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An integrated pest management Gompertz model with interval impulsive control is put forward.Through pest density monitoring,
an integrated control strategy is adopted; that is when pest density reaches an environmental damage level, pesticide is used as a
control method; when pest density is lower than the damage level, predators as its natural enemy are released in case pest density is
higher than the slightly harmful level and predator density is below its maintainable level. The analysis on the existence of order-1
or order-2 periodic orbit is carried out by the construction of Poincaré map of semicontinuous dynamical system.The stability and
attractiveness of the periodic state are obtained by geometry approach, which ensures a certain robustness of control.The analytical
results presented in the work are validated by numerical simulations for a specific model.

1. Introduction

Agricultural pests are harmful to the crops, and thus pest
management plays an important role in agricultural sustain-
able development, which also becomes an interesting and sig-
nificant topic in real life.The traditional and efficient method
for pest control is to spray pesticide, which can quickly kill
the pest. However, unrestrained use of persistent pesticide
not only increases the incidence of pesticide-resistant pest
varieties but also inflicts harmful effects on humans through
the accumulation of hazardous chemicals in their food chain
[1]. An alternative way is the biological control by launching
predators or enhancing predators’ genes to improve the
effectiveness of the pest control [2]. This can be achieved by
mass production and periodic release of natural enemies of
the pest. However, the cultivation of the natural enemy in
laboratories is uneasy, and the cost is very high in general.
Integrated pest management (IPM) is the comprehensive
utilization of agricultural, biological, chemical, and physical
methods to control pests with the goal of controlling the
number of the pests under an economic threshold (ET) [3–5].
Compared to natural growth process, spraying pesticides (or
releasing the natural enemies) can cause the density of pests

(or the natural enemies) to change sharply in a short time,
which results in the discontinuity of the system states.

In the farmland and forest, the state of pests is always
monitored.The administrative authority makes decision (i.e.,
whether the control should be taken and what kind of control
should be adopted) according to the monitored pest level [6].
Based on the adopted control action, a series of integrated
pest management models have been built in the literature, for
example, the periodic release of predators [7–9]; the periodic
release of pests infected by a disease [10]; the periodic release
of predators and infected pests [11, 12]; the periodic release
of infected pests combined with periodic applications of
pesticides [13]; the periodic release of predators and pests
combined with periodic applications of pesticides [14–16];
and state-dependent release of predators combined with
applications of pesticides [3–5, 17–22].

As far as the state-dependent impulsive control is con-
cerned, the earlier works in pest management belong to Tang
et al. [3–5], where the biological and chemical controls are
assumed to be taken at the pest economic threshold (ET).
Notice that, in real applications, the biological control and
chemical control sometimes are adopted at different pest
levels; some researchers began to investigate the pest control
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models by assuming that releasing natural enemies and spray-
ing pesticide are taken at different pest thresholds [23–28].
From theoretical and practical points of view, the pest control
model with twice impulsive controls looks more reasonable
than the model with one impulsive control, and it can be
seen as an extension of the one-impulsive-control models.

The ideas of involving biological and chemical controls
at different prey densities is interesting and also has practical
significance. Biological control with an appropriate yield of
release of the predator is adopted in advance, to extend the
time for pest density increasing to the damage level (i.e.,
reduce the operating frequency of adopting chemical control
or pesticide). But there exists a problem in modelling the real
system; that is, the biological control is adoptedwhen the pest
density reaches the first control level, but for a higher pest
density between the biological and chemical control levels,
there is no control strategy adopted. This is obviously unrea-
sonable. Since the biological control and chemical control are
activated at different pest levels, a more reasonable model
should also consider the control action when the pest density
lies between the two levels; that is to say, when the pest density
increases to the chemical level, the chemical control has to
be carried out, which causes a certain proportion to pest
and predator to be killed. When the pest density increases
to or exceeds the biological control activation level but is
lower than the chemical control level, the biological control is
sufficient, which is also necessary when the predator density
is lower than its maintainable level, while in case of low pest
density (i.e., below the biological control excitation level) it
is not necessity to take any control action. Motivated by this
control strategy, the current work presents and studies a prey-
predator system involving interval state impulsive control.

This paper is organized as follows. In Section 2, a pest
control prey-predator model with interval impulsive control
is put forward. In Section 3, the Poincaré map, successor
function, and some basic definitions are given, followed by
a detailed dynamics analysis in case of the chemical control
strength. In Section 4, numerical simulations are carried out
with a specific model to verify the theoretical results step by
step. Finally, conclusions are presented in Section 5.

