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This paper is concerned with the problem of reachable set estimation and controller design for a class of linear systems with mixed
delays and bounded disturbance inputs. By constructing a newly augmented Lyapunov-Krasovskii functional, combining with
triple integral technique and reciprocally convex approach, some new reachable set estimation conditions are derived in terms of
linear matrix inequalities. Based on these conditions, a state-feedback controller has been designed to ensure the reachable set of
the closed-loop system bounded by a given ellipsoid. Finally, two numerical examples are given to illustrate the effectiveness of the
proposed analysis and designed method.

1. Introduction

For a dynamic system, the reachable set is defined as the
set of all the states starting from the origin by inputs with
peak values. The problem of reachable set bounding was
first considered in the late 1960s in the context of state
estimation. Owing to its extensive applications in peak-to-
peak gain minimization, parameter estimation, and control
systems with actuator saturation [1–4], a large number of
previous works have been devoted to the study of reachable
set estimation and its related areas [5–17]. It is well known that
time delays are frequently encountered in various practical
systems such as biological and engineering systems. Their
existence may lead to poor performance, oscillation, or even
instability. Therefore, the problem of stability analysis and
control synthesis for systems with time delays have attracted
remarkable attention of researchers; lots of related results
have been achieved in the literature [18–30].

Recently, the reachable set of systems with time-varying
delay have been investigated by many researchers. In [3],
Fridam and Shaked derived delay-dependent conditions for
an ellipsoid that contains the reachable set for a linear system

with time-varying delay and bound peak input via Lyapunov-
Razumikhin approach. In [6], Nam and Pathirana proposed
an improved condition by using an enhanced Lyapunov-
Krasovskii functional method and the delay decomposition
technique. In [7], Zuo et al. proposed themaximal Lyapunov-
Krasovskii functional approach to construct a pointwisemax-
imumof a family of Lyapunov functionals to obtain reachable
set conditions for polytopic systems with time-varying delay.
In [11], the authors studied the problem of state bounding for
discrete-time systems with time-varying delay and bounded
disturbance inputs; delay-dependent conditions are obtained
in terms of matrix inequalities by using delay decomposition
technique and reciprocally convex approach. New explicit
delay-independent conditions in terms of the Metzler matrix
have been derived in [12] by using a novel way which does
not involve the Lyapunov-Krasovskii functional method. In
[13], Feng and Lamfirstly studied the problemof reachable set
estimation of singular systems.Moreover, the authors focused
on reachable set bounding for linear systems with discrete
and distributed delays in [15, 16]. On the other hand, the
reachable set synthesis problem is an important issue because
the state of a system should be restricted within a safety
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area to make the system operation safe. More recently, in
[17], Feng and Lam investigated the problem of reachable set
estimation and synthesis of time-delay system by introducing
the nonuniform delay-partitioning method and the triple
integral technique. To the best of the authors’ knowledge, the
reachable set synthesis problem for linear systems with both
discrete and distributed delays has not been considered so far.

In this paper, we study the problem of reachable set
estimation and controller design for a class of linear systems
with mixed time delays and bounded disturbance inputs.
Firstly, by choosing an improved Lyapunov-Krasovskii func-
tional, based on triple integral technique and reciprocally
convex approach, new reachable set estimation conditions are
derived in terms of linear matrix inequality.Then, a sufficient
condition for the existence of a state-feedback controller is
designed to render the reachable set of the closed-loop system
to be bounded. Finally, some numerical examples are given
to illustrate the effectiveness and less conservatism of the
proposed method.

Notations. Throughout this paper, the superscripts 𝑀𝑇 stand
for the transpose of the matrix 𝑀; 𝑃 > 0(𝑃 ⩾ 0, 𝑃 <

0, and 𝑃 ⩽ 0) means that the matrix 𝑃 is symmetric
positive definite (positive-semidefinite, negative definite, and
negative-semidefinite); ‖ ⋅ ‖ refers to the Euclidean vector
norm; 𝑅𝑚×𝑛 is the set of 𝑚 × 𝑛 real matrices; ∗ denotes the
symmetric block in symmetric matrix; 𝜆max(𝑄) and 𝜆min(𝑄)

denote, respectively, the maximal and minimal eigenvalue of
matrix 𝑄.

2. Problem Statement and Preliminaries

Consider the following linear systems with discrete and
distributed delays:

�̇� (𝑡) = 𝐴𝑥 (𝑡) +𝐴
ℎ
𝑥 (𝑡 − ℎ (𝑡)) +𝐴

𝑑
∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠

+ 𝐵𝑢 (𝑡) +𝐷𝜔 (𝑡) ,

𝑥 (𝑡) = 0, 𝑡 ∈ [−max {ℎ, 𝑑} , 0] ,

(1)

where 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡)]
𝑇

∈ 𝑅
𝑛 is state vector

of the system, 𝑢(𝑡) is the control input, 𝐴, 𝐴
ℎ
, 𝐴
𝑑
, 𝐵, and 𝐷

are constant matrices with appropriate dimensions, and ℎ(𝑡)

and 𝑑 are, respectively, time-varying discrete delay and time
invariant distributed delay with

0 ≤ ℎ (𝑡) ≤ ℎ,

̇ℎ (𝑡) ≤ 𝜇.

(2)

𝜔(𝑡) ∈ 𝑅
𝑙 represents a disturbance which satisfies

𝜔
𝑇
(𝑡) 𝜔 (𝑡) ≤ 𝜔

2
𝑚
. (3)

The reachable set of system (1) is denoted as follows:

R
𝑥
= {𝑥 (𝑡) | 𝑥 (𝑡) , 𝜔 (𝑡) satisfy (1) – (3) , 𝑡 ≥ 0} . (4)

An ellipsoid used to bound the reachable set of the system in
(1) is given in the form of

𝜀 (𝑃, 1) = {𝑥 (𝑡) ∈ 𝑅
𝑛
| 𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) ≤ 1, 𝑃 > 0} . (5)

One of the aims in this paper is to derive an ellipsoid to
bound the reachable set R

𝑥
of system (1) with 𝑢(𝑡) = 0

and the other is to design a state-feedback controller 𝐾; that
is, 𝑢(𝑡) = 𝐾𝑥(𝑡), such that the reachable set of closed-loop
system

𝑥
⋅
(𝑡) = (𝐴+𝐵𝐾) 𝑥 (𝑡) +𝐴

ℎ
𝑥 (𝑡 − ℎ (𝑡))

+𝐴
𝑑
∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠 +𝐷𝜔 (𝑡) , 𝑡 ≥ 0,
(6)

is bounded by a given ellipsoid 𝜀(𝑃, 1).
In addition, we give some lemmas which will be used in

deriving our results.

