv vector turns out to be

auxv = [N,N,N,2,1.1,N,N,1.1/5,N,N], and so forth.

Finally for 𝑘 = 1 we have
auxv = [sin(2 ∗ 1.1) + log(cos(1.1/5)),N,N,N,N,N,N,

N,N,N].
For the case of taking into account the dual com-

ponents, auxv(1,1) = 𝑓(1.1), auxv(2,1) = 𝑓
󸀠
(1.1), and

auxv(3,1) = 𝑓
󸀠󸀠
(1.1) which means that parsv(1.1,

xval)= [𝑓(1.1), 𝑓󸀠(1.1), 𝑓󸀠󸀠(1.1)].
Notice that if the vector x does not represent a valid func-

tion, the function parsv will look from right to left for a
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do k=length-1,1,-1

if(.not. isnan( auxv(1,k+1) ).and. narg(x(k)).eq. 0 ) then

cycle

elseif(.not. isnan( auxv(1,k+1) ).and. narg(x(k)).eq. 1 ) then

auxv(:,k) = operf(x(k),auxv(:,k+1))

if( isnan(auxv(1,k)) ) return

elseif(.not. isnan( auxv(1,k+1) ).and. narg(x(k)).eq.2)then

auxv(:,k) = operf2(x(k),auxv(:,k+1:length))

if( isnan(auxv(1,k)) ) return

end if

end do

Algorithm 3
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Figure 12: Performance graph for Case 2.
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Figure 13: Performance graph for Case 3.

“subset” of 𝑥 trying to construct a valid function; if it
succeeds, the parsv function will return the value cor-
responding to that part of 𝑥 corresponding to a valid
function. For example, if x = [17,13,18,2,11,16,14,19,
11,5,11], we cannot form a valid function. However, the
parsv function will return a right value corresponding to
xs =[17,13,18,2,11]. Notice however that as long as
the DE method is concern, 𝑥 is always treated as [17,13,
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Figure 14: Performance graph for Case 4.
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Figure 15: Performance graph for Case 5.

18,2,11,16,14,19,11,5,11]. This behavior for the func-
tion parsv could appear undesirable to first look.Nevertheless
it is a nice property if we are thinking to use such a function
in connection with an evolutionary algorithm. The reason
is that if we discard those vectors that do not correspond
to a valid function, the evolutionary method will have not
enough individuals to evolve. Of course at the end we need to
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Figure 16: Performance graph for Case 6.
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Figure 17: Performance graph for Case 7.
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Figure 18: Performance graph for Case 8.

extract the subset of x which correspond to a valid function;
this is done by the function filterx of the parsef mod
module.

B. Performance Graphs

This appendix shows the performance graphs of the
DE method for all the studied cases as shown in
Figures 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20.
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Figure 19: Performance graph for Case 9.
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Figure 20: Performance graph for Case 10.
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