2. Model Formulation and Preliminaries

Let 𝑥(𝑡) and 𝑦(𝑡) denote the pest and its natural enemy
densities at time 𝑡. Motivated by the control strategy, the
following pest management Gompertz model is proposed:

𝑑𝑥

𝑑𝑡

= 𝑟𝑥 ln(𝐾
𝑥

) − 𝛽𝑥𝑦,

𝑑𝑦
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= 𝑦(−𝑑 +
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1 + ℎ𝑥

)

𝑥 ∉ [ℎ
1
, ℎ
2
) or 𝑥 ∈ [ℎ

1
, ℎ
2
) , 𝑦 ≥ 𝑦

𝜏
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Δ𝑥 = 0,
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1
, ℎ
2
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(1)

where 𝑟 denotes the intrinsic growth rate of the prey in the
absence of the predator,𝐾 denotes the environment carrying
capacity, 𝛽 denotes the predation rate by natural enemies,
𝜆 denotes the transformation rate and 𝑑 denotes the death
rate of the predator, and ℎ is a positive constant. The control
parameters 𝑝 and 𝑞 represent the effect of pesticide to prey
and predator species. Since the pesticide is relative to the pest,
the effect on the predator is limited; here it is assumed that 0 <
𝑝 < 1 and 0 < 𝑞 < 𝑞max ≜ 1 − 𝑦𝜏(ℎ1)/𝑦𝜏(ℎ2). The continuous
functions 𝑦

𝜏
(𝑥) ∈ [0, 𝑦
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1
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the predator reference level and the yield release of the
predator, where 𝑦

𝜏
(𝑥) ≜ 𝑟 ln(𝐾/𝑥)/𝛽.

The trajectory of the continuous system (1) passing
through 𝑃

0
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0
, 𝑦
0
), where
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Definition 1 (Poincaré map). For any trajectory 𝑂+(𝑃+
𝑛
, 𝑡
𝑛
) in

system (1) starting from point 𝑃+
𝑛
((1 − 𝑝)ℎ

2
, 𝑦
+

𝑛
) on Σ+

3
, there

will be two cases: (1) for 0 < ℎ
1
≤ (1−𝑝)ℎ

2
, the trajectory first

reaches the point 𝑃−
𝑛+1
(ℎ
2
, 𝑦
−

𝑛+1
) on section Σ

2
; then, it jumps

from 𝑃−
𝑛+1

to the point 𝑃
𝑛+1
((1 − 𝑝)ℎ

2
, (1 − 𝑞)𝑦

−

𝑛+1
) on Σ

3
due

to the impulsive effects Δ𝑥 = (1 − 𝑝)𝑥 and Δ𝑦 = (1 − 𝑞)𝑦 and
then jumps from𝑃

𝑛+1
to𝑃+
𝑛+1
((1−𝑝)ℎ

2
, 𝑦
+

𝑛+1
) onΣ+

3
due to the

impulsive effects Δ𝑥 = 0 and Δ𝑦 = 𝛼
(1−𝑝)ℎ

2

; (2) for 0 < (1 −
𝑝)ℎ
2
< ℎ
1
, the trajectory first reaches the point 𝑃

𝑛+1
(ℎ
1
, 𝑦
𝑛+1
)

on section Σ
1
; then, it jumps from 𝑃

𝑛+1
to 𝑃
𝑛+1
(ℎ
1
, 𝑦
𝑛+1
+𝛼
ℎ
1

)

on Σ+
1
due to the impulsive effects Δ𝑥 = 0 and Δ𝑦 = 𝛼

ℎ
1

and then the trajectory starting from 𝑃
𝑛+1

reaches the point
𝑃
−

𝑛+1
(ℎ
2
, 𝑦
−

𝑛+1
) on sectionΣ

2
then jumps from𝑃−

𝑛+1
to𝑃+
𝑛+1
((1−

𝑝)ℎ
2
, (1 − 𝑞)𝑦

−

𝑛+1
) on Σ+

3
due to the impulsive effects Δ𝑥 =

(1 − 𝑝)𝑥 and Δ𝑦 = (1 − 𝑞)𝑦. In any case, 𝑦+
𝑛+1

is a function
of 𝑦+
𝑛
, 𝑝, 𝑞, 𝛼

ℎ
1

, and 𝛼
(1−𝑝)ℎ

2

. The Poincaré map P on Σ+
3
is

defined as

P (𝑦
+

𝑛
) = 𝑦
+

𝑛+1
. (3)

Definition 2 (successor function). The successor function on
Σ
+

3
is defined by

𝑠 (𝑃
+

𝑛
) ≜ 𝑦
𝑃
+

𝑛+1

− 𝑦
𝑃
+

𝑛

= P (𝑦
𝑃
+

𝑛

) − 𝑦
𝑃
+

𝑛

, (4)

which is continuous on Σ+
3
, whereP(𝑦) is the Poincaré map

determined by (3).

Definition 3 (periodic solution). The solution of system (1)
passing through 𝑃 ∈ Σ+

3
is called periodic if 𝑠(𝑃) = 0.