Lemma 1 (see [18]). Let 𝑓1, 𝑓2, . . . , 𝑓𝑛 : 𝑅𝑚 → 𝑅 have positive
values in an open subset 𝐷 and 𝑅

𝑚; then, the reciprocally
convex combination of 𝑓

𝑖
over 𝐷 satisfies

min
{𝛼𝑖|𝛼𝑖>0 ∑𝑖 𝛼𝑖=1}

∑

𝑖

1
𝛼
𝑖

𝑓
𝑖 (𝑡) = ∑

𝑖

𝑓
𝑖 (𝑡) +max

𝑔𝑖,𝑗(𝑡)

∑

𝑖 ̸=𝑗

𝑔
𝑖𝑗 (𝑡)

subject to {𝑔
𝑖,𝑗
𝑅
𝑚
→𝑅, 𝑔

𝑗,𝑖 (𝑡)

= 𝑔
𝑖,𝑗 (𝑡) , [

𝑓
𝑖 (𝑡) 𝑔

𝑖,𝑗 (𝑡)

𝑔
𝑗,𝑖 (𝑡) 𝑓

𝑗 (𝑡)
] ≥ 0} .

(7)

Lemma 2 (see [17]). For any constant matrix 𝑀 > 0, scalars
𝑏 > 𝑎 > 0, and vector function 𝑤 : [𝑎, 𝑏] → 𝑅

𝑛, then

− (𝑏 − 𝑎) ∫

𝑏

𝑎

𝑤
𝑇
(𝑠)𝑀𝑤 (𝑠) 𝑑𝑠 ≤ −(∫

𝑏

𝑎

𝑤 (𝑠) 𝑑𝑠)

𝑇

⋅𝑀(∫

𝑏

𝑎

𝑤 (𝑠) 𝑑𝑠) ,

−
(𝑏 − 𝑎)

2

2
∫

−𝑎

−𝑏

∫

𝑡−𝑎

𝑡+𝜃

𝑤
𝑇
(𝑠)𝑀𝑤 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −(∫

−𝑎

−𝑏

∫

𝑡−𝑎

𝑡+𝜃

𝑤 (𝑠) 𝑑𝑠 𝑑𝜃)

𝑇

⋅𝑀(∫

−𝑎

−𝑏

∫

𝑡−𝑎

𝑡+𝜃

𝑤 (𝑠) 𝑑𝑠 𝑑𝜃) .

(8)

Lemma 3 (see [14]). Let 𝑉(𝑥(𝑡)) be a Lyapunov function for
linear system (1) with 𝑉(𝑥(0)) = 0 and 𝜔

𝑇
(𝑡)𝜔(𝑡) ≤ 𝜔

2
𝑚
. If

�̇� (𝑥 (𝑡)) + 𝛼𝑉 (𝑥 (𝑡)) −
𝛼

𝜔2
𝑚

𝜔
𝑇
(𝑡) 𝜔 (𝑡) ≤ 0, 𝛼 > 0, (9)

then one has 𝑉(𝑥(𝑡)) ≤ 1.
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3. Main Results

In this section, the reachable set estimation and synthesis of
linear systems with both discrete and distributed delays are
addressed by employing some novel approaches. Firstly, the
reachable set estimation problem can be resolved in terms of
matrix inequalities as follows.

Theorem 4. If there exist a scalar 𝛼 > 0, positive definite
matrices 𝑃 > 0, 𝑄1 > 0, 𝑄2 > 0, 𝑇1 > 0, 𝑇2 > 0, 𝑅 > 0,
and 𝑍1 > 0, and any matrices 𝑍2 > 0, 𝑆, 𝐻1, and 𝐻2 with
appropriate dimensions, such that the following inequalities
hold

[

𝑅 + 𝑍1 𝑆

∗ 𝑅 + 𝑍2
] > 0, (10)

Ω

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ω11 Ω12 Ω13 Ω14 0 𝐻
𝑇

1 𝐴𝑑 + 𝑒
−𝛼𝑑

𝑑𝑇2 Ω17 𝐻
𝑇

1 𝐷

∗ Ω22 Ω23 Ω24 Ω25 0 𝐴
𝑇

ℎ
𝐻2 0

∗ ∗ Ω33 0 Ω35 0 0 0
∗ ∗ ∗ Ω44 0 0 0 0
∗ ∗ ∗ ∗ Ω55 0 0 0

∗ ∗ ∗ ∗ ∗ Ω66 𝐴
𝑇

𝑑
𝐻2 0

∗ ∗ ∗ ∗ ∗ ∗ Ω77 𝐻
𝑇

2 𝐷

∗ ∗ ∗ ∗ ∗ ∗ ∗ −
𝛼

𝜔
2
𝑑

𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(11)

where

Ω11 = 𝑄1 +𝑄2 +𝐻
𝑇

1 𝐴+𝐴
𝑇
𝐻1 +𝑑

2
𝑇1 − 𝑒

−𝛼ℎ
𝑅

− 2𝑒−𝛼ℎ𝑍1 − 𝑒
−𝛼𝑑

𝑑
2
𝑇2 +𝛼𝑃,

Ω12 = 𝐻
𝑇

1 𝐴ℎ + 𝑒
−𝛼ℎ

𝑅− 𝑒
−𝛼ℎ

𝑆,

Ω13 = 𝑒
−𝛼ℎ

𝑆,

Ω14 = 2𝑒−𝛼ℎ𝑍1,

Ω17 = 𝑃−𝐻
𝑇

1 +𝐴
𝑇
𝐻2,

Ω22 = − (1−𝜇) 𝑒
−𝛼ℎ

− 2𝑒−𝛼ℎ𝑅+ 𝑒
−𝛼ℎ

(𝑆
𝑇
+ 𝑆)

− 2𝑒−𝛼ℎ𝑍1 − 2𝑒−𝛼ℎ𝑍2,

Ω23 = − 𝑒
−𝛼ℎ

𝑆 + 𝑒
−𝛼ℎ

𝑅,

Ω24 = 2𝑒−𝛼ℎ𝑍2,

Ω25 = 2𝑒−𝛼ℎ𝑍1,

Ω33 = − 𝑒
−𝛼ℎ

𝑄2 − 𝑒
−𝛼ℎ

𝑅− 2𝑒−𝛼ℎ𝑍2,

Ω35 = 2𝑒−𝛼ℎ𝑍2,

Ω44 = − 2𝑒−𝛼ℎ𝑍1 − 2𝑒−𝛼ℎ𝑍2,

Ω55 = − 2𝑒−𝛼ℎ𝑍1 − 2𝑒−𝛼ℎ𝑍2,

Ω66 = −𝑇1 − 𝑒
−𝛼𝑑

𝑇2,

Ω77 = ℎ
2
𝑅+

ℎ
2

2
𝑍1 +

ℎ
2

2
𝑍2 +

𝑑
4

4
𝑇2 −𝐻2 −𝐻

𝑇

2 ,

(12)

then the ellipsoid 𝜀(𝑃, 1) is an estimation of the reachable set of
system (1) with 𝑢(𝑡) = 0.

