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We study connectivity property in the superposition of random key graph on random geometric graph. For this class of random
graphs, we establish a new version of a conjectured zero-one law for graph connectivity as the number of nodes becomes
unboundedly large. The results reported here strengthen recent work by the Krishnan et al.

1. Introduction

Random key graph (RKG), also known as uniform random
intersection graph, is a random graph defined below. Con-
sider a set with 𝑛 nodes and another key pool with 𝑃

𝑛
keys;

we assume each node randomly chooses 𝐾
𝑛
distinct keys for

its key ring; two nodes can establish a secure link between
them if they share at least one common key in their key rings.

The random key graph is naturally associated with
the random key predistribution scheme of Eschenauer and
Gligor [1] for wireless sensor networks (WSNs). A WSN is
a collection of distributed sensor devices that are able to
communicatedwirelessly and supports wide range of applica-
tions such as health and environment monitoring, imaging,
tracking, and biomedical research; see [2].These applications
require all nodes in the network to be within communication
range and to be connected with high probability.

Some partial results concerning the connectivity of RKGs
were given in [3–5]. In [6], Rybarczyk gave asymptotic
tight bounds for the thresholds of the connectivity, phase
transition, and diameter of the largest connected component
in RKGs for all ranges of𝐾

𝑛
.

With the advent of ad hoc sensor networks, an interesting
class of random graphs, namely, random geometric graphs
(RGGs), has gained new importance and its properties have
been the subject of much study. Here the nodes are randomly
distributed in a finite Euclidean space and there is an edge

between two nodes if the Euclidean distance between them
is below a specified threshold. Much work has been done on
graph theoretic properties of such graph, comprehensively
summarized in the monograph of [7].

Recently, there is interest in random graphs in which an
edge is determined by more than one random property, that
is, superposition of different random graphs. The superposi-
tion of ER random graphs over RGGs has been of interest for
quite some time now. Recent work on such random graphs
is in [8, 9] where connectivity properties and the distribution
of isolated nodes are analyzed. And the superposition of ER
random graphs on RKGs is considered in [10]. Such a graph
is constructed as follows: a RKG is first formed based on the
key distribution and each edge in this graph is deleted with a
specified probability.

The superposition of RKGs on RGGs is first studied in
[11]. The 𝑛 nodes are distributed in a finite Euclidean space
and each node is assigned a key ring of𝐾

𝑛
distinct keys drawn

randomly from a pool of 𝑃
𝑛
keys. Two nodes have an edge if

and only if they share at least one common key in their key
rings and their Euclidean distance is at most 𝑟

𝑛
. Pietro et al.

[11] have shown that under the scaling𝜋𝑟2
𝑛
𝐾
2

𝑛
/𝑃

𝑛
= 𝑐(log 𝑛/𝑛),

the one-law that this class of random graphs is connected
follows if 𝑟

𝑛
> 0 and 𝑐 > 20𝜋. Another notable work is due

by Krzywdziński and Rybarczyk [12], where the authors have
improved these results and established the one-law for 𝑐 > 8

without any constraint on 𝑟
𝑛
. Recently, Krishnan et al. [13]
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have shown that for large 𝑛, this class of random graphs will
be connected if𝐾

𝑛
≥ 2, 𝑟

𝑛
and 𝑃

𝑛
are selected such that

𝐾
𝑛
, 𝑃

𝑛
󳨀→ ∞,

𝐾
2

𝑛

𝑃
𝑛

󳨀→ 0,

𝑃
𝑛
≥ 2𝐾

𝑛
,

𝑃
𝑛
≥ 𝜎𝑛𝑟

2

𝑛
,

𝜋𝑟
2

𝑛

𝐾
2

𝑛

𝑃
𝑛

>

2𝜋

1 − 𝛾

log 𝑛
𝑛

,

(1)

for any 𝜎 > 0 and 0 < 𝛾 < 1. They also observed that for large
𝑛 and 0 < 𝑐

1
< ∞, the probability that this class of random

graphs is disconnected is at least 𝑒−𝑐1/4 if the scaling satisfies

𝜋𝑟
2

𝑛

𝐾
2

𝑛

𝑃
𝑛

=

log 𝑛 + 𝑐
1

𝑛

. (2)

The connectivity in the superposition of RKGs on RGGs
is still studied in this paper. Assuming that 𝑃

𝑛
≥ 𝑛, we show

that given 𝑛𝜋𝑟2
𝑛
𝐾
2

𝑛
/𝑃

𝑛
= log 𝑛+𝑐

𝑛
, this class of random graphs

is disconnected if 𝑐
𝑛
→ −∞, and for 𝑐

𝑛
→ ∞, this class of

random graphs is connected.
In this paper, we use standard, asymptotic notations: 𝑎

𝑛
=

Θ(𝑏
𝑛
), 𝑎

𝑛
= 𝜔(𝑏

𝑛
), 𝑎

𝑛
= 𝑜(𝑏

𝑛
), and 𝑎

𝑛
∼ 𝑏

𝑛
for ∃

𝑐,𝐶>0
𝑐𝑏
𝑛
≤

𝑎
𝑛
≤ 𝐶𝑏

𝑛
, 𝑎

𝑛
/𝑏
𝑛

→ ∞, 𝑎
𝑛
/𝑏
𝑛

→ 0, and 𝑎
𝑛
/𝑏
𝑛

→ 1,
respectively, all limits are taken as 𝑛 → ∞. The phrase “with
high probability” (abbreviated whp) means with probability
tending to one as 𝑛 tends to infinity.

The rest of the paper is organized as follows. Our
main result is presented in Section 2. Namely, the theorem
concerning zero-one law for graph connectivity is presented.
Section 3 contains technical proof of Theorem 1. Finally,
Section 4 discusses prospects of establishing tighter connec-
tivity thresholds in the superposition of RKGs on RGGs.

2. Main Result

The 𝑛 nodes are uniformly and independently distributed in
R = [0, 1]

2. Let 𝑥
𝑖
∈ R be the location of point 𝑖. A key pool

with 𝑃
𝑛
cryptographic keys is designated for the network of 𝑛

nodes. Node 𝑖 randomly chooses a subset 𝑆
𝑖
of keys from the

key pool with |𝑆
𝑖
| = 𝐾

𝑛
. Our interest is in the random graph

𝐺(𝑃
𝑛
, 𝐾

𝑛
, 𝑟
𝑛
) with 𝑛 nodes and edges formed as follows. An

edge (𝑖, 𝑗), 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, is present in 𝐺(𝑃
𝑛
, 𝐾

𝑛
, 𝑟
𝑛
) if both of

the following two conditions are satisfied:

𝐸
1
:

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑖
− 𝑥

𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝑟

𝑛
,

𝐸
2
: 𝑆

𝑖
∩ 𝑆

𝑗
̸= 0,

(3)

where ‖ ⋅ ‖ represents the Euclidean norm. Condition 𝐸
1

produces a random geometric graph with the transmission
range 𝑟

𝑛
. Imposing condition 𝐸

2
on 𝐸

1
retains the edges of

the random geometric graph for which the two nodes share

at least one common key.Thus𝐺(𝑃
𝑛
, 𝐾

𝑛
, 𝑟
𝑛
) is a superposition

of RKG on RGG.
In the following, to avoid technicalities which obscure the

main ideas, we will neglect edge effects resulting due to the
fact that 𝑛nodes are distributed uniformly and independently
over a folded unit square R = [0, 1]

2 with continuous
boundary conditions and a node is close to the boundary of
R. Throughout the paper, we set 𝑛𝜋𝑟2

𝑛
= 𝑑

𝑛
, where 𝑑

𝑛
=

𝜔(log 𝑛) and 𝑑
𝑛
= 𝑜(𝑛

(1−𝛿)/4

) for any small 0 < 𝛿 < 1. The
following theorem gives zero-one law for the connectivity of
a superposition of RKG on RGG.

