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We improve some results on the existence and multiplicity of solutions for the (𝑝
1
(𝑥), . . . , 𝑝

𝑛
(𝑥))-biharmonic system. Our main

results are new. Our approach is based on general variational principle and the theory of the variable exponent Sobolev spaces.

1. Introduction

In this paper, we consider the existence of solutions for the
following system:

Δ(
󵄨󵄨󵄨󵄨Δ𝑢𝑖

󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−2

Δ𝑢
𝑖
) = 𝜆𝐹

𝑢𝑖
(𝑥, 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
) in Ω,

𝑢
𝑖
= Δ𝑢

𝑖
= 0 on 𝜕Ω,

(1)

for 1 ≤ 𝑖 ≤ 𝑛, where Ω ⊂ R𝑁 (𝑁 ≥ 2) is a bounded
domain with smooth boundary 𝜕Ω. 𝜆 is a positive parameter
and 𝐹 : Ω × R𝑛 → R is a function such that the mapping
(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) → 𝐹(𝑥, 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
) is in𝐶1 inR𝑛 for all𝑥 ∈ Ω,

𝐹
𝑡𝑖
denotes the partial derivative of 𝐹 with respect to 𝑡

𝑖
, and

𝐹
𝑡𝑖
is continuous in Ω × R𝑛, for 𝑖 = 1, 2, . . . , 𝑛. 𝑝

𝑖
(𝑥) ∈

𝐶(Ω) (𝑖 = 1, 2, . . . , 𝑛) with𝑁/2 < 𝑝−
𝑖
fl inf

𝑥∈Ω
𝑝
𝑖
(𝑥) ≤ 𝑝

+

𝑖
fl

sup
𝑥∈Ω

𝑝
𝑖
(𝑥) < +∞.

In recent years, many authors considered the existence
and multiplicity of solutions for some fourth order problems
[1–10]. In [4], based on critical point theory, the existence
of infinitely many solutions has been established for a class
of nonlinear elliptic equations involving the 𝑝-biharmonic
operator and under Navier boundary value conditions. The
𝑝(𝑥)-Laplacian operator is more complicated nonlinearities
than 𝑝-Laplacian; it is inhomogeneous and usually it does
not have the so-called first eigenvalue, since the infimum
of its principle eigenvalue is zero. In [11], based on vari-
ational methods, the authors established the existence of
an unbounded sequence of weak solutions for a class of

differential equations with 𝑝(𝑥)-Laplacian. In [12], when the
nonlinearity 𝑓 has the subcritical growth and via variational
methods [13], the authors obtained the existence of at least
one, two, or three weak solutions for a class of differential
equations with 𝑝(𝑥)-Laplacian whenever the parameter 𝜆
belongs to a precise positive interval. Recently, the 𝑝(𝑥)-
biharmonic problems have attracted more and more atten-
tion; we refer the reader to [11, 14–21]. In [16], El Amrouss and
Ourraoui studied the 𝑝(𝑥)-biharmonic equation with Navier
and Neumann boundary condition; the technical approach is
based on Ricceri’s variational principle and local mountain
pass theorem, without Palais-Smale condition. In [20], the
authors established the existence of at least three solutions for
elliptic systems involving the (𝑝(𝑥), 𝑞(𝑥))-biharmonic opera-
tor. In [15], Allaoui et al. considered the existence of infinitely
many solutions for the (𝑝(𝑥), 𝑞(𝑥))-biharmonic problem by a
general Ricceri’s variational principle. However, there are rare
results on (𝑝

1
(𝑥), . . . , 𝑝

𝑛
(𝑥))-biharmonic problem.

Inspired by the aforementioned papers, our objective is to
prove the existence andmultiplicity solutions for problem (1);
we study problem (1) by using the results as follows.

Theorem A (see [13, 22]). Let 𝑋 be a reflexive real Banach
space;Φ : 𝑋 → R is a continuously Gâteaux differentiable and
sequentially weakly lower semicontinuous functional whose
Gâteaux derivative admits a continuous inverse on 𝑋∗; Ψ :

𝑋 → R is a continuously Gâteaux differentiable functional
whose Gâteaux derivative is compact such that

Φ (0) = Ψ (0) = 0. (2)
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Assume that there exist 𝑟 > 0 and 𝑢 ∈ 𝑋, with 𝑟 < Φ(𝑢), such
that

(i) sup
Φ(𝑢)≤𝑟

Ψ(𝑢)/𝑟 < Ψ(𝑢)/Φ(𝑢);

(ii) for each 𝜆 ∈ Λ
𝑟
fl (Φ(𝑢)/Ψ(𝑢), 𝑟/sup

Φ(𝑢)≤𝑟
Ψ(𝑢)), the

functional Φ − 𝜆Ψ is coercive.

Then, for each compact interval [𝛼, 𝛽] ⊆ Λ
𝑟
, there exists

𝜌 > 0 with the following property: for every 𝜆 ∈ [𝛼, 𝛽], the
equation

Φ
󸀠
(𝑢) − 𝜆Ψ

󸀠
(𝑢) = 0 (3)

has at least three solutions in 𝑋 whose norms are less than 𝜌.

Theorem B (see [23]). Let𝑋 be a reflexive real Banach space;
Φ,Ψ : 𝑋 → R are two Gâteaux differentiable functionals
such that Φ is sequentially weakly lower semicontinuous and
coercive and Ψ is sequentially weakly upper semicontinuous.
For every 𝑟 > inf

𝑋
Φ, let one put

𝜑 (𝑟) fl inf
𝑢∈Φ
−1
((−∞,𝑟))

supV∈Φ−1((−∞,𝑟))Ψ (V) − Ψ (𝑢)
𝑟 − Φ (𝑢)

,

𝛾 fl lim inf
𝑟→+∞

𝜑 (𝑟) ,

𝛿 fl lim inf
𝑟→(inf𝑋Φ)+

𝜑 (𝑟) .

(4)

Then, one has the following:

(a) For every 𝑟 > inf
𝑋
Φ and every 𝜆 ∈ (0, 1/𝜑(𝑟)),

the restriction of the functional 𝐼
𝜆
= Φ − 𝜆Ψ to

Φ
−1
((−∞, 𝑟)) admits a global minimum, which is a

critical point (local minimum) of 𝐼
𝜆
in𝑋.

(b) If 𝛾 < +∞, then, for each 𝜆 ∈ (0, 1/𝛾), the following
alternative holds: either

(b1) 𝐼
𝜆
possesses a global minimum, or

(b2) there is a sequence {𝑢
𝑛
} of critical points (local

minima) of 𝐼
𝜆
such that lim

𝑛→+∞
Φ(𝑢

𝑛
) = +∞.

(c) If 𝛿 < +∞, then, for each 𝜆 ∈ (0, 1/𝛿), the following
alternative holds: either

(c1) there is a global minimum of Φ which is a local
minimum of 𝐼

𝜆
, or

(c2) there is a sequence of pairwise distinct critical
points local minima of 𝐼

𝜆
which weakly converges

to a global minimum ofΦ.

This paper is organized as follows. In Section 2, we recall
some basic facts about the variable exponent Lebesgue and
Sobolev spaces, some important properties of the 𝑝(𝑥)-
biharmonic operator. In Section 3, we establish the main
results.

2. Preliminaries

In order to deal with the 𝑝(𝑥)-biharmonic problem, we need
some theories on spaces 𝐿𝑝(𝑥)(Ω),𝑊𝑚,𝑝(𝑥)

(Ω) and introduce
some notations used in the following.

