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Stochastic resonance (SR) is investigated in amultistable system driven byGaussian white noise. Using adiabatic elimination theory
and three-state theory, the signal-to-noise ratio (SNR) is derived.We find the effects of the noise intensity and the resonance system
parameters 𝑏, 𝑐, and 𝑑 on the SNR; the results show that SNR is a nonmonotonic function of the noise intensity; therefore, a
multistable SR is found in this system, and the value of the peak changes with changing the system parameters.

1. Introduction

Stochastic resonance (SR) is first introduced by Benzi et al.
[1] in 1981. In the past decades, SR has received considerable
attention in the field of meteorology, and the topic has
flourished in physics and neuroscience and weak signal
detection [2–6].

There have been many theoretical developments of SR
in conventional bistable systems [7–12]. Recently, there have
appeared some extensions of SR, such as stochastic resonance
in a harmonic oscillator [13], ghost stochastic resonance in
the FitzHugh-Nagumo neuron model [14, 15], Transition in a
BistableDuffing System [16], timedelay SR [17], trichotomous
noise induced SR in a linear system [18], and superthreshold
SR [19]. Literature [20–22] proposes a new model of mul-
tistable system. However, [7–22] did not study the SNR. In
this paper, we use the model of multistable system driven
by periodic signal and white noise which can realize the
maximum utilization of noise and obtain better detection
effects. So it is necessary to discuss the SNR of themultistable
system.

In order to describe SR, McNamara and Wiesenfeld [7]
introduced the signal-to-noise ratio, which is often used as
an indicator of signal processing performance. Numerous
studies have been developed to explain SR in continuous time
using tools of statistical physics.

Literature [25] studied a solution of Kramers turnover
problem for the case of two symmetric deep wells connected
through a single shallow well; literature [26] analysed the
occurrence of vibrational resonance in a damped quantic
oscillator with double-well and triple-well potentials driven
by both low-frequency force and high-frequency force; the
splitting of the Kramers escape rate in an overdamped system
with a triple-well potential was studied in [27].

The paper is organized as follows. In Section 2, we present
the model for the multistable system.Then, the expression of
the signal-to-noise ratio is derived. In Section 3, the effects of
noise intensity and the resonance system parameters 𝑏, 𝑐, and
𝑑 on SNR are discussed. A discussion of the effects concludes
the paper in Section 4.

2. SNR of Multistable SR

Themodel of multistable SR is amultistable nonlinear system
driven by periodic signal and white noise. The equation can
be written as follows:

𝑑𝑥

𝑑𝑡
= −

𝑑𝑈 (𝑥)

𝑑𝑥
+ 𝑠 (𝑡) + 𝜂 (𝑡) , (1)

where 𝑠(𝑡) = 𝐴 cos(2𝜋𝑓𝑡) is the input signal, 𝐴 is the
periodic signal amplitude, 𝑓 is the driving frequency, 𝜂(𝑡) =

√2𝐷𝜀(𝑡) in which𝐷 is the noise intensity, and 𝜀(𝑡) represents
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Figure 1: The multistable potential function 𝑈(𝑥).

a Gaussianwhite noise with zeromean and unit variance.𝑥(𝑡)

is the multistable SR output signal.The potential function for
the above multistable system can be denoted as [21, 22]

𝑈 (𝑥) =
𝑏

2
𝑥
2
+

𝑐

4
𝑥
4
+

𝑑

6
𝑥
6
, (2)

where 𝑏, 𝑐, and 𝑑 are system parameters. As shown in
Figure 1, the potential function 𝑈(𝑥) is symmetrical and has
three stable points (−𝑥

2
, 𝑥
0
and 𝑥

2
) and two unstable points

(−𝑥
1
, 𝑥
1
):

𝑥
0
= 0,

𝑥
1
= √

−1

2𝑑
(𝑐 + √𝑐2 − 4𝑏𝑑),

𝑥
2
= √

−1

2𝑑
(𝑐 − √𝑐2 − 4𝑏𝑑).

(3)

From (1) and (2), the Fokker-Planck equation [26] is given
by

𝜕𝜌 (𝑥, 𝑡)

𝜕𝑡

= −
𝜕

𝜕𝑥
[−𝑏𝑥 − 𝑐𝑥

3
− 𝑑𝑥
5
+ 𝐴 cos (2𝜋𝑓𝑡) 𝜌 (𝑥, 𝑡)]

+ 𝐷
𝜕
2

𝜕𝑥2
𝜌 (𝑥, 𝑡) .

(4)

Formula (4) contains nonlinear components, so it cannot
obtain the steady state solution.

When the input signal and noise intensity are very small,

𝐴 ≪ 1,

𝐷 ≪ 1.