3. Dynamic Analysis of System (1)

As illustrated in Figure 1, system (1) has three equilibria
𝑂(0, 0), 𝑅(𝐾, 0), and 𝐸(𝑥∗, 𝑦∗), where 𝑥∗ = 𝑑/(𝜆𝛽 − 𝑑ℎ) and
𝑦
∗
= 𝑟 ln(𝐾(𝜆𝛽 − 𝑑ℎ)/𝑑)/𝛽 if (𝐻

1
) : 𝐾 > 𝐾 ≜ 𝑑/(𝜆𝛽 − 𝑑ℎ)

and 𝜆𝛽 > 𝑑ℎ holds.The reference level 𝑦
𝜏
(𝑥) is established by

a statisticsmethod in practice, which reflects a certain consis-
tency of the system; that means the biological control taken at
any level should take the same or similar effect in determining
the system’s dynamics. Thus, in this study a trajectory of
the solution of system (1) starting from the point 𝑇

0
on

𝑥 = ℎ
1
is selected as a predator reference. To make practical

sense, the study is restricted in the left region of 𝐸(𝑥∗, 𝑦∗);
that is, 0 < ℎ

1
< ℎ
2
< 𝑥
∗.

3.1. Existence of Periodic Solution. The discussions will be
divided into three cases according to the magnitude between
ℎ
1
and (1 − 𝑝)ℎ

2
: the position of the trajectory ̂𝑇

0
𝑇
1
, the

magnitude of 𝛼 and 𝑞, and the location of the point 𝑃+
𝑛
.

Case 1 ((1 − 𝑝)ℎ
2
is greater than or equal to ℎ

1
). Suppose the

intersection point between the line 𝑥 = (1 − 𝑝)ℎ
2
and the

trajectory staring from 𝑇
0
is 𝑇
2
. The trajectory starting from

the point 𝑃+
𝑛
between 𝑇

2
and 𝑀

2
intersects with 𝑥 = ℎ

2
at

𝑃
−

𝑛+1
and then jumps to the point 𝑃

𝑛+1
on 𝑥 = (1−𝑝)ℎ

2
under

the effect of pulse. If the point 𝑃
𝑛+1
∈ Σ
+

3
, then it will jump

upward to the point 𝑃+
𝑛+1

.

y
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Figure 1: The system structural diagram.

Case 1.1 (𝑃+
𝑛+1

overlaps with 𝑃
+

𝑛
). Then, the curve

̂
𝑃
+

𝑛
𝑃
−

𝑛+1
𝑃
𝑛+1
𝑃
+

𝑛+1
constitutes an order-1 periodic orbit (see

Figure 2(a)).

Case 1.2 (𝑃+
𝑛+1

is under 𝑃+
𝑛
). Then, there is 𝑠(𝑃+

𝑛
) < 0. Next,

choose a point 𝑄+
𝑛
∈ Σ
−

3
adjacent to 𝑇

2
sufficiently (i.e.,

|𝑇
2
𝑄
+

𝑛
| < 𝜀). The trajectory of system (1) starting from 𝑄+

𝑛

intersects with 𝑥 = ℎ
2
at𝑄−
𝑛+1

then jumps to𝑄
𝑛+1
∈ Σ
+

3
under

impulsive effects Δ𝑥 = −𝑝𝑥 and Δ𝑦 = −𝑞𝑦 and next jumps to
𝑄
+

𝑛+1
above 𝑄+

𝑛
under impulsive effects Δ𝑥 = 0 and Δ𝑦 =

𝛼
(1−𝑝)ℎ

2

. Thus, there is 𝑠(𝑄+
𝑛
) > 0 (see Figure 2(b)), which

means that an order-1 periodic solution exists.

Case 1.3 (𝑃+
𝑛+1

is above 𝑃+
𝑛
). In this case, there is 𝑠(𝑃+

𝑛
) > 0.

Then, choose a point𝑄+
𝑛
between𝑀

2
and 𝑃+
𝑛+1

, which is close
to𝑀
2
sufficiently; the trajectory starting from 𝑄+

𝑛
intersects

with 𝑥 = ℎ
2
at 𝑄−
𝑛+1

and then jumps to 𝑄
𝑛+1

on 𝑥 = (1 −
𝑝)ℎ
2
under impulsive effects Δ𝑥 = −𝑝𝑥 and Δ𝑦 = −𝑞𝑦. If

𝑄
𝑛+1
∈ Σ
+

𝑝
, then it jumps to𝑄+

𝑛+1
∈ Σ
−

3
under impulsive effects

Δ𝑥 = 0 and Δ𝑦 = 𝛼
(1−𝑝)ℎ

2

, and 𝑄+
𝑛+1

must be under 𝑄+
𝑛
; then,

there is 𝑠(𝑄+
𝑛
) < 0 (see Figure 2(c)); that is, an order-1 periodic

solution exists. Otherwise, let𝑅+ be the point on𝑥 = (1−𝑝)ℎ
2

such thatP(𝑦
𝑅
) = 𝑦
𝑇
2

+ 𝛼
(1−𝑝)ℎ

2

. If 𝑠(𝑅) ≤ 0, then an order-1
periodic solution exists.