Denote
𝐶
+
(Ω) = {ℎ ∈ 𝐶 (Ω) ; ℎ (𝑥) > 1, ∀𝑥 ∈ Ω} ,

𝐿
𝑝(𝑥)

(Ω) = {𝑢 :

𝑢 is a measurable real-valued function,

∫

Ω

|𝑢|
𝑝(𝑥)

𝑑𝑥 < ∞} .

(5)

We introduce a norm on 𝐿𝑝(𝑥)(Ω):

|𝑢|𝑝(𝑥) = inf {𝜆 > 0 : ∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑥)

𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑑𝑥 ≤ 1} . (6)

Then (𝐿𝑝(𝑥)(Ω), | ⋅ |
𝑝(𝑥)
) becomes a Banach space; we call it a

generalized Lebesgue space.

Proposition 1 (see [24]). The conjugate space of 𝐿𝑝(𝑥)(Ω)
is 𝐿𝑝

0
(𝑥)
(Ω), where 1/𝑝(𝑥) + 1/𝑝0(𝑥) = 1. For any 𝑢 ∈

𝐿
𝑝(𝑥)
(Ω) and V ∈ 𝐿𝑝

0
(𝑥)
(Ω), one has the following Hölder-type

inequality:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Ω

𝑢V 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ (

1

𝑝
−
+

1

(𝑝
0
)
−
) |𝑢|𝑝(𝑥) |V|𝑝0(𝑥) . (7)

The variable exponent Sobolev space𝑊𝑚,𝑝(𝑥)
(Ω) is defined

by

𝑊
𝑚,𝑝(𝑥)

(Ω)

= {𝑢 ∈ 𝐿
𝑝(𝑥)

(Ω) | 𝐷
𝛼
𝑢 ∈ 𝐿

𝑝(𝑥)
(Ω) , |𝛼| ≤ 𝑚} ,

(8)

where 𝛼 is the multi-index and |𝛼| is the order, 𝑚 is a positive
integer, and it can be equipped with the norm

‖𝑢‖𝑚,𝑝(𝑥) = ∑

|𝛼|≤𝑚

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨𝑝(𝑥)

. (9)

From [24], we know that spaces 𝐿𝑝(𝑥)(Ω) and𝑊𝑚,𝑝(𝑥)
(Ω) are

separable, reflexive, and uniform convex Banach spaces.
We denote by 𝑊

𝑚,𝑝(𝑥)

0
(Ω) the closure of 𝐶∞

0
(Ω) in

𝑊
𝑚,𝑝(𝑥)

(Ω).
Let 𝑋 fl ∏

𝑛

𝑖=1
(𝑊

2,𝑝𝑖(𝑥)(Ω) ∩ 𝑊
1,𝑝𝑖(𝑥)

0
(Ω)) endow with the

norm

󵄩󵄩󵄩󵄩(𝑢1, 𝑢2, . . . , 𝑢𝑛)
󵄩󵄩󵄩󵄩 =

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩𝑝𝑖(𝑥)

, (10)

where

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩𝑝𝑖(𝑥)

= inf {𝜆

> 0 : ∫

Ω

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Δ𝑢
𝑖

𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇𝑢
𝑖

𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢
𝑖

𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

)𝑑𝑥} .

(11)
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Remark 2. According to [25], the norm ‖ ⋅ ‖
2⋅𝑝(𝑥)

is equivalent
to the norm |Δ ⋅ |

𝑝(𝑥)
in the space 𝑊2,𝑝(𝑥)

(Ω) ∩ 𝑊
1,𝑝(𝑥)

0
(Ω).

Consequently, the norms ‖ ⋅ ‖
2,𝑝(𝑥)

, |Δ ⋅ |
𝑝(𝑥)

, and ‖ ⋅ ‖
𝑝(𝑥)

are
equivalent.

Proposition 3 (see [24]). Put 𝜌(𝑢) = ∫
Ω
|Δ𝑢|

𝑝(𝑥)
𝑑𝑥, ∀𝑢 ∈

𝑊
2,𝑝(𝑥)

(Ω) ∩𝑊
1,𝑝(𝑥)

0
(Ω); then

(1) ‖𝑢‖
𝑝(𝑥)

< 1(= 1; > 1) ⇔ 𝜌(𝑢) < 1(= 1; > 1);

(2) ‖𝑢‖
𝑝(𝑥)

≥ 1 ⇒ ‖𝑢‖
𝑝
−

𝑝(𝑥)
≤ 𝜌(𝑢) ≤ ‖𝑢‖

𝑝
+

𝑝(𝑥)
;

(3) ‖𝑢‖
𝑝(𝑥)

≤ 1 ⇒ ‖𝑢‖
𝑝
+

𝑝(𝑥)
≤ 𝜌(𝑢) ≤ ‖𝑢‖

𝑝
−

𝑝(𝑥)
;

(4) lim
𝑘→+∞

‖𝑢
𝑘
‖
𝑝(𝑥)

= 0 ⇔ lim
𝑘→+∞

𝜌(𝑢
𝑘
) = 0.

Proposition 4 (see [20, 26]). The embedding 𝑊
1,𝑝𝑖(𝑥)

0
∩

𝑊
2,𝑝𝑖(𝑥) 󳨅→ C(Ω) is compact whenever 𝑝−

𝑖
> 𝑁/2, 𝑖 = 1, 2,

. . . , 𝑛. So there is a constant 𝐶 > 0 such that

𝐶 fl max
{

{

{

sup
𝑢𝑖∈𝑊

2,𝑝𝑖(𝑥)(Ω)∩𝑊
1,𝑝𝑖(𝑥)

0
(Ω)\{0}

max
𝑥∈Ω

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑥)
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑢𝑖 (𝑥)
󵄩󵄩󵄩󵄩𝑝𝑖(𝑥)

}

}

}

< +∞.

(12)

3. Main Results

Definition 5. One says that 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) ∈ 𝑋 is a weak

solution to the system (1) if 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) ∈ 𝑋 and

∫

Ω

𝑛

∑

𝑖=1

(
󵄨󵄨󵄨󵄨Δ𝑢𝑖 (𝑥)

󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−2

Δ𝑢
𝑖
(𝑥) ΔV

𝑖
(𝑥)) 𝑑𝑥

− 𝜆∫

Ω

𝑛

∑

𝑖=1

𝐹
𝑢𝑖
(𝑥, 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
) V
𝑖
(𝑥) 𝑑𝑥 = 0,

(13)

for every V = (V
1
, V
2
, . . . , V

𝑛
) ∈ 𝑋.

Let 𝑝 = min{𝑝−
𝑖
; 𝑖 = 1, 2, . . . , 𝑛}, 𝑝̂ = max{𝑝+

𝑖
; 𝑖 = 1, 2,

. . . , 𝑛}. For 𝜎 > 0, one denotes the set

𝑄 (𝜎) = {(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) ∈ R

𝑛
,

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑡𝑖
󵄨󵄨󵄨󵄨 ≤ 𝜎} . (14)

Define the function 𝐼
𝜆
: 𝑋 → R by

𝐼
𝜆
(𝑢) = Φ (𝑢) − 𝜆Ψ (𝑢) (15)

for all 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) ∈ 𝑋, where

Φ (𝑢) =

𝑛

∑

𝑖=1

∫

Ω

1

𝑝
𝑖
(𝑥)

󵄨󵄨󵄨󵄨Δ𝑢𝑖
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥,

Ψ (𝑢) = ∫

Ω

𝐹 (𝑥, 𝑢
1
, . . . , 𝑢

𝑛
) 𝑑𝑥.