(5)

The whole 𝑥 area can be divided into three attraction
domains; the first is the attraction domain of the steady-state

solution 𝑥 = −√(−1/2𝑑)(𝑐 − √𝑐2 − 4𝑏𝑑), the second is the
attraction domain of the steady-state solution 𝑥 = 0, and the
last is the attraction domain of the steady-state solution 𝑥 =

√(−1/2𝑑)(𝑐 − √𝑐2 − 4𝑏𝑑). In the three attraction domains,
the total probability of them contains, respectively [20],

𝑃
1
(𝑡) = ∫

−𝑥
1

−∞

𝜌 (𝑥, 𝑡) 𝑑𝑥,

𝑃
2
(𝑡) = ∫

𝑥
1

−𝑥
1

𝜌 (𝑥, 𝑡) 𝑑𝑥,

𝑃
3
(𝑡) = ∫

+∞

𝑥
1

𝜌 (𝑥, 𝑡) 𝑑𝑥.

(6)

Obviously, 𝑃
1
(𝑡) + 𝑃

2
(𝑡) + 𝑃

3
(𝑡) = 1, when the frequency

of input signal is very low

𝑓 ≪ 1. (7)

In the condition of adiabatic approximation, we can get
the master equation for the probability of exchange among
the three quantities by simplifying (3):

𝑃
󸀠

1
(𝑡) = −𝑅

1
(𝑡) 𝑃
1
(𝑡) +

1

2
𝑅
2
(𝑡) 𝑃
2
(𝑡)

=
1

2
𝑅
2
(𝑡) − [𝑅

1
(𝑡) + 𝑅

2
(𝑡)] 𝑃
1
(𝑡) ,

𝑃
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(𝑡) 𝑃
2
(𝑡) + 𝑅

1
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1
(𝑡) + 𝑅
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(𝑡) ,
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3
(𝑡) = −𝑅

3
(𝑡) 𝑃
3
(𝑡) +

1

2
𝑅
2
(𝑡) 𝑃
2
(𝑡) ,

(8)

where 𝑅
1,2,3

(𝑡) are the escape rate [7]. They are considered as
function of a weak periodic signal 𝐴 cos(2𝜋𝑓𝑡), when 𝐴 ≪ 1,
under the adiabatic approximation, the escape rate of𝑅

1,2,3
(𝑡)

series expansion, ignoring the higher order terms, you can get
the following expression:

𝑅
1
= 𝑅
3

=
1

2
(𝑅
0
+ 𝑅
1
𝛽 cos (2𝜋𝑓𝑡) + 𝑅

2
𝛽
2cos2 (2𝜋𝑓𝑡) + ⋅ ⋅ ⋅) ,

𝑅
2

=
1

2
(𝑅
0
− 𝑅
1
𝛽 cos (2𝜋𝑓𝑡) + 𝑅

2
𝛽
2cos2 (2𝜋𝑓𝑡) − ⋅ ⋅ ⋅) ;

(9)

then,

𝑅
1
+ 𝑅
2
= 𝑅
0
+ 𝑅
2
𝛽
2cos2 (2𝜋𝑓𝑡) . (10)

Equations (8) can be solved as

𝑃
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(𝑡) =
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0
)
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(11)
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where

𝑚 =
𝑅
1
𝛽 cos (2𝜋𝑓𝑡

0
− 𝜃)

(𝑅
0

2
+ (2𝜋𝑓)
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𝑛 =
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2
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,

sin 𝜃 =
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+ (2𝜋𝑓)

2

)
1/2

,

cos 𝜃 =
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2

)
1/2

.

(12)

When 𝑡
0
→ −∞, 𝑃

1,2,3
(𝑡) approaches 𝑃

𝑠

1,2,3
(𝑡):

𝑃
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(𝑡) = 𝑃

𝑠

3
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(13)

Let 𝑃
𝑖
(𝑡 + 𝜏 | 𝑗, 𝑡) donate the probability to the system

which is in 𝑗 area at 𝑡 moment when it is in 𝑖 area at 𝑡 + 𝜏

moment (𝑖, 𝑗 = 1, 2, 3):
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In the progressive state, the correlation function of random
variable is given by
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2
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0
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The correlation function is not only related with the time
interval but also related with the start value of the time. So we
take the average value of the correlation function
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Within the deduction made above, the output power
spectral density of a multistable SR system can be obtained:

𝑆 (𝑤) = ∫
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−∞
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where 𝑆
1
(𝑤) and 𝑆

2
(𝑤) are the power spectral densities of

the output signal and the output noise, which are derived
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from the periodic input signal and the noise, respectively, as
follows:

𝑆
1
(𝑤) = (

−𝑐

8𝑑
−
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4
√
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𝑑
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Put 𝐴 cos(2𝜋𝑓𝑡) as constant processing; we can get the
steady state solution of the available equation (4), the poten-
tial function of Φ(𝑥):
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The probability transition rate of type 1 can be obtained:
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Figure 2: SNR versus noise intensity 𝐷 with 𝑏 = 0.52, 𝑐 = −0.31,
and 𝑑 = 0.04.

To clearly describe the energy distribution of the system
output, the SNR of the system output can be calculated as
follows:

SNR =
∫
∞

0
𝑆
1
(𝑤) 𝑑𝑤

𝑆
2
(𝑤 = 2𝜋𝑓)

=
−𝑐/8𝑑 − (1/4)√𝑏/𝑑 − (𝑐 + √𝑐2 − 4𝑏𝑑) /8𝑑

𝑐/8𝑑 + (1/4)√𝑏/𝑑 − (𝑐 + √𝑐2 − 4𝑏𝑑) /8𝑑

⋅
𝜋𝑅
0
𝐴
2
(−𝑐/𝑑 − 2√𝑏/𝑑)

4𝐷2
.