Case 2 ((1 − 𝑝)ℎ
2
is smaller than ℎ

1
). Suppose the trajectory

starting from 𝑃+
𝑛
∈ Σ
3
intersects with the line 𝑥 = ℎ

1
at 𝑃
𝑛+1
∈

Σ
+

1
; then, it jumps to the point 𝑃

𝑛+1
∈ Σ
−

1
under the impulsive

effects Δ𝑥 = 0 and Δ𝑦 = 𝛼
ℎ
1

. And then the trajectory starting
from 𝑃

𝑛+1
intersects with 𝑥 = ℎ

2
at point 𝑃−

𝑛+1
and then jumps

toΣ
3
at the point𝑃+

𝑛+1
under the effect of pulsesΔ𝑥 = −𝑝𝑥 and

Δ𝑦 = −𝑞𝑦. According to the relative position of 𝑃+
𝑛+1

and 𝑃+
𝑛
,

there are three cases to be considered.

Case 2.1 (𝑃+
𝑛+1

overlaps with 𝑃
+

𝑛
). Then, the curve

̂
𝑃
+

𝑛
𝑃
𝑛+1

̂
𝑃


𝑛+1
𝑃
+

𝑛+1
constitutes an order-2 periodic orbit (see

Figure 3(a)).
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Figure 2: The trajectory of system (1) when (1 − 𝑝)ℎ
2
is greater than ℎ

1
. (a) 𝑃+

𝑛+1
overlaps with 𝑃+

𝑛
; (b) 𝑃+

𝑛+1
is under 𝑃+

𝑛
; (c) 𝑃+

𝑛+1
is above 𝑃+

𝑛
.

Case 2.2 (𝑃+
𝑛+1

is under 𝑃+
𝑛
). Then, there is 𝑠(𝑃+

𝑛
) < 0. Next,

choose a point 𝑄+
𝑛
∈ Σ
3
adjacent to 𝑁

2
(i.e., |𝑄+

𝑛
𝑁
2
| < 𝜀),

where 𝑁
2
is the phase point of 𝑇

1
. The trajectory of system

(1) starting from 𝑄+
𝑛
intersects with 𝑥 = ℎ

1
at point 𝑄

𝑛+1
and

then jumps to the point𝑄
𝑛+1
∈ Σ
−

1
under the impulsive effects

Δ𝑥 = 0 and Δ𝑦 = 𝛼
ℎ
1

. The trajectory starting from 𝑄


𝑛+1

intersects with 𝑥 = ℎ
2
at point𝑄−

𝑛+1
and then jumps to a point

𝑄
+

𝑛+1
∈ Σ
3
under the impulsive effects Δ𝑥 = −𝑝𝑥 and Δ𝑦 =

−𝑞𝑦. Since 𝑄+
𝑛
is close to 𝑁

2
, then 𝑄+

𝑛+1
must be above 𝑄+

𝑛
;

then, there is 𝑠(𝑄+
𝑛
) > 0 (see Figure 3(b)), whichmeans that an

order-2 periodic solution exists.

Case 2.3 (𝑃+
𝑛+1

is above 𝑃+
𝑛
). In this case, there is 𝑠(𝑃+

𝑛
) > 0.

Let 𝑆
0
be a point on 𝑥 = ℎ

1
such that the trajectory starting

from 𝑆
0
intersects with the line 𝑥 = ℎ

1
at 𝑇
0
. If the trajectory

starting from 𝑆
0
does not intersect with Σ

3
, then choose the

point 𝑆((1 − 𝑝)ℎ
2
, (1 − 𝑞)𝑦

𝜏
(ℎ
2
)) ∈ Σ

3
as 𝑄+
𝑛
. Obviously there

is 𝑠(𝑄+
𝑛
) < 0. If the trajectory starting from 𝑆

0
intersects with

Σ
3
at 𝑆
1
and 𝑆
2
with 𝑦

𝑆
1

≥ 𝑦
𝑆
2

, then choose the point from 𝑆
2

and 𝑆 with smaller 𝑦 label as𝑄+
𝑛
. The trajectory starting from

𝑄
+

𝑛
intersects with 𝑥 = ℎ

1
at𝑄
𝑛+1

below 𝑇
0
and then jumps to

𝑄


𝑛+1
∈ Σ
−

1
. The trajectory starting from 𝑄

𝑛+1
intersects with

𝑥 = ℎ
2
at 𝑄−
𝑛+1

and then jumps to 𝑄+
𝑛+1
∈ Σ
3
. If P(𝑦

𝑄
+

𝑛

) ≤

𝑦
𝑄
+

𝑛

, there is 𝑠(𝑄+
𝑛
) < 0 (see Figure 3(c)), which means that an

order-2 periodic solution exists.