(16)

Then the operator Φ󸀠 : 𝑋 → 𝑋
∗, where 𝑋∗ is the dual space

of𝑋, is defined by

Φ
󸀠
(𝑢) (V) =

𝑛

∑

𝑖=1

∫

Ω

󵄨󵄨󵄨󵄨Δ𝑢𝑖
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)−2

Δ𝑢
𝑖
ΔV

𝑖
𝑑𝑥, (17)

for V = (V
1
, V
2
, . . . , V

𝑛
) ∈ 𝑋.

Proposition 6. Φ󸀠 is continuous, coercive, and strictly mono-
tone. (Φ󸀠) admits a continuous inverse on𝑋∗.

Proof. Since

Φ
󸀠
(𝑢) (𝑢) =

𝑛

∑

𝑖=1

∫

Ω

󵄨󵄨󵄨󵄨Δ𝑢𝑖
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥

≥

𝑛

∑

𝑖=1

min {󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩

𝑝
+

𝑖

𝑝𝑖(𝑥)
,
󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩

𝑝
−

𝑖

𝑝𝑖(𝑥)
} ,

(18)

and 𝑝−
𝑖
> 1, then Φ󸀠 is coercive.

Using the elementary inequalities

⟨|𝑥|
𝑝−2

𝑥 −
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

𝑝−2

𝑦, 𝑥 − 𝑦⟩

≥

{{{{

{{{{

{

1

2
𝑝

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑝

, 𝑝 ≥ 2,

𝐶
𝑝

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2

(|𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)
2−𝑝
, 𝑝 < 2.

(19)

We deduce that

⟨Φ
󸀠
(𝑢) − Φ

󸀠
(V) , 𝑢 − V⟩ > 0, (20)

which means that Φ󸀠 is strictly monotone. The inverse
operator (Φ󸀠)−1 of Φ󸀠 exists and the continuity of (Φ󸀠)−1 can
be proved essentially by the same way as the latter part of the
proof of [16, Proposition 2.5]; we omit the details.

From Proposition 6, we see thatΦ ∈ 𝐶
1
(𝑋,R). Since𝑋 is

compactly embedded in 𝐶(Ω) × ⋅ ⋅ ⋅ × 𝐶(Ω), we can see that
Φ : 𝑋 → R are sequentially weakly lower semicontinuous.

The functional Ψ : 𝑋 → R is Gateaux differentiable
functional and

Ψ
󸀠
(𝑢) (V) = ∫

Ω

𝑛

∑

𝑖=1

𝐹
𝑢𝑖
(𝑥, 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
) V
𝑖
(𝑥) 𝑑𝑥, (21)

for V = (V
1
, V
2
, . . . , V

𝑛
) ∈ 𝑋. Ψ is sequentially weakly upper

semicontinuous. Furthermore, Ψ󸀠 : 𝑋 → 𝑋
∗ is a compact

operator. Indeed, it is enough to show that Ψ󸀠 is strongly
continuous on 𝑋. For this, for fixed (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
) ∈ 𝑋, let

(𝑢
1𝑘
, 𝑢
2𝑘
, . . . , 𝑢

𝑛𝑘
) → (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
) weakly in 𝑋 as 𝑘 →

+∞. Then we have (𝑢
1𝑘
, 𝑢
2𝑘
, . . . , 𝑢

𝑛𝑘
) converges uniformly to

(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) onΩ as 𝑘 → +∞ [27]. Since 𝐹(𝑥, ⋅, . . . , ⋅) is𝐶1

inR𝑛 for every 𝑥 ∈ Ω, so for 1 ≤ 𝑖 ≤ 𝑛, 𝐹
𝑢𝑖
(𝑥, 𝑢

1𝑘
, . . . , 𝑢

𝑛𝑘
) →

𝐹
𝑢𝑖
(𝑥, 𝑢

1
, . . . , 𝑢

𝑛
) strongly as 𝑘 → +∞, from which follows

Ψ
󸀠
(𝑥, 𝑢

1𝑘
, . . . , 𝑢

𝑛𝑘
) → Ψ

󸀠
(𝑥, 𝑢

1
, . . . , 𝑢

𝑛
) strongly as 𝑘 → +∞.

Thus we have that Ψ󸀠 is strongly continuous on 𝑋, which
implies that Ψ󸀠 is a compact operator by [27, Proposition
26.2].

Theorem 7. Assume the following:
(A1) 𝐹(𝑥, 0, 0, . . . , 0) = 0 for 𝑥 ∈ Ω.
(A2) There exist 𝛼(𝑥) ∈ 𝐿1(Ω) and 𝑛 positive constants 𝛽

𝑖

with 𝛽
𝑖
< 𝑝

−

𝑖
for 1 ≤ 𝑖 ≤ 𝑛, such that

0 ≤ 𝐹 (𝑥, 𝑡
1
, . . . , 𝑡

𝑛
) ≤ 𝛼 (𝑥)(1 +

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑡𝑖
󵄨󵄨󵄨󵄨

𝛽𝑖
) (22)
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for a.e. 𝑥 ∈ Ω, (𝑡
1
, . . . , 𝑡

𝑛
) ∈ R𝑛

+
, where R𝑛

+
=

(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) ∈ R𝑛, 𝑡

𝑖
≥ 0, for 𝑖 = 1, 2, . . . , 𝑛.

(A3) There exist 𝑥
0
∈ Ω, 0 < 𝑅

1
< 𝑅

2
, 𝑀

𝑖
> 0, and

𝛿 ∈ R with 𝛿 ≥ (𝑅
2

2
− 𝑅

2

1
)/2𝑁 and (2𝛿𝑁/(𝑅2

2
−

𝑅
2

1
))
𝑝
−

𝑖 (𝜋
𝑁/2
/Γ(1 + 𝑁/2))(𝑅

𝑁

2
− 𝑅

𝑁

1
) > 1 such that

∫

Ω

sup
|𝑡1|≤𝑏1 ,...,|𝑡𝑛|≤𝑏𝑛

𝐹 (𝑥, 𝑡
1
, . . . , 𝑡

𝑛
) 𝑑𝑥 <

min {(1/𝑝+
𝑖
) (𝑏

𝑖
/𝐶)

𝑝
+

𝑖
: 1 ≤ 𝑖 ≤ 𝑛}

∑
𝑛

𝑖=1
(1/𝑝

−

𝑖
) (2𝛿𝑁/ (𝑅

2

2
− 𝑅

2

1
))
𝑝
+

𝑖
(𝜋
𝑁/2
/Γ (1 + 𝑁/2)) (𝑅

𝑁

2
− 𝑅

𝑁

1
)

⋅ ∫

𝐵(𝑥0 ,𝑅1)

𝐹 (𝑥, 𝛿, . . . , 𝛿) 𝑑𝑥,

(23)

where 𝑏
𝑖
= min{𝐶,𝑀

𝑖
} for 1 ≤ 𝑖 ≤ 𝑛. Then, setting

Λ fl(

∑
𝑛

𝑖=1
(1/𝑝

−

𝑖
) (2𝛿𝑁/ (𝑅

2

2
− 𝑅

2

1
))
𝑝
+

𝑖

(𝜋
𝑁/2
/Γ (1 + 𝑁/2)) (𝑅

𝑁

2
− 𝑅

𝑁

1
)

∫
𝐵(𝑥0 ,𝑅1)

𝐹 (𝑥, 𝛿, . . . , 𝛿) 𝑑𝑥

,

min {(1/𝑝+
𝑖
) (𝑏

𝑖
/𝐶)

𝑝
+

𝑖
: 1 ≤ 𝑖 ≤ 𝑛}

∫
Ω
sup

|𝑡1|≤𝑏1 ,...,|𝑡𝑛|≤𝑏𝑛
𝐹 (𝑥, 𝑡

1
, . . . , 𝑡

𝑛
) 𝑑𝑥

) , (24)

for each compact interval [𝛼, 𝛽] ⊆ Λ, there exists a positive
real number 𝜌with the following property: for every 𝜆 ∈ [𝛼, 𝛽],
problem (1) admits at least three weak solutions whose norms
are less than 𝜌.