Theorem 1. Let 𝐾
𝑛
≥ 2, 𝐾

𝑛
, 𝑃

𝑛
→ ∞, 𝐾2

𝑛
/𝑃

𝑛
→ 0, 𝑃

𝑛
≥ 𝑛.

Then
(i) if 𝜋𝑟2

𝑛
𝐾
2

𝑛
/𝑃

𝑛
= (log 𝑛+ 𝑐

𝑛
)/𝑛 and 𝑐

𝑛
→ −∞, then with

high probability 𝐺(𝑃
𝑛
, 𝐾

𝑛
, 𝑟
𝑛
) is disconnected;

(ii) if 𝜋𝑟2
𝑛
𝐾
2

𝑛
/𝑃

𝑛
= (2 log 𝑛+𝑐

𝑛
)/𝑛 and 𝑐

𝑛
→ ∞, then with

high probability 𝐺(𝑃
𝑛
, 𝐾

𝑛
, 𝑟
𝑛
) is connected.

The first part of the Theorem 1 is proved by using the
second moment method, that is, considering the probability
of finding at least one isolated node in the network for
a random graph 𝐺(𝑃

𝑛
, 𝐾

𝑛
, 𝑟
𝑛
). The second part takes a

slightly different approach, we assume that R = [0, 1]
2 is

entirely coved by circle cells of radius 𝑟
𝑛
/2. Connectivity of

𝐺(𝑃
𝑛
, 𝐾

𝑛
, 𝑟
𝑛
) is ensured as follows: (1) every circle cell is

dense; namely, every circle cell hasΘ(𝑛𝑟2
𝑛
) nodes inside it; (2)

the overlapping structure of any two adjacent circle cells has
at least one common node; and (3) the nodes in any circle cell
form a connected subgraph.

3. Proof of Theorem 1

Before proceeding, we first introduce some definitions and
auxiliary lemmas. For 𝑖 = 1, 2, . . . , 𝑛, let 𝑋

𝑖
= 1 if node 𝑖 is

isolated in 𝐺(𝑃
𝑛
, 𝐾

𝑛
, 𝑟
𝑛
) and 𝑋 = ∑

𝑛

𝑖=1
𝑋
𝑖
. Then, 𝑋 is exactly

the number of isolated nodes in 𝐺(𝑃
𝑛
, 𝐾

𝑛
, 𝑟
𝑛
). Let |𝑆| denote

the cardinality of a set 𝑆 and let 𝐸(𝑋), Var(𝑋) denote the
expectation and variance of random variable 𝑋, respectively.
As a special case of Markov’s inequality the first moment
method states that

Pr (𝑋 ≥ 1) ≤ 𝐸𝑋, (4)

and the second moment method (special case of Tsche-
byscheff ’s inequality) states that

Pr (𝑋 = 0) ≤

Var𝑋
(𝐸𝑋)

2
. (5)

If 𝑋 is a binomial distributed random variable, 𝜆 = 𝐸𝑋 and
for any 𝑡 ≥ 0, then we will use the following variants of
Chernoff ’s inequality (see [14]):

Pr (𝑋 ≥ 𝜆 + 𝑡) ≤ exp(− 𝑡
2

2 (𝜆 + 𝑡/3)

) ,

Pr (𝑋 ≤ 𝜆 − 𝑡) ≤ exp(− 𝑡
2

2𝜆

) .

(6)
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Of course, it is easy to check that

𝛽
𝑛
= 1 −

(
𝑃
𝑛
−𝐾
𝑛

𝐾
𝑛

)

(
𝑃
𝑛

𝐾
𝑛

)

∼

𝐾
2

𝑛

𝑃
𝑛

, (7)

under the assumption that lim
𝑛→∞

(𝐾
2

𝑛
/𝑃

𝑛
) = 0, where 𝛽

𝑛
is

the probability that two nodes share at least one common key.
Throughout, we make use of the standard bounds

(

𝑛

𝑢

) ≤ (

𝑒𝑛

𝑢

)

𝑢

, (8)

valid for all 𝑢, 𝑛 = 1, 2, . . . with 𝑢 ≤ 𝑛. Finally, we note the
equation

(1 − 𝑝)
𝑚

∼ 𝑒
−𝑚𝑝 (9)

holds if𝑚𝑝2 → 0.

Proof of Statement (i) of Theorem 1. Let 𝛼
𝑛
= 𝜋𝑟

2

𝑛
, 𝛽

𝑛
=

1−(
𝑃
𝑛
−𝐾
𝑛

𝐾
𝑛

) / (
𝑃
𝑛

𝐾
𝑛

), where 𝛽
𝑛
is the probability that two nodes

share at least one common key in their key rings. By linearity
of expectation, 𝐸𝑋 = 𝐸(∑

𝑛

𝑖=1
𝑋
𝑖
) = 𝑛𝐸𝑋

𝑖
; hence

𝐸𝑋 = 𝑛𝐸𝑋
𝑖
= 𝑛 (1 − 𝛼

𝑛
𝛽
𝑛
)
𝑛−1

∼ 𝑛 exp (− (𝑛 − 1) 𝛼
𝑛
𝛽
𝑛
)

= 𝑛 exp(− (𝑛 − 1)
log 𝑛 + 𝑐

𝑛

𝑛

)

= 𝑛 exp (− log 𝑛 − 𝑐
𝑛
) exp(

log 𝑛 + 𝑐
𝑛

𝑛

)

∼ 𝑛 exp (− log 𝑛) exp (−𝑐
𝑛
) = exp (−𝑐

𝑛
) 󳨀→ ∞,

(10)

as 𝑐
𝑛
→ −∞. The second moment method now implies the

result we require, provided that we can show that Var𝑋 =

𝑜((𝐸𝑋)
2

). Now

Var𝑋 = 𝐸 (𝑋
2

) − (𝐸𝑋)
2

≥ 0, (11)

and so it suffices to show that 𝐸(𝑋2

) = (1 + 𝑜(1))(𝐸𝑋)
2. Note

that

𝐸 (𝑋
2

) = 𝐸𝑋 + 𝑛 (𝑛 − 1) 𝐸 (𝑋
1
𝑋
2
) , (12)

where 1, 2 are fixed nodes. Since 𝐸𝑋 → ∞, it therefore
suffices to prove that

𝑛 (𝑛 − 1) 𝐸 (𝑋
1
𝑋
2
)

(𝐸𝑋)
2

󳨀→ 1 as 𝑛 󳨀→ ∞. (13)

Note that𝑋
1
𝑋
2
take the value 1 exactly when node 1 and node

2 are both isolated. Consider two discs of radius 𝑟
𝑛
centered

at 𝑥
1
and 𝑥

2
; let 𝑑 = ‖𝑥

1
−𝑥

2
‖; the cross term 𝑛(𝑛−1)𝐸(𝑋

1
𝑋
2
)

is shown to be given by

𝑛 (𝑛 − 1) 𝐸 (𝑋
1
𝑋
2
) = 𝑛 (𝑛 − 1)Pr (𝑋

1
𝑋
2
= 1)

= 𝑛 (𝑛 − 1)Pr (𝑋
1
𝑋
2
= 1 | 𝑑 > 2𝑟

𝑛
)Pr (𝑑 > 2𝑟

𝑛
)

+ 𝑛 (𝑛 − 1)Pr (𝑋
1
𝑋
2
= 1 | 𝑟

𝑛
< 𝑑 ≤ 2𝑟

𝑛
)

⋅ Pr (𝑟
𝑛
< 𝑑 ≤ 2𝑟

𝑛
) + 𝑛 (𝑛 − 1)

⋅ Pr (𝑋
1
𝑋
2
= 1 | 0 ≤ 𝑑 ≤ 𝑟

𝑛
)Pr (0 ≤ 𝑑 ≤ 𝑟

𝑛
) .