Proof. Consider the following Lyapunov-Krasovskii func-
tional:

𝑉 (𝑡) =

6
∑

𝑖=1
𝑉
𝑖 (𝑡) , (13)

where

𝑉1 (𝑡) = 𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) ,

𝑉2 (𝑡)

= ∫

𝑡

𝑡−ℎ

𝑒
𝛼(𝑠−𝑡)

𝑥
𝑇
(𝑠) 𝑄1𝑥 (𝑠) 𝑑𝑠

+∫

𝑡

𝑡−ℎ(𝑡)

𝑒
𝛼(𝑠−𝑡)

𝑥
𝑇
(𝑠) 𝑄2𝑥 (𝑠) 𝑑𝑠,

𝑉3 (𝑡)

= 𝑑∫

0

−𝑑

∫

𝑡

𝑡+𝜃

𝑒
𝛼(𝑠−𝑡)

𝑥
𝑇
(𝑠) 𝑇1𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+
𝑑
2

2
∫

0

−𝑑

∫

0

𝜂

∫

𝑡

𝑡+𝜃

𝑒
𝛼(𝑠−𝑡)

�̇�
𝑇
(𝑠) 𝑇2�̇� (𝑠) 𝑑𝑠 𝑑𝜃 𝑑𝜂,

𝑉4 (𝑡) = ℎ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛼(𝑠−𝑡)

�̇�
𝑇
(𝑠) 𝑅�̇� (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉5 (𝑡) = ∫

0

−ℎ

∫

0

𝜂

∫

𝑡

𝑡+𝜃

𝑒
𝛼(𝑠−𝑡)

�̇�
𝑇
(𝑠) 𝑍1�̇� (𝑠) 𝑑𝑠 𝑑𝜃 𝑑𝜂,

𝑉6 (𝑡) = ∫

0

−ℎ

∫

𝜂

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛼(𝑠−𝑡)

�̇�
𝑇
(𝑠) 𝑍2�̇� (𝑠) 𝑑𝑠 𝑑𝜃 𝑑𝜂.

(14)

Now, calculating the derivative of 𝑉
𝑖
(𝑡), it yields that

�̇�1 (𝑡) = − 𝛼𝑉1 (𝑡) + 2�̇�𝑇 (𝑡) 𝑃𝑥 (𝑡) + 𝛼𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) ,

�̇�2 (𝑡)

= − 𝛼𝑉2 (𝑡) + 𝑥
𝑇
(𝑡) 𝑄1𝑥 (𝑡) + 𝑥

𝑇
(𝑡) 𝑄2𝑥 (𝑡)
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− 𝑒
−𝛼ℎ

𝑥
𝑇
(𝑡 − ℎ)𝑄1𝑥 (𝑡 − ℎ)

− (1− ℎ̇ (𝑡)) 𝑒
−𝛼ℎ(𝑡)

𝑥
𝑇
(𝑡 − ℎ (𝑡)) 𝑄2𝑥

𝑇
(𝑡 − ℎ (𝑡))

≤ − 𝛼𝑉2 (𝑡) + 𝑥
𝑇
(𝑡) 𝑄1𝑥 (𝑡) + 𝑥

𝑇
(𝑡) 𝑄2𝑥 (𝑡)

− 𝑒
−𝛼ℎ

𝑥
𝑇
(𝑡 − ℎ)𝑄2𝑥 (𝑡 − ℎ)

− (1−𝜇) 𝑒
−𝛼ℎ

𝑥
𝑇
(𝑡 − ℎ (𝑡)) 𝑄2𝑥

𝑇
(𝑡 − ℎ (𝑡)) ,

�̇�3 (𝑡)

= − 𝛼𝑉3 (𝑡) + 𝑑
2
𝑥
𝑇
(𝑡) 𝑇1𝑥 (𝑡) +

𝑑
4

4
�̇�
𝑇
(𝑡) 𝑇2�̇� (𝑡)

− 𝑑∫

𝑡

𝑡−𝑑

𝑒
𝛼(𝑠−𝑡)

𝑥
𝑇
(𝑠) 𝑇1𝑥 (𝑠) 𝑑𝑠

−
𝑑
2

2
∫

0

−𝑑

∫

𝑡

𝑡+𝜃

𝑒
𝛼(𝑠−𝑡)

�̇�
𝑇
(𝑠) 𝑇2�̇� (𝑠) 𝑑𝑠 𝑑𝜃

≤ −𝛼𝑉3 (𝑡) + 𝑑
2
𝑥
𝑇
(𝑡) 𝑇1𝑥 (𝑡) +

𝑑
4

4
�̇�
𝑇
(𝑡) 𝑇2�̇� (𝑡)

− 𝑒
−𝛼𝑑

𝑑∫

𝑡

𝑡−𝑑

𝑥
𝑇
(𝑠) 𝑇1𝑥 (𝑠) 𝑑𝑠

− 𝑒
−𝛼𝑑 𝑑

2

2
∫

0

−𝑑

∫

𝑡

𝑡+𝜃

�̇�
𝑇
(𝑠) 𝑇2�̇� (𝑠) 𝑑𝑠 𝑑𝜃,

�̇�4 (𝑡)

= − 𝛼𝑉4 (𝑡) + ℎ
2
�̇�
𝑇
(𝑡) 𝑅�̇� (𝑡)

− ℎ∫

𝑡

𝑡−ℎ

𝑒
𝛼(𝑠−𝑡)

�̇�
𝑇
(𝑠) 𝑅�̇� (𝑠) 𝑑𝑠

≤ − 𝛼𝑉4 (𝑡) + ℎ
2
�̇�
𝑇
(𝑡) 𝑅�̇� (𝑡)

− ℎ𝑒
−𝛼ℎ

∫

𝑡

𝑡−ℎ(𝑡)

�̇�
𝑇
(𝑠) 𝑅�̇� (𝑠) 𝑑𝑠

− ℎ𝑒
−𝛼ℎ

∫

𝑡−ℎ(𝑡)

𝑡−ℎ

�̇�
𝑇
(𝑠) 𝑅�̇� (𝑠) 𝑑𝑠,

�̇�5 (𝑡)

= − 𝛼𝑉5 (𝑡) +
1
2
ℎ
2
�̇�
𝑇
(𝑡) 𝑍1�̇� (𝑡)

−∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛼(𝑠−𝑡)

�̇�
𝑇
(𝑠) 𝑍1�̇� (𝑠) 𝑑𝑠 𝑑𝜃

≤ −𝛼𝑉5 (𝑡) +
1
2
ℎ
2
�̇�
𝑇
(𝑡) 𝑍1�̇� (𝑡)