3.2. Stability of the Periodic Solutions

Theorem 4. For the case 0 < ℎ
1
≤ (1 − 𝑝)ℎ

2
, if the order-1

periodic solution exists, it is unique and orbitally asymptotically
stable.

Proof.

(1) The Uniqueness of the Order-1 Periodic Solution. Assume
system (1) admits two different order-1 periodic solutions
̂

𝑃
+

𝑛
𝑃
−

𝑛+1
𝑃
𝑛+1
𝑃
+

𝑛
and ̂

𝑄
+

𝑛
𝑄
−

𝑛+1
𝑄
𝑛+1
𝑄
+

𝑛
which start from 𝑃+

𝑛
and

𝑄
+

𝑛
on 𝑥 = (1−𝑝)ℎ

2
with 𝑦

𝑃
+

𝑛

> 𝑦
𝑄
+

𝑛

, respectively.Then, there
is 𝑠(𝑃+
𝑛
) = 𝑠(𝑄

+

𝑛
) = 0. Denote 𝑑

𝑃
+

𝑛
𝑄
+

𝑛

(𝑥) = 𝑦
𝑃
+

𝑛

(𝑥) − 𝑦
𝑄
+

𝑛

(𝑥),
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Figure 3: The trajectory of system (1) when (1 − 𝑝)ℎ
2
is less than ℎ

1
. (a) 𝑃+

𝑛+1
overlaps with 𝑃+

𝑛
; (b) 𝑃+

𝑛+1
is under 𝑃+

𝑛
; (c) 𝑃+

𝑛+1
is above 𝑃+

𝑛
.

where 𝑦
𝑃
+

𝑛

(𝑥) = 𝑦
−1

Γ
(𝑥, 𝑃
+

𝑛
) and 𝑦

𝑄
+

𝑛

(𝑥) = 𝑦
−1

Γ
(𝑥, 𝑄
+

𝑛
) with

𝑥 ∈ [ℎ
1
, ℎ
2
]. Then, there is

𝑑


𝑃
+

𝑛
𝑄
+

𝑛

(𝑥) = 𝑦


𝑃
+

𝑛

(𝑥) − 𝑦


𝑄
+

𝑛

(𝑥)

=

𝛾𝛽𝑥 − 𝑑

𝑥

𝑟 ln (𝐾/𝑥)
(𝑟 ln (𝐾/𝑥) − 𝛽𝜂)2

(𝑦
𝑃
+

𝑛

− 𝑦
𝑄
+

𝑛

) ,

(5)

which means that 𝑑
𝑃
+

𝑛
𝑄
+

𝑛

(𝑥) < 0; that is, 𝑑
𝑃
+

𝑛
𝑄
+

𝑛

(𝑥) is a
monotone decreasing function on [ℎ

1
, ℎ
2
].Then, it yields that

𝑑
𝑃
+

𝑛
𝑄
+

𝑛

(ℎ
1
) > 𝑑
𝑃
+

𝑛
𝑄
+

𝑛

(ℎ
2
) > (1 − 𝑞) 𝑑

𝑃
+

𝑛
𝑄
+

𝑛

(ℎ
2
) ; (6)

that is, 𝑑(𝑃+
𝑛
, 𝑄
+

𝑛
) > 𝑑(𝑃

−

𝑛+1
, 𝑄
−

𝑛+1
) > 𝑑(𝑃

𝑛+1
, 𝑄
𝑛+1
). Then,

there is

𝛼
(1−𝑝)ℎ

2

= 𝑑 (𝑃
+

𝑛
, 𝑄
+

𝑛
) + 𝑑 (𝑄

+

𝑛
, 𝑃
𝑛+1
)

> 𝑑 (𝑃
𝑛+1
, 𝑄
𝑛+1
) + 𝑑 (𝑄

+

𝑛
, 𝑃
𝑛+1
) = 𝛼
(1−𝑝)ℎ

2

(7)

which leads to a contradiction. Thus, the order-one periodic
solution is unique.