(14)

Conditional on the range of 𝑑, we consider the following
three cases. In each case, the conditional joint probability of
two nodes being isolated can be obtained from [13].

(1) 𝑑 > 2𝑟
𝑛
: this case happens with the probability 1 −

4𝛼
𝑛
, and

Pr (𝑋
1
𝑋
2
= 1 | 𝑑 > 2𝑟

𝑛
) = (1 − 2𝛼

𝑛
𝛽
𝑛
)
𝑛−2

. (15)

(2) 𝑟
𝑛
< 𝑑 ≤ 2𝑟

𝑛
: this case happens with the probability

3𝛼
𝑛
, and

Pr (𝑋
1
𝑋
2
= 1 | 𝑟

𝑛
< 𝑑 ≤ 2𝑟

𝑛
)

≤ (𝐾
𝑛
+ 1) exp(− (𝑛 − 2) (2 −

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝛾
𝑛

𝛽
𝑛

− 2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

) 𝛼
𝑛
𝛽
𝑛
) ,

(16)

where 𝛾
𝑛
= 1 − (

𝑃
𝑛
−2𝐾
𝑛

𝐾
𝑛

) / (
𝑃
𝑛

𝐾
𝑛

) .

(3) 0 ≤ 𝑑 ≤ 𝑟
𝑛
: this case happens with the probability 𝛼

𝑛
,

and
Pr (𝑋

1
𝑋
2
= 1 | 0 ≤ 𝑑 ≤ 𝑟

𝑛
)

≤ exp(− (𝑛 − 2) (2 −
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝛾
𝑛

𝛽
𝑛

− 2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

) 𝛼
𝑛
𝛽
𝑛
) .

(17)

The upper bound on 𝑛(𝑛 − 1)𝐸(𝑋
1
𝑋
2
) that nodes 1 and

2 are isolated if 𝑟
𝑛
< 𝑑 ≤ 2𝑟

𝑛
and 0 ≤ 𝑑 ≤ 𝑟

𝑛
is obtained

together using (16) and (17). So 3𝑛(𝑛 − 1)𝛼
𝑛
Pr(𝑋

1
𝑋
2
= 1 |

𝑟
𝑛
≤ 𝑑 ≤ 2𝑟

𝑛
) + 𝑛(𝑛 − 1)𝛼

𝑛
Pr(𝑋

1
𝑋
2
= 1 | 0 ≤ 𝑑 ≤ 𝑟

𝑛
) is

upper-bounded as follows:

3𝑛 (𝑛 − 1) 𝛼
𝑛
Pr (𝑋

1
𝑋
2
= 1 | 𝑟

𝑛
≤ 𝑑 ≤ 2𝑟

𝑛
) + 𝑛 (𝑛 − 1)

⋅ 𝛼
𝑛
Pr (𝑋

1
𝑋
2
= 1 | 0 ≤ 𝑑 ≤ 𝑟

𝑛
)

≤

𝑛 (𝑛 − 1) (𝐾
𝑛
+ 1) 𝛼

𝑛

𝑛
2

exp(log 𝑛 [
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝛾
𝑛

𝛽
𝑛

− 2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

−

𝑐
𝑛
(2 −

󵄩
󵄩
󵄩
󵄩
𝛾
𝑛
/𝛽

𝑛
− 2

󵄩
󵄩
󵄩
󵄩
)

log 𝑛

+

(4 − 2 (
󵄩
󵄩
󵄩
󵄩
𝛾
𝑛
/𝛽

𝑛
− 2

󵄩
󵄩
󵄩
󵄩
)) 𝛼

𝑛
𝛽
𝑛

log 𝑛
]) ≤

1

√𝑛

.

(18)

See [13] for details.
From (14), (15), and (18), the term 𝑛(𝑛 − 1)𝐸(𝑋

1
𝑋
2
) is

bounded as

𝑛 (𝑛 − 1) (1 − 4𝛼
𝑛
) (1 − 2𝛼

𝑛
𝛽
𝑛
)
𝑛−2

≤ 𝑛 (𝑛 − 1) 𝐸 (𝑋
1
𝑋
2
) .

(19)
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The term 𝑛(𝑛 − 1)𝐸(𝑋
1
𝑋
2
) also satisfies

𝑛 (𝑛 − 1) 𝐸 (𝑋
1
𝑋
2
)

≤ 𝑛 (𝑛 − 1) (1 − 4𝛼
𝑛
) (1 − 2𝛼

𝑛
𝛽
𝑛
)
𝑛−2

+

1

√𝑛

.

(20)

Since 𝐸𝑋 = 𝑛(1 − 𝛼
𝑛
𝛽
𝑛
)
𝑛−1, if 𝑛 → ∞, we find that

𝑛 (𝑛 − 1) (1 − 4𝛼
𝑛
) (1 − 2𝛼

𝑛
𝛽
𝑛
)
𝑛−2

(𝐸𝑋)
2

󳨀→ 1

𝑛 (𝑛 − 1) (1 − 4𝛼
𝑛
) (1 − 2𝛼

𝑛
𝛽
𝑛
)
𝑛−2

+ 1/√𝑛

(𝐸𝑋)
2

󳨀→ 1.

(21)

The above two convergence formulas are true since 𝛼
𝑛
=

𝑑
𝑛
/𝑛, where 𝑑

𝑛
= 𝜔(log 𝑛), 𝑑

𝑛
= 𝑜(𝑛

(1−𝛿)/4

), and 𝛼
𝑛
𝛽
𝑛
=

(log 𝑛+𝑐
𝑛
)/𝑛.We see that (13) holds as required, which implies

that

Pr (𝑋 = 0) ≤

Var𝑋
(𝐸𝑋)

2
󳨀→ 0, (22)

as 𝑛 → ∞, which concludes the proof.

If 𝑛𝛼
𝑛
𝛽
𝑛

= log 𝑛 + 𝑐
𝑛
for any 𝑐

𝑛
→ ∞, we have

𝐸𝑋 → 0. Then using the first moment method, we see that
the probability Pr(𝑋 ≥ 1) ≤ 𝐸𝑋 → 0holds; this implies a.a.s.
there are no isolated nodes in random graph 𝐺(𝑃

𝑛
, 𝐾

𝑛
, 𝑟
𝑛
).

The upcoming corollary is immediate from the proof of
statement (i) of Theorem 1.

Corollary 2. In the model𝐺(𝑃
𝑛
, 𝐾

𝑛
, 𝑟
𝑛
), let𝐾

𝑛
≥ 2,𝐾

𝑛
, 𝑃

𝑛
→

∞, 𝐾2

𝑛
/𝑃

𝑛
→ 0, 𝑃

𝑛
≥ 𝑛, and

𝜋𝑟
2

𝑛

𝐾
2

𝑛

𝑃
𝑛

=

log 𝑛 + 𝑐
𝑛

𝑛

. (23)

(i) If 𝑐
𝑛

→ −∞ as 𝑛 → ∞, then whp 𝐺(𝑃
𝑛
, 𝐾

𝑛
, 𝑟
𝑛
)

contains at least an isolated node.
(ii) If 𝑐

𝑛
→ ∞ as 𝑛 → ∞, then whp 𝐺(𝑃

𝑛
, 𝐾

𝑛
, 𝑟
𝑛
) does

not contain an isolated node.