− 𝑒
−𝛼ℎ

∫

0

−ℎ(𝑡)

∫

𝑡

𝑡+𝜃

�̇�
𝑇
(𝑠) 𝑍1�̇� (𝑠) 𝑑𝑠 𝑑𝜃

− 𝑒
−𝛼ℎ

∫

−ℎ(𝑡)

−ℎ

∫

𝑡−ℎ(𝑡)

𝑡+𝜃

�̇�
𝑇
(𝑠) 𝑍1�̇� (𝑠) 𝑑𝑠 𝑑𝜃

− 𝑒
−𝛼ℎ

(ℎ − ℎ (𝑡)) ∫

𝑡

𝑡−ℎ(𝑡)

�̇� (𝑠)
𝑇
𝑍1�̇� (𝑠) 𝑑𝑠,

�̇�6 (𝑡)

= − 𝛼𝑉6 (𝑡) +
1
2
ℎ
2
�̇�
𝑇
(𝑡) 𝑍2�̇� (𝑡)

−∫

0

−ℎ

∫

𝑡+𝜃

𝑡−ℎ

𝑒
𝛼(𝑠−𝑡)

�̇�
𝑇
(𝑠) 𝑍2�̇� (𝑠) 𝑑𝑠 𝑑𝜃

≤ −𝛼𝑉6 (𝑡) +
1
2
ℎ
2
�̇�
𝑇
(𝑡) 𝑍2�̇� (𝑡)

− 𝑒
−𝛼ℎ

∫

0

−ℎ(𝑡)

∫

𝑡+𝜃

𝑡−ℎ(𝑡)

�̇�
𝑇
(𝑠) 𝑍2�̇� (𝑠) 𝑑𝑠 𝑑𝜃

− 𝑒
−𝛼ℎ

∫

−ℎ(𝑡)

−ℎ

∫

𝑡+𝜃

𝑡−ℎ

�̇�
𝑇
(𝑠) 𝑍2�̇� (𝑠) 𝑑𝑠 𝑑𝜃

− 𝑒
−𝛼ℎ

(ℎ (𝑡)) ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

�̇�
𝑇
(𝑠) 𝑍2�̇� (𝑠) 𝑑𝑠.

(15)

By using Lemma 2, one can obtain

�̇�3 (𝑡) ≤ − 𝛼𝑉3 (𝑡) + 𝑑
2
𝑥
𝑇
(𝑡) 𝑇1𝑥 (𝑡) +

𝑑
4

4
�̇�
𝑇
(𝑡) 𝑇2�̇� (𝑡)

− 𝑒
−𝛼𝑑

∫

𝑡

𝑡−𝑑

𝑥
𝑇
(𝑠) 𝑑𝑠 𝑇1 ∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠

− 𝑒
−𝛼𝑑

[𝑑𝑥 (𝑡) −∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠]

𝑇

⋅ 𝑇2 [𝑑𝑥 (𝑡) −∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠] ,

(16)

�̇�4 (𝑡) ≤ − 𝛼𝑉4 (𝑡) + ℎ
2
�̇�
𝑇
(𝑡) 𝑅𝑥 (𝑡) − 𝑒

−𝛼ℎ ℎ

ℎ (𝑡)

⋅ ∫

𝑡

𝑡−ℎ(𝑡)

�̇�
𝑇
(𝑠) 𝑑𝑠 𝑅∫

𝑡

𝑡−ℎ(𝑡)

�̇� (𝑠) 𝑑𝑠 − 𝑒
−𝛼ℎ ℎ

ℎ − ℎ (𝑡)

⋅ ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

�̇�
𝑇
(𝑠) 𝑑𝑠 𝑅∫

𝑡−ℎ(𝑡)

𝑡−ℎ

�̇�
𝑇
(𝑠) 𝑑𝑠 = − 𝛼𝑉4 (𝑡)

+ ℎ
2
�̇�
𝑇
(𝑡) 𝑅𝑥 (𝑡) − 𝑒

−𝛼ℎ 1
𝛽1

𝜁
𝑇

1 𝑅𝜁1 − 𝑒
−𝛼ℎ 1

𝛽2
𝜁
𝑇

2 𝑅𝜁2,

(17)

�̇�5 (𝑡) ≤ − 𝛼𝑉5 (𝑡) +
1
2
ℎ
2
�̇�
𝑇
(𝑡) 𝑍1�̇� (𝑡) − 𝑒

−𝛼ℎ

⋅
ℎ − ℎ (𝑡)

ℎ (𝑡)
[∫

𝑡

𝑡−ℎ(𝑡)

�̇� (𝑠) 𝑑𝑠]

𝑇

𝑍1 ∫
𝑡

𝑡−ℎ(𝑡)

�̇� (𝑠) 𝑑𝑠

− 2𝑒−𝛼ℎ2 1
ℎ (𝑡)

2 [∫

0

−ℎ(𝑡)

∫

𝑡

𝑡+𝜃

�̇� (𝑠) 𝑑𝑠 𝑑𝜃]

𝑇

⋅ 𝑍1 ∫
0

−ℎ(𝑡)

∫

𝑡

𝑡+𝜃

�̇� (𝑠) 𝑑𝑠 𝑑𝜃 − 2𝑒−𝛼ℎ2
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⋅
1

(ℎ − ℎ (𝑡))
2 [∫

0

−ℎ

∫

𝑡−ℎ(𝑡)

𝑡+𝜃

�̇� (𝑠) 𝑑𝑠 𝑑𝜃]

𝑇

⋅ 𝑍1 ∫
0

−ℎ

∫

𝑡−ℎ(𝑡)

𝑡+𝜃

�̇� (𝑠) 𝑑𝑠 𝑑𝜃 = −𝛼𝑉5 (𝑡) +
1
2
ℎ
2
�̇� (𝑡)
𝑇

⋅ 𝑍1�̇� (𝑡) − 𝑒
−𝛼ℎ𝛽2

𝛽1
𝜁
𝑇

1 𝑍1𝜁2

− 2𝑒−𝛼ℎ [𝑥 (𝑡) −
1

ℎ (𝑡)
∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠]

𝑇

⋅ 𝑍1 [𝑥 (𝑡) −
1

ℎ (𝑡)
∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠]

− 2𝑒−𝛼ℎ [𝑥 (𝑡 − ℎ (𝑡)) −
1

ℎ − ℎ (𝑡)
∫

𝑡−ℎ(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

𝑇

⋅ 𝑍1 [𝑥 (𝑡 − ℎ (𝑡)) −
1

ℎ − ℎ (𝑡)
∫

𝑡−ℎ(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠] ,

(18)