Proof. To apply Theorem A to our problem, the functionals
Φ,Ψ satisfy the conditions ofTheorem A. Now, we show that
the hypotheses of Theorem A are fulfilled.

Now we set 𝑢
0
= (0, . . . , 0); from (A1), we have Φ(𝑢

0
) =

Ψ(𝑢
0
) = 0. Let 𝑥

0
∈ Ω, 0 < 𝑅

1
< 𝑅

2
, and take

𝑤 (𝑥) =

{{{{{{

{{{{{{

{

0, 𝑥 ∈ Ω \ 𝐵 (𝑥
0
, 𝑅
2
) ,

𝛿, 𝑥 ∈ 𝐵 (𝑥
0
, 𝑅
1
) ,

𝛿

𝑅
2

2
− 𝑅

2

1

(𝑅
2

2
−

𝑁

∑

𝑖=1

(𝑥
𝑖
− 𝑥

0

𝑖
)
2

) , 𝑥 ∈ 𝐵 (𝑥
0
, 𝑅
2
) \ 𝐵 (𝑥

0
, 𝑅
1
) ,

𝑁

∑

𝑖=1

𝜕
2
𝑤 (𝑥)

𝜕𝑥
2

𝑖

=

{{

{{

{

0, 𝑥 ∈ Ω \ 𝐵 (𝑥
0
, 𝑅
2
) ∪ 𝐵 (𝑥

0
, 𝑅
1
) ,

−
2𝛿𝑁

𝑅
2

2
− 𝑅

2

1

, 𝑥 ∈ 𝐵 (𝑥
0
, 𝑅
2
) \ 𝐵 (𝑥

0
, 𝑅
1
) .

(25)

Let 𝑢 = (𝑤(𝑥), . . . , 𝑤(𝑥)), and 𝑟 = min{(1/𝑝+
𝑖
)(𝑏
𝑖
/𝐶)

𝑝
+

𝑖 : 1 ≤

𝑖 ≤ 𝑛}. Clearly, 𝑢 ∈ 𝑋, and we have

Φ (𝑢) =

𝑛

∑

𝑖=1

∫

Ω

1

𝑝
𝑖
(𝑥)

|Δ𝑤 (𝑥)|
𝑝𝑖(𝑥)

𝑑𝑥

≥

𝑛

∑

𝑖=1

1

𝑝
+

𝑖

∫

Ω

|Δ𝑤|
𝑝𝑖(𝑥)

𝑑𝑥

≥

𝑛

∑

𝑖=1

1

𝑝
+

𝑖

(
2𝛿𝑁

𝑅
2

2
− 𝑅

2

1

)

𝑝
−

𝑖

𝜋
𝑁/2

Γ (1 + 𝑁/2)
(𝑅
𝑁

2
− 𝑅

𝑁

1
)

≥ 𝑟.

(26)

On the other way, when Φ(𝑢) ≤ 𝑟, we have

𝑛

∑

𝑖=1

1

𝑝
+

𝑖

∫

Ω

󵄨󵄨󵄨󵄨Δ𝑢𝑖
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥 ≤ 𝑟. (27)

So, by Proposition 3, we have

1

𝑝
+

𝑖

min {󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩

𝑝
+

𝑖

𝑝𝑖(𝑥)
,
󵄩󵄩󵄩󵄩
𝑢
𝑖

󵄩󵄩󵄩󵄩

𝑝
−

𝑖

𝑝𝑖(𝑥)
} ≤ 𝑟. (28)

We deduce that

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩𝑝𝑖(𝑥)

< max {(𝑟𝑝+
𝑖
)
1/𝑝
+

𝑖
, (𝑟𝑝

+

𝑖
)
1/𝑝
−

𝑖
} . (29)

For 𝑟 = min{(1/𝑝+
𝑖
)(𝑏
𝑖
/𝐶)

𝑝
+

𝑖 : 1 ≤ 𝑖 ≤ 𝑛}, we have ‖𝑢
𝑖
‖
𝑝𝑖(𝑥)

≤

𝑏
𝑖
/𝐶 for 1 ≤ 𝑖 ≤ 𝑛.
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From (12) we have max|𝑢
𝑖
(𝑥)| ≤ 𝐶‖𝑢

𝑖
‖
𝑝𝑖(𝑥)

; we obtain for
all 𝑥 ∈ Ω,

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑛. (30)

It follows that, for every 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) ∈ 𝑋,

sup
Φ(𝑢)≤𝑟

Ψ (𝑢) = sup
Φ(𝑢)≤𝑟

∫

Ω

𝐹 (𝑥, 𝑢
1
, . . . , 𝑢

𝑛
) 𝑑𝑥

≤ ∫

Ω

sup
|𝑡1|≤𝑏1 ,...,|𝑡𝑛|≤𝑏𝑛

𝐹 (𝑥, 𝑡
1
, . . . , 𝑡

𝑛
) 𝑑𝑥.

(31)

Since

Φ (𝑢) =

𝑛

∑

𝑖=1

∫

Ω

1

𝑝
𝑖
(𝑥)

|Δ𝑤 (𝑥)|
𝑝𝑖(𝑥)

𝑑𝑥

≤

𝑛

∑

𝑖=1

1

𝑝
−

𝑖

(
2𝛿𝑁

𝑅
2

2
− 𝑅

2

1

)

𝑝
+

𝑖

𝜋
𝑁/2

Γ (1 + 𝑁/2)
(𝑅
𝑁

2
− 𝑅

𝑁

1
) ,

Ψ (𝑢) > ∫

𝐵(𝑥0 ,𝑅1)

𝐹 (𝑥, 𝛿, . . . , 𝛿) 𝑑𝑥,

(32)

therefore, from (A3), we have
sup

Φ(𝑢)≤𝑟
Ψ (𝑢)

𝑟

≤

∫
Ω
sup

|𝑡1|≤𝑏1 ,...,|𝑡𝑛|≤𝑏𝑛
𝐹 (𝑥, 𝑡

1
, . . . , 𝑡

𝑛
) 𝑑𝑥

min {(1/𝑝+
𝑖
) (𝑏

𝑖
/𝐶)

𝑝
+

𝑖
: 1 ≤ 𝑖 ≤ 𝑛}

<
Ψ (𝑢)

Φ (𝑢)
,

(33)

and the assumption (i) of Theorem A is satisfied.
From Proposition 3, we know that if ‖𝑢

𝑖
‖
𝑝𝑖(𝑥)

< 1, then

1

𝑝
+

𝑖

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩

𝑝
+

𝑖

𝑝𝑖(𝑥)
≤ ∫

Ω

1

𝑝
𝑖
(𝑥)

󵄨󵄨󵄨󵄨Δ𝑢𝑖
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥 ≤
1

𝑝
−

𝑖

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩

𝑝
−

𝑖

𝑝𝑖(𝑥)
, (34)

let 𝑘
𝑖
> 0, such that 𝑘

𝑖
≥ (1/𝑝

+

𝑖
)‖𝑢

𝑖
‖
𝑝
−

𝑖

𝑝𝑖(𝑥)
− (1/𝑝

+

𝑖
)‖𝑢

𝑖
‖
𝑝
+

𝑖

𝑝𝑖(𝑥)
, and

then

∫

Ω

1

𝑝
𝑖
(𝑥)