Proof of Statement (ii) of Theorem 1. We consider the unit-
area square on R = [0, 1]

2; R is divided into square cells of
size 𝑠

𝑛
× 𝑠

𝑛
, where 1/𝑠

𝑛
is an integer. Let the center of square

cell be the center of the circle cell and let the diagonal line of
the square cell be the diameter of the circle cell. In this way,R
is entirely covered by the circle cells. Also we let 𝑟

𝑛
= √2𝑠

𝑛
;

this means that two nodes in the same circle cell are within
communicating range of each other.

Recall that 𝑛𝛼
𝑛
= 𝑑

𝑛
, where 𝛼

𝑛
= 𝜋𝑟

2

𝑛
, 𝑑

𝑛
= 𝜔(log 𝑛) and

𝑑
𝑛
= 𝑜(𝑛

(1/4)(1−𝛿)

). In order to complete the proof, we show
the following two lemmas.

Lemma 3. (i) Every circle cell is dense; specifically, whp every
circle cell has Θ(𝑛𝑟2

𝑛
) nodes in it.

(ii)The overlapping structure of any two adjacent circle cells
whp has Θ(𝑛𝑠2

𝑛
) nodes.

Proof. (i) First, we analyze the denseness of every circle cell;
let𝑁

𝑖
denote the number of nodes in circle cell 𝑖, 1 ≤ 𝑖 ≤ 1/𝑠2

𝑛
.

Obviously,𝑁
𝑖
is a binomial random variable with parameters

(𝑛, (𝜋/2)𝑠
2

𝑛
). Let 𝑊

𝑖
denote the event that the circle cell 𝑖 is

not dense, in other words, for any 0 < 𝛿
1
< 1/2, 𝛿

1
≤ 𝛿,

|𝑁
𝑖
− (𝜋/2)𝑛𝑠

2

𝑛
| ≥ 𝛿

1
(𝜋/2)𝑛𝑠

2

𝑛
. Using Chernoff ’s inequalities

on𝑁
𝑖
, we have

Pr(𝑁
𝑖
≤ (1 − 𝛿

1
)

𝜋

2

𝑛𝑠
2

𝑛
) ≤ exp (−𝜋

4

𝑛𝑠
2

𝑛
𝛿
2

1
) ,

Pr(𝑁
𝑖
≥ (1 + 𝛿

1
)

𝜋

2

𝑛𝑠
2

𝑛
) ≤ exp (−𝜋

8

𝑛𝑠
2

𝑛
𝛿
2

1
) .

(24)

Consequently

Pr (𝑊
𝑖
= 1) ≤ 2 exp(−

𝜋𝑛𝑠
2

𝑛
𝛿
2

1

8

)

= 2 exp(−
𝑑
𝑛
𝛿
2

1

16

) ,

Pr(
1/𝑠
2

𝑛

⋃

𝑖=1

𝑊
𝑖
= 1) ≤

1

𝑠
2

𝑛

Pr (𝑊
𝑖
= 1) ≤ exp(−

𝑑
𝑛
𝛿
2

1

32

)

󳨀→ 0,

(25)

which implies that every circle cell is dense.
(ii) Now we consider the nodes in the overlapping

structure of any two adjacent circle cells. Let 𝑁󸀠 denote the
number of nodes in the overlapping structure of any two
adjacent circle cells. Clearly𝑁󸀠 is a binomial random variable
with parameters (𝑛, ((𝜋−2)/4)𝑠2

𝑛
). For any 0 < 𝛿

2
< 1, we also

use Chernoff ’s inequalities on𝑁󸀠:

Pr(𝑁󸀠

≤ (1 − 𝛿
2
)

𝜋 − 2

4

𝑛𝑠
2

𝑛
) ≤ exp(−𝜋 − 2

8

𝑛𝑠
2

𝑛
𝛿
2

2
) ,

Pr(𝑁󸀠

≥ (1 + 𝛿
2
)

𝜋 − 2

4

𝑛𝑠
2

𝑛
) ≤ exp(−𝜋 − 2

16

𝑛𝑠
2

𝑛
𝛿
2

2
) .

(26)

From the two above inequalities we may easily get

Pr(
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑁
󸀠

−

𝜋 − 2

4

𝑛𝑠
2

𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝛿
2

𝜋 − 2

4

𝑛𝑠
2

𝑛
)

≤ 2 exp (−𝜋 − 2
16

𝑛𝑠
2

𝑛
𝛿
2

2
) = 2 exp(−𝜋 − 2

32𝜋

𝑑
𝑛
𝛿
2

2
)

󳨀→ 0.

(27)

The above expression implies that𝑁󸀠 is very likely close to its
expectation ((𝜋 − 2)/4)𝑛𝑠2

𝑛
. So we get our result that whp the

overlapping structure of any two adjacent circle cells has at
least one common node.

Lemma 4. The nodes in any circle cell form a connected
subgraph; that is, for any fixed 1 ≤ 𝑖 ≤ 1/𝑠2

𝑛
circle cell 𝑖 contains
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no components of size 𝑙, 1 ≤ 𝑙 ≤ 𝑁
𝑖
/2, where𝑁

𝑖
is the number

of nodes in circle cell 𝑖.

Proof. This part takes a slightly different approach; we con-
sider the subgraph formed by the nodes in circle cell 𝑖; denote
this subgraph by𝐺

𝑖
.Wewill show that for any circle cell 𝑖 there

are no components of size 1, 2, . . . , 𝑁
𝑖
/2 in 𝐺

𝑖
.

Consider any fixed circle cell 𝑖, 1 ≤ 𝑖 ≤ 1/𝑠
2

𝑛
, for any

nonempty subset 𝐿 of nodes in circle cell 𝑖; that is, 𝐿 ⊆

{1, 2, . . . , 𝑁
𝑖
}, with 1 ≤ |𝐿| ≤ 𝑁

𝑖
/2; define the following

events.
𝐶
𝑖
(𝐿): a subgraph induced by nodes in 𝐿 is connected.

𝐵
𝑖
(𝐿): 𝐿 is isolated in circle cell 𝑖; that is, there are no edges

between the nodes in 𝐿 and the nodes in the complement
𝐿
𝐶

= {1, 2, . . . , 𝑁
𝑖
} − 𝐿. Consider

𝐴
𝑖
(𝐿) = 𝐵

𝑖
(𝐿) ∩ 𝐶

𝑖
(𝐿) ,

𝐷
𝑖
=

⌈𝑁
𝑖
/2⌉

⋃

𝑙=1

⋃

𝐿:|𝐿|=𝑙

𝐴
𝑖
(𝐿) .

(28)

Further, let 𝐶
𝑖,𝑙
and 𝐴

𝑖,𝑙
denote 𝐶

𝑖
(𝐿) and 𝐴

𝑖
(𝐿) with |𝐿| = 𝑙,

respectively.Then the sufficient condition for every circle cell
a.a.s. containing no components of size 𝑙 (1 ≤ 𝑙 ≤ 𝑁

𝑖
/2) is to

have Pr(𝐷
𝑖
)/𝑠

2

𝑛
→ 0. Conditioned on𝑊

𝑖
, we have

Pr (𝐷
𝑖
) = ∑

𝑗∈{0,1}

Pr (𝐷
𝑖
| 𝑊

𝑖
= 𝑗)Pr (𝑊

𝑖
= 𝑗)

≤ Pr (𝐷
𝑖
| 𝑊

𝑖
= 0) + Pr (𝑊

𝑖
= 1) .