(22)

3. The Effects of the Noise Intensity
and System Parameters

In this section, we discuss the effect of each parameter on the
system SNR.

Figure 2 shows the change trends of the SNR of a
multistable SRmethodwith 𝑏 = 0.52, 𝑐 = −0.31, and 𝑑 = 0.04

versus noise intensity 𝐷.
It can be seen from Figure 2 that the change curve of the

SNR is first increased and then decreasedwith the variation in
noise intensity 𝐷; therefore, there exists an optimal noise for
the maximum SNR. This typical phenomenon is a signature
ofmultistable SR. Noise plays a role in the SNRwithin certain
range of scale.

The SNR as a function of noise intensity 𝐷 with different
system parameters 𝑏 is shown in Figure 3. It is seen that the
positions of the higher peaks and the lower peaks are both
shifting to the left with the increase of 𝑏 and the SNR is
decreasing with the increase of 𝑏.

Figure 4 shows the curves of SNR versus noise intensity
𝐷 with different system parameters 𝑐. With the increase of 𝑐,
the whole curves are shifting to left and SNR is increasing.

Figure 5 shows the curves of SNR versus noise intensity𝐷

with different systemparameters𝑑.With the increase of𝑑, the
whole curves are shifting to the left and the SNR is increasing.
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Figure 3: SNR versus noise intensity 𝐷 for different system
parameters 𝑏: 0.4, 0.45, and 0.5. Other parameters are 𝑐 = −0.31

and 𝑑 = 0.04.
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Figure 4: SNR versus noise intensity 𝐷 for different system
parameters 𝑐: −0.31, −0.3, and −0.29. Other parameters are 𝑏 = 0.52

and 𝑑 = 0.04.

4. The Simulation

Take the same parameters as in Figure 2 to detect the
weak signal with the multistable stochastic resonance and
then let 𝐷 take different values; and the amplitude of the
corresponding characteristic frequency is recorded; finally,
the curve of amplitude versus the noise ismade. It can be seen
that the simulation result in Figure 6 is consistent with the
analysis in Figure 2.

Take the same parameters as in Figure 3 to detect the
weak signal with the multistable stochastic resonance. First,
take 𝑏 equal to 0.4 and let 𝐷 take 𝑁 different values; then,
the amplitude of the corresponding characteristic frequency
is recorded and the curve of amplitude versus the noise is
finally made. Second, take 𝑏 equal to 0.45 and 0.5 and repeat
the above operation, respectively. It can be seen that the
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Figure 5: SNR versus noise intensity 𝐷 for different system
parameters 𝑑: 0.03, 0.036, and 0.042. Other parameters are 𝑏 = 0.52

and 𝑐 = −0.31.
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Figure 6: The variation curve of the output signal amplitude with
the addition of noise 𝐷.

simulation result in Figure 7 is consistent with the analysis
in Figure 3.

Take the same parameters as in Figure 4 to detect the
weak signal with the multistable stochastic resonance. First,
take 𝑐 equal to −0.31 and let 𝐷 take 𝑁 different values; then,
the amplitude of the corresponding characteristic frequency
is recorded and the curve of amplitude versus the noise is
finally made. Second, take 𝑐 equal to −0.3 and −0.29 and
repeat the above operation, respectively. It can be seen that
the simulation result in Figure 8 is consistent with the analysis
in Figure 4.

Take the same parameters as in Figure 5 to detect the
weak signal with the multistable stochastic resonance. First,
take 𝑑 equal to 0.03 and let 𝐷 take 𝑁 different values; then,
the amplitude of the corresponding characteristic frequency
is recorded and the curve of amplitude versus the noise is
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Figure 7: The variation curve of the output signal amplitude with
the addition of noise 𝐷 under different 𝑏 value.
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Figure 8: The variation curve of the output signal amplitude with
the addition of noise 𝐷 under different 𝑐 value.

finally made. Second, take 𝑑 equal to 0.036 and 0.042 and
repeat the above operation, respectively. It can be seen that
the simulation result in Figure 9 is consistent with the analysis
in Figure 5.

5. Conclusion

In the paper, we first derive the expression of the multistable
system SNR.Through the research about the effects of Gauss
noise and system parameters on the multistable system
SNR, we can draw the following conclusions: (1) the SNR
expression is applicable to arbitrary signal amplitude; (2) the
curve of the SNR versus noise intensity is nonmonotonic,
which is a typical phenomenon of multistable SR; (3) the
SNR peak is increasing gradually with the increase of system
parameters 𝑐 and 𝑑, but it is decreasing with the increase
of system parameters 𝑏. The SNR as a function of system
parameters 𝑏, 𝑐, and 𝑑 will not be described in this paper.
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Figure 9: The variation curve of the output signal amplitude with
the addition of noise 𝐷 under different 𝑑 value.
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