󵄨󵄨󵄨󵄨
Δ𝑢

𝑖

󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥 ≥
1

𝑝
+

𝑖

󵄩󵄩󵄩󵄩
𝑢
𝑖

󵄩󵄩󵄩󵄩

𝑝
−

𝑖

𝑝𝑖(𝑥)
− 𝑘

𝑖
. (35)

If ‖𝑢
𝑖
‖
𝑝𝑖(𝑥)

≥ 1, then

1

𝑝
+

𝑖

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩

𝑝
−

𝑖

𝑝𝑖(𝑥)
≤ ∫

Ω

1

𝑝
𝑖
(𝑥)

󵄨󵄨󵄨󵄨Δ𝑢𝑖
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥 ≤
1

𝑝
−

𝑖

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩

𝑝
+

𝑖

𝑝𝑖(𝑥)
. (36)

From (A2), (12), (35), and (36), we have

Φ (𝑢) − 𝜆Ψ (𝑢) =

𝑛

∑

𝑖=1

∫

Ω

1

𝑝
𝑖
(𝑥)

󵄨󵄨󵄨󵄨Δ𝑢𝑖
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥

− 𝜆∫

Ω

𝐹 (𝑥, 𝑢
1
, . . . , 𝑢

𝑛
) 𝑑𝑥

≥

𝑛

∑

𝑖=1

(
1

𝑝
+

𝑖

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩

𝑝
−

𝑖

𝑝𝑖(𝑥)
− 𝑘

𝑖
)

− 𝜆∫

Ω

𝛼 (𝑥)(1 +

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

𝛽𝑖
)𝑑𝑥,

(37)

noting that 𝑝−
𝑖
> 𝛽

𝑖
; therefore for 𝜆 ≥ 0, we see that

lim
‖𝑢‖→+∞

Φ (𝑢) + 𝜆Ψ (𝑢) = ∞, (38)

in particular, for every 𝜆 ∈ Λ. Then the assumption (ii) of
Theorem A holds.

Then all the assumptions of Theorem A are fulfilled. By
Theorem A, we know that there exist an open interval Λ ⊆

[0,∞) and a positive constant 𝜌 such that, for any 𝜆 ∈ Λ,
problem (1) has at least three weak solutions whose norms
are less than 𝜌.

Remark 8. Graef et al. [5] studied the problem and estab-
lished the existence of at least three solutions in the particular
case when 𝑝

𝑖
(𝑥) = 𝑝

𝑖
(> 1).

Theorem 9. Assume the following:
(A4) 𝐹(𝑥, 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
) ≥ 0, for each (𝑥, 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
) ∈ Ω ×

R𝑛
+
.

(A5) There exist 𝑥
1
∈ Ω, 0 < 𝑅

3
< 𝑅

4
such that, if one puts

𝛼 fl lim inf
𝜉→+∞

∫
Ω
sup

(𝑡1 ,𝑡2,...,𝑡𝑛)∈𝑄(𝜉)
𝐹 (𝑥, 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
) 𝑑𝑥

𝜉
𝑝

,

𝛽

fl lim sup
(𝑡1 ,𝑡2 ,...,𝑡𝑛)→(+∞,...,+∞)

∫
𝐵(𝑥1 ,𝑅3)

𝐹 (𝑥, 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) 𝑑𝑥

∑
𝑛

𝑖=1
(𝑡
𝑝
+

𝑖

𝑖
/𝑝
−

𝑖
)

,

(39)

one has
𝛼 < 𝐿𝛽, (40)

where 𝐿 fl min{𝐿
𝑝
+

𝑖

, 𝑖 = 1, 2, . . . , 𝑛},

𝐿
𝑝
+

𝑖

=
Γ (1 + 𝑁/2)

𝐶
𝑝
(∑

𝑛

𝑖=1
(𝑝
+

𝑖
)
1/𝑝
−

𝑖
)

𝑝

𝜋
𝑁/2

⋅
1

𝑅
𝑁

4
− 𝑅

𝑁

3

(
𝑅
2

4
− 𝑅

2

3

2𝑁
)

𝑝
+

𝑖

.

(41)

Then, for every

𝜆 ∈ Λ fl
1

𝐶
𝑝
(∑

𝑛

𝑖=1
(𝑝
+

𝑖
)
1/𝑝
−

𝑖
)

𝑝
(
1

𝐿𝛽
,
1

𝛼
) (42)

problem (1) admits an unbounded sequence of weak solutions.

Proof. To apply Theorem B to our problem, the functionals
Φ,Ψ satisfy the conditions of Theorem B. Now, let us verify
that 𝛾 < +∞. Let {𝜉

𝑘
} be a real sequence such that 𝜉

𝑘
→ +∞

as 𝑘 → +∞ and

lim
𝑘→+∞

∫
Ω
sup

(𝑡1 ,𝑡2,...,𝑡𝑛)∈𝑄(𝜉𝑘)
𝐹 (𝑥, 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
) 𝑑𝑥

𝜉
𝑝

𝑘

= lim inf
𝜉→+∞

∫
Ω
sup

(𝑡1 ,𝑡2 ,...,𝑡𝑛)∈𝑄(𝜉)
𝐹 (𝑥, 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
) 𝑑𝑥

𝜉
𝑝

= 𝛼 < ∞.

(43)
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Put 𝑟
𝑘
= 𝜉

𝑝

𝑘
/𝐶
𝑝
(∑

𝑛

𝑖=1
(𝑝
+

𝑖
)
1/𝑝
−

𝑖 )
𝑝 for all 𝑘 ∈ N,

Φ
−1
((−∞, 𝑟

𝑘
))

= {𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) ∈ 𝑋; Φ (𝑢) < 𝑟

𝑘
}

⊆ {𝑢 ∈ 𝑋;

𝑛

∑

𝑖=1

∫

Ω

1

𝑝
𝑖
(𝑥)

󵄨󵄨󵄨󵄨Δ𝑢𝑖
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥 < 𝑟
𝑘
}

⊆ {𝑢 ∈ 𝑋;

𝑛

∑

𝑖=1

1

𝑝
+

𝑖

∫

Ω

󵄨󵄨󵄨󵄨Δ𝑢𝑖
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥 < 𝑟
𝑘
} .

(44)

So, by Proposition 3, we have

1

𝑝
+

𝑖

min {󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩

𝑝
+

𝑖

𝑝𝑖(𝑥)
,
󵄩󵄩󵄩󵄩
𝑢
𝑖

󵄩󵄩󵄩󵄩

𝑝
−

𝑖

𝑝𝑖(𝑥)
} < 𝑟

𝑘
. (45)

Hence for 𝑘 large enough (𝑟
𝑘
> 1),

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩𝑝𝑖(𝑥)

< (𝑝
+

𝑖
𝑟
𝑘
)
1/𝑝
−

𝑖
. (46)

From (12) we have max|𝑢
𝑖
(𝑥)| ≤ 𝐶‖𝑢

𝑖
‖
𝑝𝑖(𝑥)

; we obtain for all
𝑥 ∈ Ω,

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐶 (𝑝

+

𝑖
𝑟
𝑘
)
1/𝑝
−

𝑖
. (47)

Thus ∑𝑛
𝑖=1
|𝑢
𝑖
(𝑥)| ≤ ∑

𝑛

𝑖=1
𝐶(𝑝

+

𝑖
𝑟
𝑘
)
1/𝑝
−

𝑖 ≤ 𝜉
𝑘
. Then we have

Φ
−1
((−∞, 𝑟

𝑘
)) ⊆ {𝑢 ∈ 𝑋;

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝜉𝑘} . (48)

Note thatΦ(0, . . . , 0) = 0, Ψ(0, . . . , 0) ≥ 0; then

𝜑 (𝑟
𝑘
) = inf

𝑢∈Φ
−1
((−∞,𝑟𝑘))

supV∈Φ−1((−∞,𝑟𝑘))Ψ (V) − Ψ (𝑢)
𝑟
𝑘
− Φ (𝑢)

≤

supV∈Φ−1((−∞,𝑟𝑘))Ψ (V)
𝑟
𝑘

≤ 𝐶
𝑝
(

𝑛

∑

𝑖=1

(𝑝
+

𝑖
)
1/𝑝
−

𝑖
)

𝑝

⋅

∫
Ω
sup

(𝑡1 ,𝑡2,...,𝑡𝑛)∈𝑄(𝜉𝑘)
𝐹 (𝑥, 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
) 𝑑𝑥

𝜉
𝑝

𝑘

.