(29)

The above inequality uses bounds on the factorial, Pr(𝑊
𝑖
=

0) ≤ 1 and Pr(𝐷
𝑖
| 𝑊

𝑖
= 1) ≤ 1; from Lemma 3, we get

Pr(𝑊
𝑖
= 1)/𝑠

2

𝑛
→ 0; thus we focus on showing that Pr(𝐷

𝑖
|

𝑊
𝑖
= 0)/𝑠

2

𝑛
→ 0. Note that

Pr (𝐷
𝑖
| 𝑊

𝑖
= 0) = Pr(

⌈𝑁
𝑖
/2⌉

⋃

𝑙=1

⋃

𝐿:|𝐿|=𝑙

𝐴
𝑖,𝑙
)

≤

⌈𝑁
𝑖
/2⌉

∑

𝑙=1

(

𝑁
𝑖

𝑙

)Pr (𝐴
𝑖,𝑙
) .

(30)

We let 𝑈
𝑖,𝑙

denote the number of distinct keys in the
component of size 𝑙 in 𝐺

𝑖
. Adapting [5], for any 𝑥 =

𝐾
𝑛
, . . . ,min{𝑙𝐾

𝑛
, 𝑃

𝑛
}, we have

Pr (𝐴
𝑖,𝑙
) ≤ Pr (𝑈

𝑖,𝑙
≤ 𝑥) exp(− (𝑁

𝑖
− 𝑙)

𝐾
2

𝑛

𝑃
𝑛

)

+ Pr (𝐶
𝑖,𝑙
) exp(− (𝑁

𝑖
− 𝑙)

𝐾
𝑛
(𝑥 + 1)

𝑃
𝑛

) .

(31)

From [5], we know that

Pr (𝑈
𝑖,𝑙
≤ 𝑥) ≤ (

𝑃
𝑛

𝑥

)(

𝑥

𝑃
𝑛

)

𝑙𝐾
𝑛

Pr (𝐶
𝑖,𝑙
) ≤ 𝑙

𝑙−2

𝛽
𝑙−1

𝑛
.

(32)

First we use the standard Poissonization technique [7, 15]
to show the probability of having isolated nodes in any of the
circle cells. Denote the circle 𝑖 by 𝐴

𝑖
; let 𝐼

𝑖
= 1 be the event

that node 𝑖 is isolated in𝐴
𝑖
, and let𝐷

𝑟
𝑛

(V̂
𝑖
) be the intersection

of 𝐴
𝑖
and the disk centered at position V̂

𝑖
∈ 𝐴

𝑖
with radius

𝑟
𝑛
, where node 𝑖 is at position V̂

𝑖
. Similar to the discussion in

[16], the number of nodes within 𝐷
𝑟
𝑛

(V̂
𝑖
) follows a Poisson

distribution with mean 𝑛𝐷
𝑟
𝑛

(V̂
𝑖
); and to have an edge with

𝑖, a node not only has to be within a 𝐷
𝑟
𝑛

(V̂
𝑖
) but also has

to share at least a key with node 𝑖, so the number of nodes
neighboring to 𝑖 follows a Poisson distribution with mean
𝑛𝛽

𝑛
𝐷
𝑟
𝑛

(V̂
𝑖
). Integrating V̂

𝑖
over 𝐴

𝑖
, the probability that node

𝑖 is isolated in 𝐴
𝑖
is given by

Pr (𝐼
𝑖
= 1) = ∫

𝐴
𝑖

𝑒
−𝑛𝛽
𝑛
|𝐷
𝑟𝑛
(V̂
𝑖
)|

𝑑V̂
𝑖
. (33)

The probability that there are no isolated nodes in any of the
circle cells is bounded below:

1

𝑠
2

𝑛

𝑁
𝑖
Pr (𝐼

𝑖
= 1) ≤

1

𝑠
2

𝑛

1 + 𝛿
1

2

𝑛𝜋𝑠
2

𝑛
∫

𝐴
𝑖

𝑒
−𝑛𝛽
𝑛
|𝐷
𝑟𝑛
(V̂
𝑖
)|

𝑑V̂
𝑖

≤

1 + 𝛿
1

2

𝑛𝜋 exp(−𝑛𝛽
𝑛

𝜋

2

𝑠
2

𝑛
)
󵄨
󵄨
󵄨
󵄨
𝐴
𝑖

󵄨
󵄨
󵄨
󵄨

≤

1 + 𝛿
1

2

𝑛𝜋 exp(−
2 log 𝑛 + 𝑐

𝑛

4

)

𝜋

2

𝑠
2

𝑛

≤

1 + 𝛿
1

8

𝜋𝑑
𝑛
exp(−

2 log 𝑛 + 𝑐
𝑛

4

)

≤

1 + 𝛿
1

8

𝜋 exp(−1
2

log 𝑛 + log 𝑑
𝑛
) .

(34)

The second step and the third step are obtained since
|𝐷

𝑟
𝑛

(V̂
𝑖
)| = (𝜋/2)𝑠

2

𝑛
and |𝐴

𝑖
| = (𝜋/2)𝑠

2

𝑛
, respectively. Since

𝑑
𝑛
= 𝑜(𝑛

(1/4)(1−𝛿)

), we get

1

𝑠
2

𝑛

𝑁
𝑖
Pr (𝐼

𝑖
= 1) 󳨀→ 0. (35)

Next we prove that every circle cell 𝑖 contains no compo-
nent of size 𝑙, 2 ≤ 𝑙 ≤ 𝑁

𝑖
/2. The sum term in (30) is evaluated

in following three cases based on the size of the component
𝐿.

Case 1 (2 ≤ 𝑙 ≤ 𝑅). In the case, fewer than (1 − 𝜖)𝑙𝐾
𝑛
keys are

assigned to the component 𝐿, where 0 < 𝛿
1
/(1 − 𝛿

1
) < 𝜖 < 1,

and 𝑅 is an integer. Note that

Pr (𝐴
𝑖,𝑙
) ≤ Pr (𝑈

𝑖,𝑙
≤ 𝑥) exp(− (𝑁

𝑖
− 𝑙)

𝐾
2

𝑛

𝑃
𝑛

)

+ Pr (𝐶
𝑖,𝑙
) exp(− (𝑁

𝑖
− 𝑙)

𝐾
𝑛
(𝑥 + 1)

𝑃
𝑛

) .

(36)
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First, we will give an upper bound on Pr(𝑈
𝑖,𝑙
≤ 𝑥) because

Pr (𝑈
𝑖,𝑙
≤ 𝑥) = Pr (𝑈

𝑖,𝑙
≤ (1 − 𝜖) 𝑙𝐾

𝑛
)

≤ (

𝑃
𝑛

(1 − 𝜖) 𝑙𝐾
𝑛

)(

(1 − 𝜖) 𝑙𝐾
𝑛

𝑃
𝑛

)

𝑙𝐾
𝑛

≤ (

𝑒𝑃
𝑛

(1 − 𝜖) 𝑙𝐾
𝑛

)

(1−𝜖)𝑙𝐾
𝑛

(

(1 − 𝜖) 𝑙𝐾
𝑛

𝑃
𝑛

)

𝑙𝐾
𝑛

≤ 𝑒
𝑙𝐾
𝑛
(

𝑙𝐾
𝑛

𝑃
𝑛

)

𝜖𝐾
𝑛
𝑙

.

