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In nature and society, there exist many learning modes; thus, in this paper the goal is to incorporate features from the social
organizations to improve the learning of intelligent systems. Inspired by future prediction, in the high level, the discrete dynamics
is further written into the equivalent prediction model which can provide the bridge from now to the future. In the low level, the
efficiency could be improved in way of group learning. The philosophy is integrated into discrete neural flight control where the
cascade dynamics is written into the prediction form and the minimal-learning-parameter technique is designed for parameter
learning. The effectiveness of the proposed method is verified with simulation.

1. Introduction

Optimization and control exist everywhere in nature and
society. Human beings are trying all their best to learn
from the nature to see how the optimization is going by
observing the process of biology. Genetic algorithm [1] is
proposed in use of techniques inspired by natural evolution,
such as inheritance, mutation, selection, and crossover. By
mimicking ants’ behavior to find food with pheromone trail,
ant colony optimization [2] is widely studied. Similarly, there
exist many other evolutionary algorithms, such as particle
swarm optimization [3] and estimation of distribution algo-
rithm [4].

During the controller design, different systems are ana-
lyzed such as strict-feedback system [5], pure-feedback sys-
tem [6], networked system [7], and multiagent system [8].
One main topic is to deal with the uncertainty. For example,
unknown parameters widely exist in many industrial pro-
cesses and therefore intelligent control is an important area
in several decades. Towards the unknown dynamics, fuzzy
logic system (FLS) [9, 10] and neural networks (NNs) [11–14]
are widely employed as function approximation. In view of
approximation role, in the indirect design [9, 15], the func-
tions are approximated separately and then the controller is

constructed. In the direct design, the desired control input is
approximated by theNN [16–18].Whilemany papers arewith
backstepping scheme [19] to deal with complex dynamics, the
interesting design [20–22] is developed without backstepping
by transforming the dynamics into the new form. Also
adaptive dynamic programming [23–26] or reinforcement
learning [27–29] is gainingmore andmore attention since the
optimal performance is expected.

In nature and society, discrete signals are everywhere.
For example, the population statistics and migration are
all in discrete-time domain. With the new development of
hardware, applications are required with digital computer or
microprocessor. As a result, the controller design in discrete
case is widely studied [30–33]. In particular, for flight vehicle
and robotic systems [34, 35], the online algorithm should be
produced by the digital computer and one concern is the
computation burden. How to define the efficient learning
algorithm is crucial for online application.

For social organization, it is very complex system. In
this system, agents are learning by themselves or learning
from other agents to improve the capability to adapt to
different situations. For the learning process, the goal should
be clear while the rule should be specific. Furthermore, there
should be such kind of mechanism to motivate different
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agents to learn from each other and share the knowledge
or experience to others. Also for social organization, the
vision should be far enough to lead the group to be more
intelligent.

In this paper, we try to construct new learning scheme
from the analysis of social organization. To make the idea
more intuitive, the flight dynamics [36] is considered as
example. First, the discrete dynamics is obtained with Euler
approximation. Then, with the idea of future prediction, the
equivalent prediction model is obtained and, in this way, the
control input is designed according to future output. During
the backstepping design, in each step, the learning algorithm
is with group learning and the computation burden is greatly
reduced.

This paper is organized as follows. The social organi-
zation is briefly discussed in Section 2. Section 3 describes
the longitudinal dynamics of the flight vehicle. Section 4
presents the dynamics transformation and adaptive neu-
ral controller design. The simulation result is included in
Section 5. Section 6 presents several comments and final
remarks.

2. Organization Learning

With the dramatic changes in the external environment
and the continuous development of information technology,
there exist optimization problems in both nature and human
society organizational learning. However, most of our orga-
nizational structure is pyramid-hierarchical structure with
overstaffed organization, which seriously affects the efficiency
of the organization.

In tense global competition, the complexity and uncer-
tainty of the index explosion of technology and the growing
market are increasing, the needs of modern organizations
in the turbulent business environment, constantly seeking
new sources of competitive advantage. Theorists and leaders
of both organizations increasingly consider learning as the
most critical factor in achieving sustainable development
and competitiveness of excellent organizational performance,
which means a continuous generation, dissemination, and
integration of new knowledge. And thus, terms such as
“organizational learning” and “learning organization” have
raised concerns to both academics and organizational practi-
tioners. A reasonable explanation for this note is that organi-
zational learning is often regarded as a solution to problems
caused by the hierarchy and bureaucracy of the organiza-
tions.