(49)

Therefore, from (A5), we have

𝛾 ≤ lim inf
𝑘→+∞

𝜑 (𝑟
𝑘
) ≤ 𝐶

𝑝
(

𝑛

∑

𝑖=1

(𝑝
+

𝑖
)
1/𝑝
−

𝑖
)

𝑝

⋅ lim
𝑘→+∞

∫
Ω
sup

(𝑡1 ,𝑡2,...,𝑡𝑛)∈𝑄(𝜉𝑘)
𝐹 (𝑥, 𝑡

1
, . . . , 𝑡

𝑛
) 𝑑𝑥

𝜉
𝑝

𝑘

< +∞.

(50)

It is clear that Λ ⊆ (0, 1/𝛾).
For the fixed 𝜆 ∈ Λ, the other step is to show that the

functional 𝐼
𝜆
has no global minimum. Arguing as in [15],

since 1/𝜆 < 𝐶𝑝(∑𝑛
𝑖=1
(𝑝
+

𝑖
)
1/𝑝
−

𝑖 )
𝑝
𝐿𝛽, we can consider 𝑛 positive

real sequences {𝜂
𝑖,𝑘
}
𝑛

𝑖=1
and 𝜃 > 0 such that√∑𝑛

𝑖=1
𝜂
2

𝑖,𝑘
→ +∞

as 𝑘 → +∞ and

1

𝜆
< 𝜃 < 𝐿𝐶

𝑝
(

𝑛

∑

𝑖=1

(𝑝
+

𝑖
)
1/𝑝
−

𝑖
)

𝑝

⋅

∫
𝐵(𝑥1 ,𝑅3)

𝐹 (𝑥, 𝜂
1,𝑘
, . . . , 𝜂

𝑛,𝑘
) 𝑑𝑥

∑
𝑛

𝑖=1
(𝜂
𝑝
+

𝑖

𝑖,𝑘
/𝑝
−

𝑖
)

.

(51)

Let {𝑢
𝑘
(𝑥) = (𝑢

1𝑘
, 𝑢
2𝑘
, . . . , 𝑢

𝑛𝑘
)} be a sequence in 𝑋

defined by

𝑢
𝑖𝑘
(𝑥) =

{{{{{{

{{{{{{

{

0, 𝑥 ∈ Ω \ 𝐵 (𝑥
1
, 𝑅
4
) ,

𝜂
𝑖,𝑘
, 𝑥 ∈ 𝐵 (𝑥

1
, 𝑅
3
) ,

𝜂
𝑖,𝑘

𝑅
2

4
− 𝑅

2

3

(𝑅
2

4
−

𝑁

∑

𝑖=1

(𝑥
𝑖
− 𝑥

1

𝑖
)
2

) , 𝑥 ∈ 𝐵 (𝑥
1
, 𝑅
4
) \ 𝐵 (𝑥

1
, 𝑅
3
) ,

(52)

for 1 ≤ 𝑖 ≤ 𝑛. For any fixed 𝑘 ∈ N, it is to see that 𝑢
𝑘
∈ 𝑋, and

𝑁

∑

𝑖=1

𝜕
2
𝑢
𝑖𝑘
(𝑥)

𝜕𝑥
2

𝑖

=

{{

{{

{

0, 𝑥 ∈ Ω \ 𝐵 (𝑥
1
, 𝑅
4
) ∪ 𝐵 (𝑥

1
, 𝑅
3
) ,

−
2𝜂
𝑖,𝑘
𝑁

𝑅
2

4
− 𝑅

2

3

, 𝑥 ∈ 𝐵 (𝑥
1
, 𝑅
4
) \ 𝐵 (𝑥

1
, 𝑅
3
) .

(53)

Then

Φ(𝑢
𝑘
) =

𝑛

∑

𝑖=1

∫

Ω

1

𝑝
𝑖
(𝑥)

󵄨󵄨󵄨󵄨Δ𝑢𝑖𝑘 (𝑥)
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥

≤

𝑛

∑

𝑖=1

1

𝑝
−

𝑖

∫

Ω

󵄨󵄨󵄨󵄨Δ𝑢𝑖𝑘 (𝑥)
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥
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≤

𝑛

∑

𝑖=1

1

𝑝
−

𝑖

∫

𝐵(𝑥1 ,𝑅4)\𝐵(𝑥1 ,𝑅3)

󵄨󵄨󵄨󵄨Δ𝑢𝑖𝑘 (𝑥)
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥

≤

𝑛

∑

𝑖=1

1

𝑝
−

𝑖

(
2𝜂
𝑖,𝑘
𝑁

𝑅
2

4
− 𝑅

2

3

)

𝑝
+

𝑖

⋅
𝜋
𝑁/2

Γ (1 + 𝑁/2)
(𝑅
𝑁

4
− 𝑅

𝑁

3
)

=

𝑛

∑

𝑖=1

1

𝐶
𝑝
(∑

𝑛

𝑖=1
(𝑝
+

𝑖
)
1/𝑝
−

𝑖
)

𝑝

𝜂
𝑝
+

𝑖

𝑖,𝑘

𝑝
−

𝑖
𝐿
𝑝
+

𝑖

.

(54)

By (A1), we have

Ψ (𝑢
𝑘
) = ∫

Ω

𝐹 (𝑥, 𝑢
1𝑘
, . . . , 𝑢

𝑛𝑘
) 𝑑𝑥

≥ ∫

𝐵(𝑥1 ,𝑅3)

𝐹 (𝑥, 𝜂
1,𝑘
, . . . , 𝜂

𝑛,𝑘
) 𝑑𝑥,

(55)

and combining (51), (54), and (55), we obtain

𝐼
𝜆
(𝑢
𝑘
) = Φ (𝑢

𝑘
) − 𝜆Ψ (𝑢

𝑘
)

≤
1

𝐶
𝑝
(∑

𝑛

𝑖=1
(𝑝
+

𝑖
)
1/𝑝
−

𝑖
)

𝑝

𝑛

∑

𝑖=1

𝜂
𝑝
+

𝑖

𝑖,𝑘

𝑝
−

𝑖
𝐿
𝑝
+

𝑖

− 𝜆∫

𝐵(𝑥1 ,𝑅3)

𝐹 (𝑥, 𝜂
1,𝑘
, . . . , 𝜂

𝑛,𝑘
) 𝑑𝑥

≤
1

𝐿𝐶
𝑝
(∑

𝑛

𝑖=1
(𝑝
+

𝑖
)
1/𝑝
−

𝑖
)

𝑝

𝑛

∑

𝑖=1

𝜂
𝑝
+

𝑖

𝑖,𝑘

𝑝
−

𝑖

− 𝜆∫

𝐵(𝑥1 ,𝑅3)

𝐹 (𝑥, 𝜂
1,𝑘
, . . . , 𝜂

𝑛,𝑘
) 𝑑𝑥

<
1 − 𝜆𝜃

𝐿𝐶
𝑝
(∑

𝑛

𝑖=1
(𝑝
+

𝑖
)
1/𝑝
−

𝑖
)

𝑝

𝑛

∑

𝑖=1

𝜂
𝑝
+

𝑖

𝑖,𝑘

𝑝
−

𝑖

,

(56)

for 𝑘 large enough, so

𝐼
𝜆
(𝑢
𝑘
) = −∞. (57)

Hence, our claim is proved. Since all assumptions of The-
orem B case (b) are satisfied, the functional 𝐼

𝜆
admits an

unbounded sequence {𝑢
𝑘
= (𝑢

1𝑘
, . . . , 𝑢

𝑛𝑘
)} ⊂ 𝑋 of critical

points. This completes the proof of Theorem 9.