(37)

Since 𝑃
𝑛
≥ 𝑛 and 𝑛𝜋𝑟

2

𝑛
= 𝑑

𝑛
, where 𝑑

𝑛
= 𝜔(log 𝑛), 𝑑

𝑛
=

𝑜(𝑛
(1/4)(1−𝛿)

), we have

𝐾
𝑛
𝑙

𝑃
𝑛

= √

𝑃
𝑛
(2 log 𝑛 + 𝑐

𝑛
)

𝑑
𝑛

𝑙

𝑃
𝑛

≤

𝑙

𝑑
𝑛

√2 log 𝑛

≤ 𝑅 (log 𝑛)−1/2 .

(38)

Since 𝐾
𝑛
→ ∞ we have 𝜀𝐾

𝑛
→ ∞ and thus for sufficiently

large 𝑛

Pr (𝑈
𝑖,𝑙
≤ 𝑥) = Pr (𝑈

𝑖,𝑙
≤ (1 − 𝜖) 𝑙𝐾

𝑛
)

≤ [(

𝑒
1/𝜀

𝐾
𝑛
𝑙

𝑃
𝑛

)

𝜀𝐾
𝑛

]

𝑙

≤ 𝑛
−𝑙

.

(39)

Then we have

1

𝑠
2

𝑛

∑

𝐿

𝑃 (𝑈
𝑖,𝑙
≤ 𝑥) exp(− (𝑁

𝑖
− 𝑙)

𝐾
2

𝑛

𝑃
𝑛

)

≤

1

𝑠
2

𝑛

𝑅

∑

𝑙=2

(

𝑁
𝑖

𝑙

) 𝑃 (𝑈
𝑖,𝑙
≤ 𝑥) exp(− (𝑁

𝑖
− 𝑙)

𝐾
2

𝑛

𝑃
𝑛

)

≤

1

𝑠
2

𝑛

𝑅

∑

𝑙=2

(

𝑁
𝑖

𝑙

) 𝑛
−𝑙

𝑛
−(1−𝛿

1
)/2+2𝑅/𝑑

𝑛

≤

1

𝑠
2

𝑛

𝑛
−(1−𝛿

1
)/2+2𝑅/𝑑

𝑛
(𝑁

2

𝑖
𝑛
−2

+ ⋅ ⋅ ⋅ + 𝑁
𝑅

𝑖
𝑛
−𝑅

)

≤

1

𝑠
2

𝑛

𝑛
−(1−𝛿

1
)/2+2𝑅/𝑑

𝑛
(

1 + 𝛿
1

2

𝑛𝜋𝑠
2

𝑛
)

2

𝑛
−2

(1 + 𝑜 (1))

≤

𝜋 (1 + 𝛿
1
)
2

8

𝑑
𝑛
𝑛
−(1−𝛿

1
)/2+2𝑅/𝑑

𝑛
−1

󳨀→ 0.

(40)

The second inequality is true since𝑁
𝑖
≥ ((1 − 𝛿

1
)/2)𝑛𝜋𝑠

2

𝑛
and

2𝑛𝜋𝑠
2

𝑛
= 𝑑

𝑛
.The last step holds since 𝑑

𝑛
satisfies 𝑑

𝑛
= 𝜔(log 𝑛)

and 𝑑
𝑛
= 𝑜(𝑛

(1/4)(1−𝛿)

).

The following term satisfies

1

𝑠
2

𝑛

∑

𝐿

Pr (𝐶
𝑖,𝑙
) exp(− (𝑁

𝑖
− 𝑙)

𝐾
𝑛
(𝑥 + 1)

𝑃
𝑛

)

=

1

𝑠
2

𝑛

𝑅

∑

𝑙=2

(

𝑁
𝑖

𝑙

)Pr (𝐶
𝑖,𝑙
) exp(− (𝑁

𝑖
− 𝑙)

𝐾
𝑛
(𝑥 + 1)

𝑃
𝑛

) .

(41)

Because |𝑁
𝑖
− (𝜋/2)𝑛𝑠

2

𝑛
| ≤ 𝛿

1
(𝜋/2)𝑛𝑠

2

𝑛
, we also have

1

𝑠
2

𝑛

∑

𝐿

Pr (𝐶
𝑖,𝑙
) exp(− (𝑁

𝑖
− 𝑙)

𝐾
𝑛
(𝑥 + 1)

𝑃
𝑛

) ≤

1

𝑠
2

𝑛

⋅

𝑅

∑

𝑙=2

(

𝑒𝑁
𝑖

𝑙

)

𝑙

𝑙
𝑙−2

(

𝐾
2

𝑛

𝑃
𝑛

)

𝑙−1

⋅ exp(− (1 − 𝜖)
𝑙 (𝑁

𝑖
− 𝑙)

𝑁
𝑖

𝐾
2

𝑛
𝑁
𝑖

𝑃
𝑛

) ≤

1

𝑠
2

𝑛

⋅

𝑅

∑

𝑙=2

(𝑒 (1 + 𝛿
1
) /2)

𝑙

𝑙
2

𝑛𝜋𝑠
2

𝑛
(𝑛𝜋𝑠

2

𝑛

𝐾
2

𝑛

𝑃
𝑛

)

𝑙−1

⋅ exp(− (1 − 𝜖)
𝑁
𝑖
− 𝑙

𝑁
𝑖

𝑙𝐾
2

𝑛

𝑃
𝑛

(1 − 𝛿
1
)

𝑛𝜋𝑠
2

𝑛

2

)

≤

𝑅

∑

𝑙=2

(𝑒 (1 + 𝛿
1
) /2)

𝑙

𝑙
2

𝑛𝜋(

2 log 𝑛 + 𝑐
𝑛

2

)

𝑙−1

⋅ exp(−
(1 − 𝛿

1
) (1 − 𝜖)

2

𝑙 (𝑁
𝑖
− 𝑙)

𝑁
𝑖

2 log 𝑛 + 𝑐
𝑛

2

)

≤

𝑅

∑

𝑙=2

(𝑒 (1 + 𝛿
1
) /2)

𝑙

𝑙
2

𝜋

⋅ exp((𝑙 − 1) log(
2 log 𝑛 + 𝑐

𝑛

2

)

− 𝑙

(1 − 𝛿
1
) (1 + 𝜖)

2

log 𝑛 + log 𝑛) .

(42)

Since 𝛿
1
/(1 − 𝛿

1
) < 𝜖, we get (1 − 𝛿

1
)(1 + 𝜖) > 1. Then for

sufficiently large 𝑛, from above discussion, we have

1

𝑠
2

𝑛

𝑅

∑

𝑙=2

(

𝑁
𝑖

𝑙

)Pr (𝐶
𝑖,𝑙
) exp(− (𝑁

𝑖
− 𝑙)

𝐾
𝑛
(𝑥 + 1)

𝑃
𝑛

)

󳨀→ 0.

(43)

Hence the probability that the subgraph 𝐺
𝑖
has a compo-

nent of size 𝑙, 2 ≤ 𝑙 ≤ 𝑅 is

1

𝑠
2

𝑛

𝑅

∑

𝑙=2

(

𝑁
𝑖

𝑙

)Pr (𝐴
𝑖,𝑙
) 󳨀→ 0. (44)
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Case 2 (𝑅+1 ≤ 𝑙 ≤ 𝐿
1
(𝑛)).Here𝐿

1
(𝑛) = min{𝑃

𝑛
/𝐾

𝑛
, 𝑁

𝑖
/2}. In

this case, we assume that the component 𝐿 is assigned at most
(1/4)𝐾

𝑛
𝑙 keys. The probability that the subgraph 𝐺

𝑖
contains

a component of size 𝑙, 𝑅 + 1 ≤ 𝑙 ≤ min{𝑃
𝑛
/𝐾

𝑛
, 𝑁

𝑖
/2}, is

∑

𝐿

Pr (𝐴
𝑖,𝑙
)

≤ ∑

𝐿

Pr (𝑈
𝑖,𝑙
≤ 𝑥)

+∑

𝐿

Pr (𝐶
𝑖,𝑙
) exp(− (𝑁

𝑖
− 𝑙)

𝐾
𝑛
(𝑥 + 1)

𝑃
𝑛

) .