�̇�6 (𝑡) ≤ − 𝛼𝑉6 (𝑡) +
1
2
ℎ
2
�̇� (𝑡)
𝑇
𝑍2�̇� (𝑡) − 𝑒

−𝛼ℎ

⋅
ℎ (𝑡)

ℎ − ℎ (𝑡)
[∫

𝑡−ℎ(𝑡)

𝑡−ℎ

�̇� (𝑠) 𝑑𝑠]

𝑇

𝑍2 ∫
𝑡

𝑡−ℎ(𝑡)

�̇� (𝑠) 𝑑𝑠

− 2𝑒−𝛼ℎ 1
ℎ (𝑡)

2 [∫

0

−ℎ(𝑡)

∫

𝑡+𝜃

𝑡−ℎ(𝑡)

�̇� (𝑠) 𝑑𝑠 𝑑𝜃]

𝑇

⋅ 𝑍2 ∫
0

−ℎ(𝑡)

∫

𝑡+𝜃

𝑡−ℎ(𝑡)

�̇� (𝑠) 𝑑𝑠 𝑑𝜃 − 2𝑒−𝛼ℎ

⋅
1

(ℎ − ℎ (𝑡))
2 [∫

−ℎ(𝑡)

−ℎ

∫

𝑡+𝜃

𝑡−ℎ

�̇� (𝑠) 𝑑𝑠 𝑑𝜃]

𝑇

⋅ 𝑍2 ∫
−ℎ(𝑡)

−ℎ

∫

𝑡+𝜃

𝑡−ℎ

�̇� (𝑠) 𝑑𝑠 𝑑𝜃 = −𝛼𝑉6 (𝑡) +
1
2
ℎ
2
�̇� (𝑡)
𝑇

⋅ 𝑍2�̇� (𝑡) − 𝑒
−𝛼ℎ𝛽1

𝛽2
𝜁
𝑇

2 𝑍2𝜁2

− 2𝑒−𝛼ℎ [ 1
ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠 − 𝑥 (𝑡 − ℎ (𝑡))]

𝑇

⋅ 𝑍2 [
1

ℎ (𝑡)
∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠 − 𝑥 (𝑡 − ℎ (𝑡))]

− 2𝑒−𝛼ℎ [ 1
ℎ − ℎ (𝑡)

∫

𝑡−ℎ(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠 − 𝑥 (𝑡 − ℎ)]

𝑇

⋅ 𝑍2 [
1

ℎ − ℎ (𝑡)
∫

𝑡−ℎ(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠 − 𝑥 (𝑡 − ℎ)] ,

(19)

where 𝜁1 = [𝑥(𝑡) − 𝑥(𝑡 − ℎ(𝑡))], 𝜁2 = [𝑥(𝑡 − ℎ(𝑡)) − 𝑥(𝑡 − ℎ)],
𝛽1 = ℎ(𝑡)/ℎ, 𝛽2 = (ℎ − ℎ(𝑡)) /ℎ, and 𝛽1 + 𝛽2 = 1.

From Lemma 1, there exists matrix 𝑆 satisfying
[
𝑅2+𝑍1 𝑆
∗ 𝑅2+𝑍2

] > 0, and then it holds that

− 𝑒
−𝛼ℎ 1

𝛽1
𝜁
𝑇

1 𝑅𝜁1 − 𝑒
−𝛼ℎ 1

𝛽2
𝜁
𝑇

2 𝑅𝜁2 − 𝑒
−𝛼ℎ𝛽2

𝛽1
𝜁
𝑇

1 𝑍1𝜁1

− 𝑒
−𝛼ℎ𝛽1

𝛽2
𝜁
𝑇

2 𝑍2𝜁2 = − 𝑒
−𝛼ℎ 1

𝛽1
𝜁
𝑇

1 𝑅𝜁1 − 𝑒
−𝛼ℎ 1

𝛽2
𝜁
𝑇

2 𝑅𝜁2

− 𝑒
−𝛼ℎ

(
1
𝛽1

− 1) 𝜁
𝑇

1 𝑍1𝜁1 − 𝑒
−𝛼ℎ

(
1
𝛽2

− 1) 𝜁
𝑇

2 𝑍2𝜁2

≤ − 𝑒
−𝛼ℎ

[

𝜁1

𝜁2
]

𝑇

[

𝑅 𝑆

∗ 𝑅
][

𝜁1

𝜁2
] .

(20)

When ℎ(𝑡) = 0 or ℎ(𝑡) = ℎ, inequality (20) still holds.
Using two free-weighing matrices𝐻1 and𝐻2, we have

2 (𝑥
𝑇
(𝑡)𝐻
𝑇

1 + �̇�
𝑇
(𝑡)𝐻
𝑇

2 ) [−�̇� (𝑡) +𝐴𝑥 (𝑡)

+𝐴
ℎ (𝑥 (𝑡 − ℎ (𝑡))) +𝐴

𝑑
∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠 +𝐷𝜔 (𝑡)]

= 0.

(21)

Considering (15)–(21), we obtain

�̇� (𝑡) + 𝛼𝑉 (𝑡) −
𝛼

𝜔
2
𝑑

𝜔
𝑇
(𝑡) 𝜔 (𝑡) ≤ 𝜉

𝑇
(𝑡) Ω𝜉 (𝑡) < 0, (22)

where

𝜉 (𝑡) = col{𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡)) , 𝑥 (𝑡 − ℎ) ,
1

ℎ (𝑡)

⋅ ∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠,
1

ℎ − ℎ (𝑡)

⋅ ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠, ∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠, �̇� (𝑡) , 𝜔 (𝑡)} .

(23)

By Lemma 3, we have 𝑉(𝑡) ≤ 1, which implies that
𝑥
𝑇
(𝑡)𝑃𝑥(𝑡) ≤ 1. The proof is completed.

Remark 5. Different from the method in [15, 16], we choose a
new Lyapunov-Krasovskii functional containing three triple
integral terms in the proof of Theorem 4; the metrics and
effectiveness of the triple integral terms have been proved in
terms of reducing the conservatism, which will be demon-
strated by the following numerical examples.

Remark 6. To deal with the 𝛽2/𝛽1- and 𝛽1/𝛽2-dependent
terms in (18) and (19), in [24], the authors have introduced
an approximation as −𝛽2/𝛽1 ≤ 𝛽2 and −𝛽1/𝛽2 ≤ 𝛽1, which
contains considerable conservatism. However, by using the
relations 𝛽2/𝛽1 = −1+1/𝛽1 and 𝛽1/𝛽2 = −1+1/𝛽2, it can also
be regarded as one of the reciprocally convex combinations,
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which can be treated by the simple variation of Lemma 1.The
proposed method is effective in reducing the conservatism,
which will be verified by numerical examples.