(2) Stability of the Order-1 Periodic Solution. Suppose the
impulsive point of 𝑇

2
is 𝑇+
2
; obviously, the trajectory of

system (1) starting from any point will arrive at the segment
𝑇
2
𝑇
+

2
. Thus, it is only necessary to consider the tendency

of the trajectory starting from 𝑇
2
𝑇
+

2
. If 𝑦

𝑃
+

𝑛

< 𝑦
𝑇
+

2

, we
should consider the tendency of the trajectory starting from
𝑇
2
𝑃
+

𝑛
and 𝑃+

𝑛
𝑇
+

2
, respectively. For any 𝑀+

0
∈ 𝑇
2
𝑃
+

𝑛
, a

sequence {𝑀+
𝑘
}|
𝑘=0,1,2,...

on 𝑇
2
𝑃
+

𝑛
can be obtained such that

𝑦
𝑀
+

𝑘+1

= 𝑦
𝑀
+

𝑘

+ 𝑠(𝑀
+

𝑘
); and for any 𝑁+

0
∈ 𝑃
+

𝑛
𝑇
+

2
, a sequence

{𝑁
+

𝑘
}|
𝑘=0,1,2,...

on 𝑃+
𝑛
𝑇
+

2
can be obtained such that 𝑦

𝑁
+

𝑘+1

=

𝑦
𝑁
+

𝑘

+ 𝑠(𝑁
+

𝑘
). From the proof of the uniqueness of the order-

one periodic, it can be observed that the successor function 𝑠
satisfies the following properties:

(i) 𝑠(𝑀+
0
) = 𝑠(𝑁

+

0
) = 0 if and only if𝑀+

0
= 𝑁
+

0
= 𝑃
+

𝑛
;
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(ii) 𝑠(𝑀+
0
) > 0 for𝑀+

0
∈ 𝑇
2
𝑃
+

𝑛
,𝑀+
0
̸= 𝑃
+

𝑛
;

(iii) 𝑠(𝑁+
0
) < 0 for𝑁+

0
∈ 𝑃
+

𝑛
𝑇
+

2
,𝑁+
0
̸= 𝑃
+

𝑛
.

Thismeans that {𝑦
𝑀
+

𝑘

} is a monotone increasing sequence
with an upper bound𝑦

𝑃
+

𝑛

, and {𝑦
𝑁
+

𝑘

} is amonotone decreasing
sequence with a lower bound 𝑦

𝑃
+

𝑛

; then, there exist 𝑦
𝑀
+

1

and
𝑦
𝑁
+

1

such that 𝑦
𝑀
+

𝑘

→ 𝑦
𝑀
+

1

and {𝑦
𝑁
+

𝑘

} → 𝑦
𝑁
+

1

when 𝑘 → ∞.
But 𝑠(𝑀+

1
) = 𝑠(𝑁

+

1
) = 0 implies that 𝑀+

1
= 𝑁
+

1
= 𝑃
+.

Thus, the unique order-1 periodic ̂
𝑃
+

𝑛
𝑃
−

𝑛+1
𝑃
𝑛+1
𝑃
+

𝑛
is orbitally

asymptotically stable. Since the points 𝑀+
0

and 𝑁+
0

are
arbitrary, the orbit asymptotical stability implies the global
attractiveness.

Theorem 5. For the case 0 < (1 − 𝑝)ℎ
2
< ℎ
1
, if the order-

2 periodic solution exists, it is unique, orbitally asymptotically
stable, and globally attractive.

Proof.

(1) The Uniqueness of the Order-2 Periodic Solution. Assume
system (1) admits two different period-2 solutions

̂
𝑃
+

𝑛
𝑃
𝑛+1
𝑃


𝑛+1
𝑃
−

𝑛+1
𝑃
+

𝑛
and ̂

𝑄
+

𝑛
𝑄
𝑛+1
𝑄


𝑛+1
𝑄
−

𝑛+1
𝑄
+

𝑛
which start

from 𝑃+
𝑛
and 𝑄+

𝑛
with 𝑦

𝑃
+

𝑛

> 𝑦
𝑄
+

𝑛

, respectively. Then, there is
𝑠(𝑃
+

𝑛
) = 𝑠(𝑄

+

𝑛
) = 0 and

𝑑 (𝑃
+

𝑛
, 𝑄
+

𝑛
) > 𝑑 (𝑃

𝑛+1
, 𝑄
𝑛+1
) > 𝑑 (𝑃

−

𝑛+1
, 𝑄
−

𝑛+1
)

> 𝑑 (𝑃
+

𝑛
, 𝑄
+

𝑛
)

(8)

which leads to a contradiction. Thus, the order-2 periodic
solution is unique.

(2)The Stability of the Order-2 Periodic Solution. Assume that
𝑇
+

1
and𝑀+

3
are the impulsive points of 𝑇

1
and𝑀

3
under the

pulses Δ𝑥 = (1 − 𝑝)𝑥 and Δ𝑦 = (1 − 𝑞)𝑦, respectively. The
trajectory𝑇

0
𝑇
1
meets with 𝑥 = (1−𝑝)ℎ

2
at the point𝑇

2
in the

opposite direction; 𝑇
0
is the impulsive point of 𝑇

0
. Obviously,

the trajectory of system (1) starting from any point will arrive
at the segment 𝑇+