The advent of information age and knowledge economy
society requires a more flexible organization with a flat
organizational structure in order to prompt a faster way to
meet market demand and improve the efficiency of the orga-
nization. In the current volatile environment, the importance
of organizational learning and learning organization has been
increasingly recognized, and the research of these issues has
obtained a corresponding result. One very important issue
is how to establish a link of intrinsic logic model which can
well explain and predict changes in the fluctuant environment
and under this environment the organization also has the
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Figure 1: Organization learning.

ability to survive andmaintain sustainable development; how
to establish a set of learning methods that impact and pro-
mote organizational learning, so as to continuously improve
organizational performance; how to build the mechanism
between individual self-learning, learning from others, and
team learning and the transformation between these three
levels of learning.

The concept of organizations as learning system has
undergone continuous development and evolution process.
Learning organization refers to the organization which has
the ability to consciously, systematically, and consistently
create, accumulate, and use the knowledge resources, to
change or redesign itself in order to adapt to the chang-
ing external environment, so as to maintain a sustainable
competitive advantage of the organization. Organizational
learning refers to members of the organization who continue
to gain knowledge, to improve their behavior, and to optimize
the organization of the system as well as to maintain a
sustainable, healthy, and harmonious development process
of the organization under the changing external enviro-
nment.

Organizational learning capacity refers to themembers of
the organization tomake the organization as a whole have the
ability to maintain a sustainable and healthy organizational
development. These learning abilities can be summed up
from the existing law of experience or history through self-
innovation and they can also be summarized from the
experience of others by self-integration. Because of these
ways of thinking, the birth of some new ideas can be made
possible.

In organization learning, two important features should
be considered. As demonstrated in Figure 1, the learning
should be with future vision which means, according to
experience, it should be able to predict what will happen
in the future. Accordingly, with future prediction, one has
to decide how they should act now. For learning, usually
there exist too many things and the burden is huge. As a
result, group learning is an efficient way since the number of
parameters is greatly reduced. For example, for a largematrix,
it is complicated to compute its inverse.However, if thematrix
could be divided into several small parts, each of which is easy
to calculate, then it is much easier to get the inverse. Similar
idea exists in organization learning.
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3. Problem Formulation

Hypersonic flight is one key technology gaining increasing
attention recently [37–39]. Different from traditional flight
vehicles, the flight condition of high mach numbers and
high altitude makes the control system extremely sensitive
to changes in atmospheric conditions as well as physical and
aerodynamic parameters. Controller design on this topic is
widely studied such as system uncertainty [40, 41], actuator
constraint [42], fault tolerant control [43, 44], and non-
minimumphase system [45]. Accordingly, robust control and
adaptive control are designed for the dynamics. In [46], the
detail of recent progress in hypersonic flight is reviewed.

Tomake the procedure clear, the paper considers only the
altitude subsystem while the velocity is not considered in this
paper. The altitude dynamics is as follows:
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More details of the dynamics could be found in [41].
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4. Backstepping Design for
the Altitude Subsystem

Lemma 1. Given the function 𝑈

∗, there exists an ideal weight
vector 𝜔∗ such that the smooth function can be approximated
by an ideal NN on a compact set:
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where 𝜃 ⊂ 𝑅

𝑚 is the input to𝑁𝑁,𝑁 is the nodes number, 𝜉(𝜃)
is the bounded𝑁𝑁 approximation error, and 𝜉

𝑀
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of 𝜉(𝜃).

4.1. Equivalent Prediction Model. In Section 2, the predic-
tion function is mentioned. For the flight dynamics, it is
with cascade structure. In this part, we will see how to
get the prediction model. From (2), it is observed that 𝑥
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Remark 2. In the one-step ahead model (4), 𝑥
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should be made to transform the dynamics into another
prediction form.