Remark 7. It should be noted that the inequality �̇�(𝑡)+𝛼𝑉(𝑡)−

(𝛼/𝜔
2
𝑑
)𝜔
𝑇
(𝑡)𝜔(𝑡) ≤ 𝜉

𝑇
(𝑡)Ω𝜉(𝑡) ≤ 0 can be obtained from the

conditions inTheorem 4; when𝜔(𝑡) = 0, we can get �̇�(𝑡) < 0,
for nonzero 𝑥(𝑡) due to the positive definiteness of𝑉(𝑡)which
guarantees the stability of system (1).

Remark 8. In order to obtain the smallest possible ellipsoid
with the shortest major axis, the matrix 𝑃 is considered as a
decision variable and satisfied 0 < 𝛿𝐼 ≤ 𝑃which is equivalent
to

[
−𝛿𝐼 𝐼

𝐼 −𝑃

] ≤ 0, (24)

where 𝛿 = 1/𝛿; then the smallest possible ellipsoid can be
obtained when 𝛿 is minimum.

Next, based on Theorem 4, the synthesis result by using
state-feedback control is given in the following theorem.

Theorem 9. Given scalars 𝛽1 and 𝛽2, if there exist a scalar 𝛼 >

0, positive definite matrices 𝑃 > 0, 𝑄1 > 0, 𝑄2 > 0, 𝑅 > 0, 𝑉 >

0, and 𝑍1 > 0, and any matrices 𝑆,𝑀, and 𝐺 with appropriate
dimensions, such that the following inequalities hold

[

𝑅 + 𝑍1 𝑆

∗ 𝑅 + 𝑍2
] > 0, (25)

Φ =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Φ11 Φ12 Φ13 Φ14 0 𝛽1𝐴𝑑𝑀 + 𝑒
−𝛼𝑑

𝑑𝑇2 Φ17 𝛽1𝐷𝑀

∗ Φ22 Φ23 Φ24 Φ25 0 𝛽2𝑀
𝑇
𝐴
𝑇

ℎ
0

∗ ∗ Φ33 0 Φ35 0 0 0
∗ ∗ ∗ Φ44 0 0 0 0
∗ ∗ ∗ ∗ Φ55 0 0 0

∗ ∗ ∗ ∗ ∗ Φ66 −𝛽2𝑀
𝑇
𝐴
𝑇

𝑑
0

∗ ∗ ∗ ∗ ∗ ∗ Φ77 𝛽2𝐷𝑀

∗ ∗ ∗ ∗ ∗ ∗ ∗ −
𝛼

𝜔
2
𝑑

𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (26)

where

Φ11 = 𝑄1 +𝑄2 +𝛽1𝑀
𝑇
𝐴
𝑇
+𝛽1𝐴𝑀+𝛽1𝐺

𝑇
𝐵
𝑇

+𝛽1𝐵𝐺+𝑑
2
𝑇1 − 𝑒

−𝛼𝑑
𝑑
2
𝑇2 − 𝑒

−𝛼ℎ
𝑅

− 2𝑒−𝛼ℎ𝑍1 +𝛼𝑃,

Φ12 = 𝛽1𝐴ℎ𝑀+𝑒
−𝛼ℎ

𝑅− 𝑒
−𝛼ℎ

𝑆,

Φ13 = 𝑒
−𝛼ℎ

𝑆,

Φ14 = 2𝑒−𝛼ℎ𝑍1,

Φ17 = 𝑃−𝛽1𝑀+𝛽2𝑀
𝑇
𝐴
𝑇
+𝛽2𝐺

𝑇
𝐵
𝑇
,

Φ22 = − (1−𝜇) 𝑒
−𝛼ℎ

𝑄2 − 2𝑒−𝛼ℎ𝑅+ 𝑒
−𝛼ℎ

(𝑆
𝑇

+ 𝑆)

− 2𝑒−𝛼ℎ𝑍1 − 𝑒
−𝛼ℎ

𝑍2,

Φ23 = − 𝑒
−𝛼ℎ

𝑆 + 𝑒
−𝛼ℎ

𝑅,

Φ24 = 2𝑒−𝛼ℎ𝑍2,

Ξ25 = 2𝑒−𝛼ℎ𝑍1,

Φ33 = − 𝑒
−𝛼ℎ

𝑄1 − 𝑒
−𝛼ℎ

𝑅− 2𝑒−𝛼ℎ𝑍2,

Φ35 = 2𝑒−𝛼ℎ𝑍2,

Φ44 = − 2𝑒−𝛼ℎ𝑍1 − 2𝑒−𝛼ℎ𝑍2,

Φ55 = − 2𝑒−𝛼ℎ𝑍1 − 2𝑒−𝛼ℎ𝑍2,

Φ66 = −𝑇1 − 𝑒
−𝛼𝑑

𝑇2,

Φ77 = ℎ
2
𝑅+

ℎ
2

2
𝑍1 +

ℎ
2

2
𝑍2 +

𝑑
4

4
𝑇2 −𝛽2𝑀

𝑇
−𝛽2𝑀,

(27)

then the reachable set of the closed-loop system (6) is bounded
by the prescribed ellipsoid in 𝜀(𝑀

−𝑇
𝑃𝑀
−1
, 1) and the desired

state-feedback controller can be obtained as 𝐾 = 𝐺𝑀
−1.

Proof. Denote 𝑋1 = diag{𝑀−1,𝑀−1,𝑀−1,𝑀−1,𝑀−1,𝑀−1,
𝑀
−1
, 𝐼} and 𝑋2 = diag{𝑀−1,𝑀−1}; pre- and postmultiplying

Φ1 by 𝑋
𝑇

1 and𝑋1, we have𝑋
𝑇

1Φ𝑋1 < 0.
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Then by employing congruence transformation for (25)
with𝑋2, we will get the following inequalities:

[

[

𝑀
−𝑇

(𝑅 + 𝑍1)𝑀
−1

𝑀
−𝑇

𝑆𝑀
−1

∗ 𝑀
−𝑇

(𝑅 + 𝑍2)𝑀
−1
]

]

> 0. (28)

We obtain that there exist matrices 𝑃 = 𝑀
−𝑇

𝑃𝑀
−1, 𝑄1 =

𝑀
−𝑇

𝑄1𝑀
−1, 𝑄2 = 𝑀

−𝑇
𝑄2𝑀
−1, 𝑅 = 𝑀

−𝑇
𝑅𝑀
−1, 𝑍1 =

𝑀
−𝑇

𝑍1𝑀
−1,𝑍2 = 𝑀

−𝑇
𝑍2𝑀
−1, 𝑆 = 𝑀

−𝑇
𝑆𝑀
−1,𝐻1 = 𝛽1𝑀

−1,
and 𝐻2 = 𝛽2𝑀

−1 satisfying the conditions in Theorem 4.
Therefore the reachable set of closed-loop system in (6)
is bounded by the ellipsoid 𝜀(𝑀

−𝑇
𝑃𝑀
−1
, 1). The proof is

completed.