(45)

The above bound is true since the expression exp(−(𝑁
𝑖
−

𝑙)𝐾
2

𝑛
/𝑃

𝑛
) ≤ 1, where we are summing over all subsets of nodes

of size 𝑙, 𝑅+ 1 ≤ 𝑙 ≤ min{𝑃
𝑛
/𝐾

𝑛
, 𝑁

𝑖
/2}. We wish to prove that

this sum tends to 0 as 𝑛 → ∞.
Now we prove that ∑

𝐿
Pr(𝑈

𝑖,𝑙
≤ 𝑥) → 0 as 𝑛 → ∞.

Similar to the argument in the proof of case 1, we get

∑

𝐿

Pr (𝑈
𝑖,𝑙
≤ 𝑥) ≤

𝐿
1
(𝑛)

∑

𝑙=𝑅+1

(

𝑁
𝑖

𝑙

)(

𝑃
𝑛

1

4

𝑙𝐾
𝑛

)(

𝑙𝐾
𝑛

4𝑃
𝑛

)

𝑙𝐾
𝑛

≤

𝐿
1
(𝑛)

∑

𝑙=𝑅+1

(

𝑃
𝑛

𝑙

)(

𝑃
𝑛

1

4

𝑙𝐾
𝑛

)(

𝑙𝐾
𝑛

4𝑃
𝑛

)

𝑙𝐾
𝑛

≤

𝐿
1
(𝑛)

∑

𝑙=𝑅+1

(

𝑃
𝑛

1

4

𝑙𝐾
𝑛

)

2

(

𝑙𝐾
𝑛

4𝑃
𝑛

)

𝑙𝐾
𝑛

≤

min{𝑃
𝑛
/𝐾
𝑛
,𝑁
𝑖
/2}

∑

𝑙=1

(

𝑒𝐾
𝑛
𝑙

4𝑃
𝑛

)

𝐾
𝑛
𝑙/2

.

(46)

The summand in this last expression may be written in the
form (𝑦

𝑦

)
𝑡, where 𝑦 = 𝑒𝐾

𝑛
𝑙/4𝑃

𝑛
and 𝑡 = 2𝑃

𝑛
/𝑒. Since 𝑦𝑦

has no internal maximal value, our summand is maximized
at the extremes of its range. Let 𝜇 denote the maximum of the
summand; here

𝜇 = max{(
𝑒𝐾

𝑛

4𝑃
𝑛

)

𝐾
𝑛
/2

, (

𝑒

4

)

𝑃
𝑛
/2

, (

𝑒

4

)

𝑁
𝑖
𝐾
𝑛
/4

}

= 𝑜 (𝑛
−1

) .

(47)

As 𝐾
𝑛
→ ∞, we have

1

𝑠
2

𝑛

𝐿
1
(𝑛)

∑

𝑙=𝑅+1

(

𝑁
𝑖

𝑙

)Pr (𝑈
𝑖,𝑙
≤ 𝑥) ≤

1

𝑠
2

𝑛

(

𝑁
𝑖

2

+ 1) 𝜇

≤

1

𝑠
2

𝑛

1 + 𝛿
1

2

𝑛𝜋𝑠
2

𝑛
𝜇 ≤

1 + 𝛿
1

2

𝑛𝜋𝜇 = 𝑜 (1) .

(48)

Now consider the second term in (45)

1

𝑠
2

𝑛

𝐿
1
(𝑛)

∑

𝑙=𝑅+1

(

𝑁
𝑖

𝑙

)Pr (𝐶
𝑖,𝑙
) 𝑒

−(𝑁
𝑖
−𝑙)𝐾
𝑛
(𝑥+1)/𝑃

𝑛
≤

1

𝑠
2

𝑛

⋅

𝐿
1
(𝑛)

∑

𝑙=𝑅+1

(

𝑁
𝑖

𝑙

) 𝑙
𝑙−2

𝛽
𝑙−1

𝑛
exp(− (𝑁

𝑖
− 𝑙)

𝑙𝐾
2

𝑛

4𝑃
𝑛

) ≤

1

𝑠
2

𝑛

⋅

𝐿
1
(𝑛)

∑

𝑙=𝑅+1

((1 + 𝛿
1
) 𝑒)

𝑙

𝑙
2

(

𝜋

2

𝑛𝑠
2

𝑛
)(

𝜋

2

𝑛𝑠
2

𝑛

𝐾
2

𝑛

𝑃
𝑛

)

𝑙−1

⋅ exp(− (𝑁
𝑖
− 𝑙)

𝑙𝐾
2

𝑛

4𝑃
𝑛

)

≤

𝐿
1
(𝑛)

∑

𝑙=𝑅+1

((1 + 𝛿
1
) 𝑒)

𝑙

𝑙
2

𝜋𝑛

2

(

2 log 𝑛 + 𝑐
𝑛

4

)

𝑙−1

⋅ exp(−(1 − 𝛿
1
−

2𝑙

𝜋𝑛𝑠
2

𝑛

)

(𝑙 − 1) log 𝑛
8

) .

(49)

Rewrite the above using the notation

𝑎
𝑛
(𝑙) =

(1 + 𝛿
1
) 𝑒 (2 log 𝑛 + 𝑐

𝑛
)

4 exp ((1 − 𝛿
1
− 2𝑙/𝜋𝑛𝑠

2

𝑛
) log 𝑛/8)

, (50)

and then

𝐿
1
(𝑛)

∑

𝑙=𝑅+1

((1 + 𝛿
1
) 𝑒)

𝑙

𝑙
2

𝜋𝑛

2

(

2 log 𝑛 + 𝑐
𝑛

4

)

𝑙−1

⋅ exp(−(1 − 𝛿
1
−

2𝑙

𝜋𝑛𝑠
2

𝑛

)

(𝑙 − 1) log 𝑛
8

) ≤

𝜋𝑛

2

⋅ ∑

𝑙>𝑅

𝑎
𝑛
(𝑙)

𝑙−1

≤

𝜋𝑛

2

𝑎
𝑛
(𝑙)

𝑅

1 − 𝑎
𝑛
(𝑙)

.

(51)

The last step is true since 1 − 𝛿
1
− 2𝑙/𝜋𝑛𝑠

2

𝑛
> 0, so for some

appropriate 𝑎 > 0,

1

𝑠
2

𝑛

𝐿
1
(𝑛)

∑

𝑙=𝑅+1

(

𝑁
𝑖

𝑙

)Pr (𝐶
𝑖,𝑙
) exp(− (𝑁

𝑖
− 𝑙)

𝐾
𝑛
(𝑥 + 1)

𝑃
𝑛

)

≤

1

𝑛
𝑎
.

(52)

Case 3 (𝐿
1
(𝑛) < 𝑙 ≤ 𝑁

𝑖
/2: 𝐿

1
(𝑛) = min{𝑃

𝑛
/𝐾

𝑛
, 𝑁

𝑖
/2}). In this

case, the component 𝐿 of circle cell 𝑖 is assigned at most 𝑃
𝑛
/4

keys; we have that

∑

𝐿

Pr (𝐴
𝑖,𝑙
)

≤ ∑

𝐿

Pr (𝑈
𝑖,𝑙
≤ 𝑥)

+∑

𝐿

Pr (𝐶
𝑖,𝑙
) exp(− (𝑁

𝑖
− 𝑙)

𝐾
𝑛
(𝑥 + 1)

𝑃
𝑛

) .