1
𝑀
+

3
if 𝑦
𝑀
+

3

< 𝑦
𝑇
2

or 𝑇+
1
𝑇
2
if 𝑦
𝑀
+

3

> 𝑦
𝑇
2

.
Thus, it is only necessary to consider the tendency of the
trajectory starting from 𝑇

+

1
𝑀
+

3
or 𝑇+
1
𝑇
2
. Denote the order-

2 periodic by ̂
𝑃
+

𝑛
𝑃
𝑛+1
𝑃


𝑛+1
𝑃
−

𝑛+1
𝑃
+

𝑛
with 𝑃+

𝑛
on the segment

𝑇
+

1
𝑀
+

3
or 𝑇+
1
𝑇
2
. Similarly, let us consider the tendency

of the trajectory starting from 𝑃
+

𝑛
𝑀
+

3
or 𝑃+
𝑛
𝑇
2
and 𝑇+

1
𝑃
+

𝑛
,

respectively. For any 𝑄+
0
∈ 𝑃
+

𝑛
𝑀
+

3
or 𝑄+
0
∈ 𝑃
+

𝑛
𝑇
2
, a sequence

{𝑄
+

𝑘
}|
𝑘=0,1,2,...

can be obtained such that 𝑦
𝑄
+

𝑘+1

= 𝑦
𝑄
+

𝑘

+ 𝑠(𝑄
+

𝑘
);

and for any 𝑅+
0
∈ 𝑇
+

1
𝑃
+

𝑛
, a sequence {𝑅+

𝑘
}|
𝑘=0,1,2,...

on 𝑇+
1
𝑃
+

𝑛
can

be obtained such that 𝑦
𝑅
+

𝑘+1

= 𝑦
𝑅
+

𝑘

+ 𝑠(𝑅
+

𝑘
). From the proof

of the uniqueness of the order-2 periodic solution, it can be
observed that the successor function 𝑠 satisfies the following
properties:

(i) 𝑠(𝑄+
0
) = 𝑠(𝑅

+

0
) = 0 if and only if 𝑄+

0
= 𝑅
+

0
= 𝑃
+

𝑛
;

(ii) 𝑠(𝑄+
0
) > 0 for 𝑄+

0
∈ 𝑃
+

𝑛
𝑀
+

3
, 𝑄+
0
̸= 𝑃
+

𝑛
or 𝑄+
0
∈ 𝑃
+

𝑛
𝑇
2
,

𝑄
+

0
̸= 𝑃
+

𝑛
;

(iii) 𝑠(𝑅+
0
) < 0 for 𝑅+

0
∈ 𝑇
+

1
𝑃
+

𝑛
, 𝑅+
0
̸= 𝑃
+

𝑛
.

This means that {𝑦
𝑄
+

𝑘

} is a monotone increasing sequence
with an upper bound𝑦

𝑃
+

𝑛

, and {𝑦
𝑅
+

𝑘

} is amonotone decreasing
sequence with a lower bound 𝑦

𝑃
+

𝑛

; then, there exist 𝑦
𝑄
+ and

𝑦
𝑅
+ such that 𝑦

𝑄
+

𝑘

→ 𝑦
𝑄
+ and {𝑦

𝑅
+

𝑘

} → 𝑦
𝑅
+ when 𝑘 → ∞.

But 𝑠(𝑄+) = 𝑠(𝑅+) = 0 implies that 𝑄+ = 𝑅+ = 𝑃+
𝑛
. Thus,

the unique order-2 periodic solution ̂
𝑃
+

𝑛
𝑃
𝑛+1
𝑃


𝑛+1
𝑃
−

𝑛+1
𝑃
+

𝑛
is

orbitally asymptotically stable. Since the points𝑄+
0
and𝑅+

0
are

arbitrary, the orbit asymptotical stability implies the global
attractiveness.

4. Numerical Simulations

In this section, a specific example is given to verify the theo-
retical results obtained in the previous section by considering
the change of the control parameters 𝑝, 𝑞, and 𝛼

𝑥
. Let 𝑟 = 1.2,

𝐾 = 100, 𝛽 = 0.5, 𝜆 = 0.16, 𝑑 = 0.4, and ℎ = 0.18.
With a simple calculation, the steady state of free system is
𝐸(𝑥
∗
, 𝑦
∗
) = 𝐸(50, 1.664). The chemical control is assumed to

be taken at ℎ
2
= 40, and the biological control is assumed

to be taken at ℎ
1
= 20. The predator reference level at ℎ

1
is

assumed to be about 10%of steady predator density of the free
system; that is, 𝑦

𝜏
(ℎ
1
) = 0.1664.The curve 𝑟 ln(𝐾/𝑥)−𝛽𝑦 = 0

intersects with 𝑥 = ℎ
1
and 𝑥 = ℎ

2
at the points (20, 3.8627)

and (40, 2.1991), respectively. Then, there is 𝑦
𝜏
(ℎ
1
) = 3.8627

and 𝑦
𝜏
(ℎ
2
) = 2.1991.