Remark 10. In order to guarantee negative definite, 𝜇 is
required to be less than 1 in [4]. However, the value of 𝜇 is
not necessarily less than 1 inTheorems 4 and 9 since the terms
Ω22, Φ22 can be negative definite when 𝜇 > 1. Obviously, the
results in this paper are more general than the ones in [4].

Remark 11. To get the reachable set of closed-loop system to
be bounded by a given ellipsoid 𝑥

𝑇
(𝑡)𝑃
𝑟
𝑥(𝑡) ≤ 1, we need the

inequality 0 < 𝑃
𝑟
≤ 𝑃 = 𝑀

−𝑇
𝑃𝑀
−1 which is equivalent to

[
−𝑃 𝑀

𝑇

𝑀 −𝑃
𝑟

] ≤ 0. (29)

Remark 12. It should be pointed out that the matrix inequal-
ities (11) and (26) contain a nonconvex scalar 𝛼; when 𝛼 is
fixed, these inequations will become LMIs, and MATLAB’s
toolbox is employed to solve the matrix inequalities in
Theorems 4 and 9.

4. Numerical Examples

In this section, two numerical examples are proposed to show
the effectiveness of the results obtained in this paper.

Example 1. Consider system (1) with the following parame-
ters:

𝐴 = [

0 1
−2 −3

] ,

𝐴
ℎ
= [

0 −0.1
−0.2 0.3

] ,

𝐴
𝑑
= [

0.2 0.2
0 −0.2

] ,

𝐷 = [

1
1
] ,

𝐵 = 0,

𝜔
𝑚

= 1.

(30)

In order to compare with previous results, the resulting
𝛿


𝑠 for different values of 𝑑 with 𝜇 = 0.5 and ℎ = 0.2 are

Table 1: Computed 𝛿


𝑠 for different 𝑑 with 𝜇 = 0.5 and ℎ = 0.2.

𝑑 0.2 0.4 0.6 0.7 0.8
[15, Theorem 1] 10.0502 11.5762 13.7431 14.9492 16.3729
[16, Theorem 1] 5.8645 6.4724 7.3010 7.7887 8.3381
Theorem 4 2.2621 2.9137 3.0292 3.2147 3.2855

Table 2: Computed 𝛿


𝑠 for different ℎ with 𝜇 = 0.5 and 𝑑 = 0.1.

ℎ 0.1 0.3 0.5 0.7 0.9
[15, Theorem 1] 9.3269 9.5769 9.8531 10.1593 10.5000
[16, Theorem 1] 5.5456 5.7058 5.9109 6.1423 6.4505
Theorem 4 3.0658 3.9427 4.1006 4.4615 4.9985

Table 3: Computed 𝛿


𝑠 for different 𝜇 with 𝑑 = 0.1 and ℎ = 0.2.

𝜇 0.1 0.5 0.8 0.9 2
[15, Theorem 1] 8.2338 9.4488 13.4135 21.2778 —
[16, Theorem 1] 5.5992 5.6198 5.6198 5.6198 5.6198
Theorem 4 4.0305 4.0821 4.1802 4.3839 5.1657

listed in Table 1. It can be seen that much tighter bounds
are obtained than the ones in [15, 16] by the proposed
method in this paper. This is mainly because we consider the
additional useful term and introduce the reciprocally convex
combination approach to deal with single integral term and
double integral terms when estimating the upper bound of
the derivative of Lyapunov-Krasovskii functional. Tables 2
and 3 are some comparisons for different values of ℎ and
𝜇, respectively, which also implies that our method is less
conservative than the ones in [15, 16].

Example 2. Consider system (1) with the following parame-
ters:

𝐴 = [

−2 0

0 −0.7
] ,

𝐴
ℎ
= [

−1 0

−1 −0.9
] ,

𝐴
𝑑
= [

0 0
0 0

] ,

𝐷 = [

−0.5
1

] ,

𝐵 = [

−1
1
] ,

𝜔
𝑚

= 1.

(31)

For this example, when 𝑢(𝑡) = 0, the computed 𝛿 for
different values of ℎ with 𝜇 = 0 is listed in Table 4. By
using Theorem 4, it is clear to see that the bounds obtained
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Table 4: Computed 𝛿


𝑠 for different ℎ with 𝜇 = 0.

ℎ 0.1 0.3 0.5 0.7 0.9
[4, Theorem 1] 0.83 1.28 1.94 2.90 4.46
[6, Theorem 1] 0.74 0.92 1.36 2.30 3.51
[16, Theorem 1] 0.66 0.75 0.94 1.61 3.14
Theorem 4 0.40 0.71 0.92 1.24 2.73

in this paper are better than the ones of literatures [4, 6, 16].
When ℎ = 0.5, 𝑢 = 0.1, 𝛽1 = 1, and 𝛽2 = 1, by solving
the conditions in Theorem 9, the controller can be obtained,
𝐾 = [6.1472 − 2.3741] and 𝑃 = 𝑀

−𝑇
𝑃𝑀
−1

= [
4.3726 0.1148
0.1148 0.9278 ],

and the obtained ellipsoid 𝜀(𝑃, 1) can bound the reachable set
of the closed-loop system.

5. Conclusions

In this paper, the problem of reachable set estimation and
controller design for linear systems with discrete and dis-
tributed delays has been studied. Based on the reciprocally
convex approach and triple integral technique, improved
delay-dependent conditions for the considered system have
been presented in terms of linear matrix inequalities. It
should be pointed out that triple integral terms are firstly
introduced to research the problem of reachable set estima-
tion and synthesis for addressed system. In addition, a state-
feedback controller is designed to guarantee the reachable set
of closed-loop system to be bounded by a given ellipsoid.
Finally, two numerical examples are given to show the
usefulness and effectiveness of the proposed criteria.

Further, it should be worthmentioning that the proposed
method in this paper can be extensively applicable in many
other areas, such as nonlinear systems, singular systems,
Markov jump systems, and switch systems, which deserve
further investigation.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the National Natural Sci-
ence Foundation of China (61273015), the Natural Science
Research Project of Fuyang Normal College (2013FSKJ09),
and the Nature Science Research Project of Anhui Province
(2014KJ011).

References

[1] J. Abedor, K. Nagpal, and K. Poolla, “A linear matrix inequality
approach to peak-to-peak gain minimization,” International
Journal of Robust and Nonlinear Control, vol. 6, no. 9-10, pp.
899–927, 1996.

[2] T. S. Hu and Z. L. Lin, “Composite quadratic Lyapunov
functions for constrained control systems,” IEEE Transactions
on Automatic Control, vol. 48, no. 3, pp. 440–450, 2003.