(53)
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Now we first show (1/𝑠
2

𝑛
) ∑

𝐿
Pr(𝑈

𝑖,𝑙
≤ 𝑥) → 0 as 𝑛 → ∞:

1

𝑠
2

𝑛

∑

𝐿

Pr (𝑈
𝑖,𝑙
≤ 𝑥) ≤

1

𝑠
2

𝑛

𝑁
𝑖
/2

∑

𝑙=𝐿
1
(𝑛)

(

𝑁
𝑖

𝑙

)(

𝑃
𝑛

1

4

𝑃
𝑛

)(

1

4

)

𝑙𝐾
𝑛

≤

1

𝑠
2

𝑛

𝑁
𝑖
/2

∑

𝑙=𝐿
1
(𝑛)

(

𝑁
𝑖

𝑙

) (4𝑒)
𝑃
𝑛
/4

4
−𝑃
𝑛
≤

1

𝑠
2

𝑛

2
𝑁
𝑖 exp(

𝑃
𝑛

4

−

3

2

𝑃
𝑛
log 2) ≤ exp(1 + 𝛿1

4

𝑑
𝑛
log 2 − 3

2

𝑃
𝑛
log 2

+

𝑃
𝑛

4

− log(
𝑑
𝑛

2𝜋

) + log 𝑛)

≤ exp(−𝑃
𝑛
((

3

2

log 2 − 1

4

) +

1 + 𝛿
1

4

𝑑
𝑛

𝑃
𝑛

log 2

−

log (𝑑
𝑛
/2𝜋)

𝑃
𝑛

+

log 𝑛
𝑃
𝑛

)) .

(54)

The third inequality uses ∑𝑁
𝑖
/2

𝑙=𝐿
1
(𝑛)
(
𝑁
𝑖

𝑙
) ≤ 2

𝑁
𝑖 . Since 𝑃

𝑛
>

𝑛, 𝑑
𝑛
= 𝑜(𝑛

(1/4)(1−𝛿)

), the final expression tends to 0.
The term (1/𝑠

2

𝑛
) ∑

𝐿
Pr(𝐶

𝑖,𝑙
) exp(−(𝑁

𝑖
− 𝑙)𝐾

𝑛
(𝑥 + 1)/𝑃

𝑛
) is

bounded as follows.

1

𝑠
2

𝑛

𝑁
𝑖
/2

∑

𝑙=𝐿
1
(𝑛)

(

𝑁
𝑖

𝑙

)Pr (𝐶
𝑖,𝑙
) exp(− (𝑁

𝑖
− 𝑙)

𝐾
𝑛
(𝑥 + 1)

𝑃
𝑛

)

≤

1

𝑠
2

𝑛

𝑁
𝑖
/2

∑

𝑙=𝐿
1
(𝑛)

(

𝑁
𝑖

𝑙

) exp(−
𝐾
𝑛
𝑁
𝑖

8

) ≤ exp(−1
8

𝑁
𝑖
𝐾
𝑛

+ 𝑁
𝑖
log 2 − log 𝑠2

𝑛
) ≤ exp(−1 − 𝛿1

2

𝑛𝜋𝑠
2

𝑛
(

𝐾
𝑛

8

− log 2) − log(
𝑑
𝑛

2𝜋

) + log 𝑛) ≤ exp(−
𝑑
𝑛

4

(1

− 𝛿
1
) (

𝐾
𝑛

8

− log 2) − log(
𝑑
𝑛

2𝜋

) + log 𝑛)

≤ exp(−𝑑
𝑛
(

1 − 𝛿
1

4

(

𝐾
𝑛

8

− log 2) −
log (𝑑

𝑛
/2𝜋)

𝑑
𝑛

+

log 𝑛
𝑑
𝑛

)) .

(55)

The first inequality uses Pr(𝐶
𝑖,𝑙
) ≤ 1 and 𝑙 < 𝑁

𝑖
/2. Since 𝑑

𝑛
=

𝜔(log 𝑛) and 𝑑
𝑛
= 𝑜(𝑛

(1/4)(1−𝛿)

), then for any𝐾
𝑛
> 8 log 2, the

last expression tends to 0.
Therefore the probability that the subgraph 𝐺

𝑖
has a

component of size 𝑙, 𝐿
1
(𝑛) < 𝑙 ≤ 𝑁

𝑖
/2, 𝐿

1
(𝑛) =

min{𝑃
𝑛
/𝐾

𝑛
, 𝑁

𝑖
/2} is

1

𝑠
2

𝑛

𝑁
𝑖
/2

∑

𝑙=𝐿
1
(𝑛)

(

𝑁
𝑖

𝑙

)Pr (𝐴
𝑖,𝑙
) 󳨀→ 0. (56)

From the above discussions, we have shown that for every
circle cell 𝑖, 1 ≤ 𝑖 ≤ 1/𝑠

2

𝑛
, the probability for the existence

of component of size 𝑙, 1 ≤ 𝑙 ≤ 𝑁
𝑖
/2, tends to 0 as 𝑛 tends to

infinity, which concludes Lemma 4.

We have proved that the overlapping structure of two
adjacent circle cells contains at least one node and every
circle cell is connected.The above two conditions ensure that
𝐺(𝑃

𝑛
, 𝐾

𝑛
, 𝑟
𝑛
) is connected. Combining Lemma 3with Lemma

4, the statement (ii) of Theorem 1 is established.

4. Conclusion and Future Work

Connectivity in 𝐺(𝑃
𝑛
, 𝐾

𝑛
, 𝑟
𝑛
) is the core subject of our

paper. We obtain the zero-one law for graph connectivity in
𝐺(𝑃

𝑛
, 𝐾

𝑛
, 𝑟
𝑛
) under the given conditions. In order to get zero-

one law for graph connectivity, we initially use the second
moment method to get the 0-statement; then we show that
any two adjacent circle cells share at least one common node
and prove that any circle cell is connected to get the 1-
statement.

We conjecture that it is possible to prove a sharper con-
nectivity threshold for random graph 𝐺(𝑃

𝑛
, 𝐾

𝑛
, 𝑟
𝑛
). Indeed,

we believe that the following conjecture is true.

Conjecture 5. Let 𝐾
𝑛
≥ 2, 𝐾

𝑛
, 𝑃

𝑛
→ ∞, 𝐾2

𝑛
/𝑃

𝑛
→ 0, 𝑃

𝑛
≥

𝑛, and

𝜋𝑟
2

𝑛

𝐾
2

𝑛

𝑃
𝑛

=

log 𝑛 + 𝑐
𝑛

𝑛

. (57)

(i) If 𝑐
𝑛
→ −∞, then whp 𝐺(𝑃

𝑛
, 𝐾

𝑛
, 𝑟
𝑛
) is disconnected.

(ii) If 𝑐
𝑛
→ 𝑐, then the probability that 𝐺(𝑃

𝑛
, 𝐾

𝑛
, 𝑟
𝑛
) is

connected tends to 𝑒−𝑒
−𝑐

.
(iii) If 𝑐

𝑛
→ ∞, then whp 𝐺(𝑃

𝑛
, 𝐾

𝑛
, 𝑟
𝑛
) is connected.

The results in this paper hold under the condition that
𝑑
𝑛
= 𝜔(log 𝑛) and 𝑑

𝑛
= 𝑜(𝑛

(1−𝛿)/4

). It would be interesting
to see whether such results could be established under the
condition that 𝑑

𝑛
= 𝜔(log 𝑛) and 𝑑

𝑛
= 𝑜(𝑛), which remains

an open research challenge.
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