Ignoring the analysis detail, the original system can be
expressed as the following equivalent prediction model [36]:
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Remark 3. The philology behind (5) is important since it
observes the transfer of the dynamics where actually 𝑢(𝑘) is
governing 𝑥

1
(𝑘 + 4) instead of 𝑥

1
(𝑘 + 1). Since in this paper

we try to use new idea from social organization to construct
novel NN approximation and learning, more detail is not
presented here.

Remark 4. With the equivalent predictionmodel in (5), there
is mapping between 𝑢(𝑘) and 𝑥

1
(𝑘 + 4). It can be observed

that the future output could be deduced from current control
input. Vice versa, it is expected to determine the current
control input based on future reference.

4.2. Discrete Control Design. From Figure 1, it is important
to construct the new learning scheme to reduce online
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computation burden.This is especially true for the hypersonic
flight control since the system is changing fast and requires
timely learning. Now the focus is on how to develop more
efficient learning approach.

For neural approximation, 𝜔∗ is bounded and unknown.
Let
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where 𝜂 is unknown constant.
With (6), inspired by the social organization, we try to

update the system signal in batch instead of one by one.
Define signals with the following form:
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online parameter is reduced to be only one. In this way, the
computation burden could be greatly decreased. The main
idea from social organization is that to improve efficiency
updating should be group by group instead of one by one.
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the dynamics used for controller design is the equivalent
prediction model.
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Remark 8. In (16), it shows 𝑘

4
= 𝑘 because actually there is

no change of this equation compared with the one-step ahead
equation.

The following theorem is achieved.

Theorem9. For system (4), if the signals (9), (11), (13), and (15)
and the update laws (10), (12), (14), and (16) are designed, all
the tracking errors are uniformly ultimately bounded.

The proof is similar to the procedure in [36]; thus, it is
omitted here.

5. Simulation

The simulation is with initial states at 𝑉 = 15060ft/s, ℎ =

110000ft, 𝛼 = 0.032 rad, 𝛽 = 0, and 𝛿

𝑒
= 0 rad.
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as square signal with amplitude of 1000 ft and period 200 s.

Thefilter𝜔
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) is used to generate

the reference signal where 𝜔

𝑛1
= 0.5, 𝜔

𝑛2
= 0.2, and 𝜀

𝑐
= 0.7.

For the velocity subsystem, the design in [36] is borrowed.
For controller, we select 𝐶

1
= 0.9, 𝐶

2
= 0.9, 𝐶

3
= 0.9,

𝐶

4
= 0.8, and 𝐶

𝑉
= 0.9. For the updating law, we select

𝜆

𝑖
= 0.01 and 𝛿

𝑖
= 0.01, 𝑖 = 1, 2, 3, 4, 𝑉. For simulation, the

time interval is selected as 𝑇
𝑠
= 0.05 s.

From the altitude tracking depicted in Figure 2, it is
observed that the controller can track the reference signal
very well. The elevator deflection and throttle setting are
illustrated in Figures 3 and 4. At the beginning, system is not
responding from trim state and there exists certain variation.
From the response of system states, under proposed con-
troller, flight path angle in Figure 5, pitch angle in Figure 6,
and the pitch rate in Figure 7 can track the virtual command
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Figure 5: Flight path angle.

verywell.The adaptive estimation for group learning is shown
in Figure 8. It indicates that, motivated by the learning of
social organization, the system is working more efficiently
since the tracking performance is retained while the online
learning speed is much faster since the number of parameters
is reduced to be one.

6. Conclusions and Future Work

By analysis of the social organization, the novel learning
scheme is proposed for the equivalent prediction model of
hypersonic flight dynamics. In this way, the online learning
is much faster and the controller is working more efficiently.
With simulation, the effectiveness of the proposed method is
verified.
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Figure 7: Pitch rate.

For efficiency, sometimes the system is learning toomuch
which means even with more update the accuracy will not
increase. In this case, the threshold should be included such
that the system can save more computation time by keeping
current parameters. In other words, the update is executed
when the tracking error is out of the desired performance.
Also in social organization, one agent cannot own all the
capabilities and thus the agent should be combined with
other agents to achieve more complex learning. This work
could be further extended tomultiagent systems [47, 48].The
composite learning [49] is of great interest since it can provide
more accurate learning.
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Figure 8: Adaptive estimation.
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