[3] E. Fridman andU. Shaked, “On reachable sets for linear systems
with delay and bounded peak inputs,” Automatica, vol. 39, no.
11, pp. 2005–2010, 2003.

[4] J.-H. Kim, “Improved ellipsoidal bound of reachable sets for
time-delayed linear systems with disturbances,” Automatica,
vol. 44, no. 11, pp. 2940–2943, 2008.

[5] O. M. Kwon, S. M. Lee, and J. H. Park, “On the reachable
set bounding of uncertain dynamic systems with time-varying
delays and disturbances,” Information Sciences, vol. 181, no. 17,
pp. 3735–3748, 2011.

[6] P. T. Nam and P. N. Pathirana, “Further result on reachable set
bounding for linear uncertain polytopic systems with interval
time-varying delays,” Automatica, vol. 47, no. 8, pp. 1838–1841,
2011.

[7] Z. Zuo, D. W. Ho, and Y. Wang, “Reachable set bounding
for delayed systems with polytopic uncertainties: the maximal
Lyapunov-Krasovskii functional approach,” Automatica, vol.
46, no. 5, pp. 949–952, 2010.

[8] Z. Z. Zuo, Y. P. Chen, Y. Wang, D. W. C. Ho, M. Z. Q. Chen, and
H. C. Li, “A note on reachable set bounding for delayed systems
with polytopic uncertainties,” Journal of the Franklin Institute,
vol. 350, no. 7, pp. 1827–1835, 2013.

[9] Z. Z. Zuo, Z. Q. Wang, Y. P. Chen, and Y. J. Wang, “A non-
ellipsoidal reachable set estimation for uncertain neural net-
works with time-varying delay,” Communications in Nonlinear
Science and Numerical Simulation, vol. 19, no. 4, pp. 1097–1106,
2014.

[10] N. D. That, P. T. Nam, and Q. P. Ha, “Reachable set bounding
for linear discrete-time systems with delays and bounded
disturbances,” Journal of OptimizationTheory and Applications,
vol. 157, no. 1, pp. 96–107, 2013.

[11] L. V. Hien, N. T. An, and H. M. Trinh, “New results on state
bounding for discrete-time systems with interval time-varying
delay and bounded disturbance inputs,” IET Control Theory &
Applications, vol. 8, no. 14, pp. 1405–1414, 2014.

[12] L. V. Hien and H. M. Trinh, “A new approach to state bounding
for linear time-varying systems with delay and bounded distur-
bances,” Automatica, vol. 50, no. 6, pp. 1735–1738, 2014.

[13] Z. G. Feng and J. Lam, “On reachable set estimation of singular
systems,” Automatica, vol. 52, pp. 146–153, 2015.

[14] C. Shen and S. Zhong, “The ellipsoidal bound of reachable
sets for linear neutral systems with disturbances,” Journal of the
Franklin Institute, vol. 348, no. 9, pp. 2570–2585, 2011.

[15] Z. Zuo, D. W. Ho, and Y. Wang, “Reachable set estimation for
linear systems in the presence of both discrete and distributed
delays,” IET Control Theory & Applications, vol. 5, no. 15, pp.
1808–1812, 2011.

[16] Z. Zuo, Y. Fu, and Y.Wang, “Results on reachable set estimation
for linear systems with both discrete and distributed delays,”
IET ControlTheory&Applications, vol. 6, no. 14, pp. 2346–2350,
2012.

[17] Z. G. Feng and J. Lam, “An improved result on reachable
set estimation and synthesis of time-delay systems,” Applied
Mathematics and Computation, vol. 249, pp. 89–97, 2014.

[18] P.G. Park, J.W.Ko, andC. Jeong, “Reciprocally convex approach
to stability of systems with time-varying delays,” Automatica,
vol. 47, no. 1, pp. 235–238, 2011.

[19] C. Lin, Q.-G. Wang, and T. H. Lee, “A less conservative robust
stability test for linear uncertain time-delay systems,” IEEE
Transactions onAutomatic Control, vol. 51, no. 1, pp. 87–91, 2006.



Discrete Dynamics in Nature and Society 9

[20] R. Q. Lu, H. Y. Wu, and J. J. Bai, “New delay-dependent robust
stability criteria for uncertain neutral systems with mixed
delays,” Journal of the Franklin Institute, vol. 351, no. 3, pp. 1386–
1399, 2014.

[21] P.-L. Liu, “A delay decomposition approach to robust stability
analysis of uncertain systems with time-varying delay,” ISA
Transactions, vol. 51, no. 6, pp. 694–701, 2012.

[22] Z. D. Wang, G. L. Wei, and G. Feng, “Reliable 𝐻
∞

control for
discrete-time piecewise linear systems with infinite distributed
delays,” Automatica, vol. 45, no. 12, pp. 2991–2994, 2009.

[23] A. Seuret and F. Gouaisbaut, “Wirtinger-based integral inequal-
ity: application to time-delay systems,” Automatica, vol. 49, no.
9, pp. 2860–2866, 2013.

[24] Y. Liu, L.-S. Hu, and P. Shi, “A novel approach on stabilization
for linear systems with time-varying input delay,” Applied
Mathematics and Computation, vol. 218, no. 10, pp. 5937–5947,
2012.

[25] W. I. Lee, S. Y. Lee, and P. G. Park, “Improved criteria on robust
stability and H

∞
performance for linear systems with interval

time-varying delays via new triple integral functionals,”Applied
Mathematics and Computation, vol. 243, pp. 570–577, 2014.

[26] W. I. Lee and P. G. Park, “Second-order reciprocally convex
approach to stability of systems with interval time-varying
delays,” Applied Mathematics and Computation, vol. 229, pp.
245–253, 2014.

[27] D. Yue, Y. Zhang, and E. Tian, “Improved global robust
delay-dependent stability criteria for delayed cellular neural
networks,” International Journal of Computer Mathematics, vol.
85, no. 8, pp. 1265–1277, 2008.

[28] K. B. Shi, H. Zhu, S. M. Zhong, Y. Zeng, and Y. P. Zhang, “New
stability analysis for neutral type neural networks with discrete
and distributed delays using a multiple integral approach,”
Journal of the Franklin Institute, vol. 352, no. 1, pp. 155–176, 2015.

[29] Z.-G. Wu, P. Shi, H. Su, and J. Chu, “Dissipativity analysis
for discrete-time stochastic neural networks with time-varying
delays,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 24, no. 3, pp. 345–355, 2013.

[30] Z. G.Wu, P. Shi, H. Y. Su, and J. Chu, “Stability and dissipativity
analysis of static neural networks with time delay,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 23,
no. 2, pp. 199–210, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