Theorem 10. Assume that (A1), (A4) hold and consider the
following:

(A6) There exist 𝑥
1
∈ Ω, 0 < 𝑅

3
< 𝑅

4
such that, if one puts

𝛼
0

fl lim inf
𝜉→0
+

∫
Ω
sup

(𝑡1 ,𝑡2,...,𝑡𝑛)∈𝑄(𝜉)
𝐹 (𝑥, 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
) 𝑑𝑥

𝜉
𝑝̂

,

𝛽
0 fl lim sup

(𝑡1 ,...,𝑡𝑛)→(0
+
,...,0
+
)

∫
𝐵(𝑥1 ,𝑅3)

𝐹 (𝑥, 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) 𝑑𝑥

∑
𝑛

𝑖=1
(𝑡
𝑝
−

𝑖

𝑖
/𝑝
−

𝑖
)

,

(58)

one has

𝛼
0
< 𝐿

1
𝛽
0
, (59)

where 𝐿
1
fl min{𝐿

𝑝
−

𝑖

, 𝑖 = 1, 2, . . . , 𝑛},

𝐿
𝑝
−

𝑖

=
Γ (1 + 𝑁/2)

(𝐶∑
𝑛

𝑖=1
(𝑝
+

𝑖
)
1/𝑝
+

𝑖
)

𝑝̂

𝜋
𝑁/2

1

𝑅
𝑁

4
− 𝑅

𝑁

3

(
𝑅
2

4
− 𝑅

2

3

2𝑁
)

𝑝
−

𝑖

.

(60)

Then, for every

𝜆 ∈ Λ fl
1

(𝐶∑
𝑛

𝑖=1
(𝑝
+

𝑖
)
1/𝑝
+

𝑖
)

𝑝̂
(

1

𝐿
1
𝛽
0
,
1

𝛼
0
) (61)

problem (1) admits a sequence of weak solutions which con-
verges to 0.

Proof. From condition (A1), we havemin
𝑋
Φ = Φ(0, . . . , 0) =

0, Ψ(0, . . . , 0) = 0.
Let {𝜉

𝑘
} be a real sequence such that 𝜉

𝑘
→ 0

+ as 𝑘 → +∞

and

lim
𝑘→+∞

∫
Ω
sup

(𝑡1 ,𝑡2 ,...,𝑡𝑛)∈𝑄(𝜉𝑘)
𝐹 (𝑥, 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
) 𝑑𝑥

𝜉
𝑝̂

𝑘

= 𝛼
0

< ∞.

(62)

Put 𝑟
𝑘
= 𝜉

𝑝̂

𝑘
/(𝐶∑

𝑛

𝑖=1
(𝑝
+

𝑖
)
1/𝑝
+

𝑖 )
𝑝̂ for all 𝑘 ∈ N. Therefore, from

(A6), we have

𝛿 ≤ lim inf
𝑘→+∞

𝜑 (𝑟
𝑘
) ≤ (𝐶

𝑛

∑

𝑖=1

(𝑝
+

𝑖
)
1/𝑝
+

𝑖
)

𝑝̂

𝛼
0
< +∞. (63)

It is clear that Λ ⊆ (0, 1/𝛿).
For the fixed 𝜆 ∈ Λ, the other step is to show that the

functional 𝐼
𝜆
has not a local minimum at zero. Arguing as

in [15], since 1/𝜆 < (𝐶∑𝑛
𝑖=1
(𝑝
+

𝑖
)
1/𝑝
+

𝑖 )
𝑝̂
𝐿
1
𝛽
0, we can consider
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𝑛 positive real sequences {𝜂
𝑖,𝑘
}
𝑛

𝑖=1
and 𝜃 > 0 such that

√∑
𝑛

𝑖=1
𝜂
2

𝑖,𝑘
→ 0 as 𝑘 → +∞ and

1

𝜆
< 𝜃 < 𝐿

1
(𝐶

𝑛

∑

𝑖=1

(𝑝
+

𝑖
)
1/𝑝
+

𝑖
)

𝑝̂

⋅

∫
𝐵(𝑥1 ,𝑅3)

𝐹 (𝑥, 𝜂
1,𝑘
, . . . , 𝜂

𝑛,𝑘
) 𝑑𝑥

∑
𝑛

𝑖=1
(𝜂
𝑝
−

𝑖

𝑖,𝑘
/𝑝
−

𝑖
)

.

(64)

Let {𝑢
𝑘
(𝑥) = (𝑢

1𝑘
, 𝑢
2𝑘
, . . . , 𝑢

𝑛𝑘
)} be a sequence in 𝑋

defined by (52):

Φ(𝑢
𝑘
) ≤

𝑛

∑

𝑖=1

1

𝑝
−

𝑖

∫

Ω

󵄨󵄨󵄨󵄨Δ𝑢𝑖𝑘 (𝑥)
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥

≤

𝑛

∑

𝑖=1

1

𝑝
−

𝑖

∫

𝐵(𝑥1 ,𝑅4)\𝐵(𝑥1 ,𝑅3)

󵄨󵄨󵄨󵄨Δ𝑢𝑖𝑘 (𝑥)
󵄨󵄨󵄨󵄨

𝑝𝑖(𝑥)

𝑑𝑥

≤

𝑛

∑

𝑖=1

1

𝑝
−

𝑖

(
2𝜂
𝑖,𝑘
𝑁

𝑅
2

4
− 𝑅

2

3

)

𝑝
−

𝑖

⋅
𝜋
𝑁/2

Γ (1 + 𝑁/2)
(𝑅
𝑁

4
− 𝑅

𝑁

3
)

=

𝑛

∑

𝑖=1

1

(𝐶∑
𝑛

𝑖=1
(𝑝
+

𝑖
)
1/𝑝
+

𝑖
)

𝑝̂

𝜂
𝑝
−

𝑖

𝑖,𝑘

𝑝
−

𝑖
𝐿
𝑝
−

𝑖

.

(65)

Combining (55), (64), and (65), for 𝑘 large enough, we
have

𝐼
𝜆
(𝑢
𝑘
) = Φ (𝑢

𝑘
) − 𝜆Ψ (𝑢

𝑘
)

<
1 − 𝜆𝜃

𝐿
1
(𝐶∑

𝑛

𝑖=1
(𝑝
+

𝑖
)
1/𝑝
+

𝑖
)

𝑝̂

𝑛

∑

𝑖=1

𝜂
𝑝
−

𝑖

𝑖,𝑘

𝑝
−

𝑖

< 0

= 𝐼
𝜆
(0, . . . , 0) .

(66)

The alternative of Theorem B case (c) ensures the existence
of sequence (𝑢

𝑘
) of pairwise distinct critical points (local

minima) of 𝐼
𝜆
which weakly converges to 0. This completes

the proof of Theorem 10.

Example 11. Let Ω = ((−1, 1))
3, with 𝑝, 𝑞, 𝑟 being three

functions defined on Ω by 𝑝(𝑥
1
, 𝑥
2
, 𝑥
3
) = 𝑥

2

1
+ 𝑥

2

2
+ 𝑥

2

3
+ 3,

𝑞(𝑥
1
, 𝑥
2
, 𝑥
3
) = 𝑥

2

1
+ 𝑥

2

2
+ 𝑥

2

3
+ 4, and 𝑟(𝑥

1
, 𝑥
2
, 𝑥
3
) = 𝑥

2

1
+ 𝑥

2

2
+

𝑥
2

3
+ 5, and consider the increasing sequence of positive real

numbers given by

𝑎
1
= 2,

𝑎
𝑛+1

= 𝑛! (𝑎
𝑛
)
3

+ 2

(𝑛 ≥ 1) .

(67)

Define the function 𝐹 : Ω ×R3 → R by

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑡
1
, 𝑡
2
, 𝑡
3
)

=

{

{

{

(𝑎
𝑛+1
)
9

𝑒
1−1/(1−∑

3

𝑖=1
(𝑡𝑖−𝑎𝑛+1)

2
)+𝑥
2

1
+𝑥
2

2
+𝑥
2

3 , if (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑡
1
, 𝑡
2
, 𝑡
3
) ∈ Ω × ⋃

𝑛≥1

𝑆 ((𝑎
𝑛+1
, 𝑎
𝑛+1
, 𝑎
𝑛+1
) , 1) ,

0, otherwise,

(68)

where 𝑆((𝑎
𝑛+1
, 𝑎
𝑛+1
, 𝑎
𝑛+1
), 1) denotes the open unit ball with

center at (𝑎
𝑛+1
, 𝑎
𝑛+1
, 𝑎
𝑛+1
). It is easy to verify that 𝐹 is

nonnegative function such that 𝐹(⋅, ⋅, ⋅, 𝑡
1
, 𝑡
2
, 𝑡
3
) is continuous

in Ω for all (𝑡
1
, 𝑡
2
, 𝑡
3
) ∈ R3. 𝐹(𝑥

1
, 𝑥
2
, 𝑥
3
, ⋅, ⋅, ⋅) is 𝐶1 in R3

for every (𝑥
1
, 𝑥
2
, 𝑥
3
) ∈ Ω. 𝐹(𝑥

1
, 𝑥
2
, 𝑥
3
, 0, 0, 0) = 0 for all

(𝑥
1
, 𝑥
2
, 𝑥
3
) ∈ Ω, for every 𝜌 > 0:

sup
|(𝑡1 ,𝑡2 ,𝑡3)|<𝜌

(
󵄨󵄨󵄨󵄨󵄨
𝐹
𝑡1
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑡
1
, 𝑡
2
, 𝑡
3
)
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝐹
𝑡2
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑡
1
, 𝑡
2
, 𝑡
3
)
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝐹
𝑡3
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑡
1
, 𝑡
2
, 𝑡
3
)
󵄨󵄨󵄨󵄨󵄨
) ∈ 𝐿

1
(Ω) .

(69)

The restriction of 𝐹 on 𝑆((𝑎
𝑛+1
, 𝑎
𝑛+1
, 𝑎
𝑛+1
), 1) attains

its maximum in 𝑆((𝑎
𝑛+1
, 𝑎
𝑛+1
, 𝑎
𝑛+1
), 1) and 𝐹(𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑎
𝑛+1
,

𝑎
𝑛+1
, 𝑎
𝑛+1
) = (𝑎

𝑛+1
)
9
𝑒
𝑥
2

1
+𝑥
2

2
+𝑥
2

3 .

Hence

lim sup
𝑛→∞

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑎
𝑛+1
, 𝑎
𝑛+1
, 𝑎
𝑛+1
)

𝑎
6

𝑛+1
/3 + 𝑎

7

𝑛+1
/4 + 𝑎

8

𝑛+1
/5

= +∞. (70)

Therefore
𝛽

= lim sup
𝑡1→+∞,𝑡2→+∞,𝑡3→+∞

∫
𝐵(𝑥1 ,𝑅3)

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑡
1
, 𝑡
2
, 𝑡
3
) 𝑑𝑥

1
𝑑𝑥

2
𝑑𝑥

3

𝑡
6

1
/3 + 𝑡

7

2
/4 + 𝑡

8

3
/5

=
󵄨󵄨󵄨󵄨𝐵 (𝑥1, 𝑅3)

󵄨󵄨󵄨󵄨 lim sup
𝑡1→+∞,𝑡2→+∞,𝑡3→+∞

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑡
1
, 𝑡
2
, 𝑡
3
)

𝑡
6

1
/3 + 𝑡

7

2
/4 + 𝑡

8

3
/5

= +∞.

(71)

Moreover, by choosing 𝜉
𝑛
= 𝑎

𝑛+1
−1, for every 𝑛 ∈ N, we have

sup
|𝑡1|+|𝑡2|+|𝑡3|≤𝑎𝑛+1−1

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑡
1
, 𝑡
2
, 𝑡
3
)

= (𝑎
𝑛
)
9

𝑒
𝑥
2

1
+𝑥
2

2
+𝑥
2

3 ,

(72)



Discrete Dynamics in Nature and Society 9

then

lim
𝑛→+∞

sup
|𝑡1|+|𝑡2|+|𝑡3|≤𝑎𝑛+1−1

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑡
1
, 𝑡
2
, 𝑡
3
)

(𝑎
𝑛+1

− 1)
3

= 0, (73)

and so

lim inf
𝜉→+∞

sup
|𝑡1|+|𝑡2|+|𝑡3|≤𝜉

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑡
1
, 𝑡
2
, 𝑡
3
)

𝜉
3

= 0. (74)

Then,

𝛼

= lim inf
𝜉→+∞

∫
Ω
sup

|𝑡1|+|𝑡2|+|𝑡3|≤𝜉
𝐹 (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑡
1
, 𝑡
2
, 𝑡
3
) 𝑑𝑥

1
𝑑𝑥

2
𝑑𝑥

3

𝜉
3

= |Ω| lim inf
𝜉→+∞

sup
|𝑡1|+|𝑡2|+|𝑡3|≤𝜉

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑡
1
, 𝑡
2
, 𝑡
3
)

𝜉
3

= 0 < 𝐿𝛽

= +∞.

(75)

Hence, fromTheorem 9, for each 𝜆 > 0, the problem

Δ(|Δ𝑢|
𝑥
2

1
+𝑥
2

2
+𝑥
2

3
+1
Δ𝑢) = 𝜆𝐹

𝑢
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑢, V, 𝑤)

in Ω,

Δ (|ΔV|𝑥
2

1
+𝑥
2

2
+𝑥
2

3
+2
ΔV) = 𝜆𝐹V (𝑥1, 𝑥2, 𝑥3, 𝑢, V, 𝑤)

in Ω,

Δ (|Δ𝑤|
𝑥
2

1
+𝑥
2

2
+𝑥
2

3
+3
Δ𝑤) = 𝜆𝐹

𝑤
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑢, V, 𝑤)

in Ω,

𝑢 = V = 𝑤 = Δ𝑢 = ΔV = Δ𝑤 = 0

on 𝜕Ω,

(76)

admits an unbounded sequence of weak solutions.
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