4.1. Verification for the Case 0 < ℎ
1
≤ (1 − 𝑝)ℎ

2
. Let 𝑝 =

𝑞 = 0.4. Then, there is (1 − 𝑝)ℎ
2
= 24. The predator reference

level at (1 − 𝑝)ℎ
2
is about 𝑦

𝜏
((1 − 𝑝)ℎ

2
) = 0.1651. The curve

𝑟 ln(𝐾/𝑥) − 𝛽𝑦 = 0 intersects with 𝑥 = (1 − 𝑝)ℎ
2
at the point

(24, 3.4251); then, there is 𝑦
𝜏
((1 − 𝑝)ℎ

2
) = 3.4251. For the

yield release 𝛼
(1−𝑝)ℎ

2

= 0.1, an order-1 periodic solution is
formed, as illustrated in Figure 4.

When 𝛼
(1−𝑝)ℎ

2

increases to 0.2, that is, 𝛼
(1−𝑝)ℎ

2

= 0.2, the
order-1 periodic solution disappears, and an order-2 periodic
solution is formed, as illustrated in Figure 5.

For the yield release 𝛼
(1−𝑝)ℎ

2

= 0.5, an order-3 periodic
solution is formed (Figure 6).

4.2. Verification for the Case 0 < (1 − 𝑝)ℎ
2
< ℎ
1
. Let 𝑝 = 0.6

and 𝑞 = 0.2. Then, (1 − 𝑝)ℎ
2
= 16. For the release 𝛼

ℎ
1

= 0.04,
an order-2 periodic solution is formed (Figure 7).

For the yield release 𝛼
ℎ
1

= 0.1, an order-3 periodic solu-
tion is formed (Figure 8).

For the yield release 𝛼
ℎ
1

= 0.15, an order-4 periodic solu-
tion is formed (Figure 9).

For the yield release 𝛼
ℎ
1

= 0.25, an order-5 periodic solu-
tion is formed (Figure 10).

5. Conclusion

In this work, a pest control prey-predator model was ana-
lyzed, where the biological control and chemical control are
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considered at different thresholds. At the early stage of the
pest damage outbreaks, the biological control is adopted
in case of the predator density in the environment lower
than its maintainable level. Once the pest density reaches a
critical level, the chemical control with a given strength is
taken since higher pest density may cause a serious damage
to environment. Different to the models in literature, the
proposed model is more consistent with practice.

The theoretical analysis indicated that the yield of releases
of the predator plays a key role in determining the existence of
order-1 periodic orbit. The practical significance to studying
the existence of order-1 or order-2 periodic solution lies in
that it could provide a possibility to determine the frequency
of using chemical pesticide and yield of releases of the preda-
tor, which makes the control a periodic one without real-
timemonitoring of the species while keeping the prey density
below the damage level.The stability and attractiveness could
ensure a certain robustness of control; that is, even though the
species density is detected inaccurately or with a deviation,
the system will be eventually stable at the periodic solution
under the control action.
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Poincaré map,” Nonlinear Dynamics, vol. 81, no. 3, pp. 1575–
1596, 2015.

[20] G. R. Jiang, Q. S. Lu, and L. N. Qian, “Complex dynamics of a
Holling type II prey-predator system with state feedback con-
trol,”Chaos, Solitons & Fractals, vol. 31, no. 2, pp. 448–461, 2007.

[21] Y. Tian, K. B. Sun, and L. S. Chen, “Geometric approach to the
stability analysis of the periodic solution in a semi-continuous
dynamic system,” International Journal of Biomathematics, vol.
7, no. 2, Article ID 1450018, 2014.

[22] K. B. Sun, T. H. Zhang, and Y. Tian, “Theoretical study and con-
trol optimization of an integrated pest management predator-
prey model with power growth rate,”Mathematical Biosciences,
vol. 279, pp. 13–26, 2016.

[23] L. F. Nie, J. G. Peng, Z. D. Teng, and L. Hu, “Existence and
stability of periodic solution of a Lotka-Volterra predator-prey
model with state dependent impulsive effects,” Journal of Com-
putational and Applied Mathematics, vol. 224, no. 2, pp. 544–
555, 2009.

[24] L. Nie, Z. Teng, L. Hu, and J. Peng, “Existence and stability
of periodic solution of a predator-prey model with state-
dependent impulsive effects,” Mathematics and Computers in
Simulation, vol. 79, no. 7, pp. 2122–2134, 2009.

[25] Y. Tian, K. B. Sun, and L. S. Chen, “Comment on: existence
and stability of periodic solu-tion of a Lotka-Volterra predator-
prey model with state dependent impulsive effects,” Journal of
Computational and Applied Mathematics, vol. 234, no. 10, pp.
2916–2923, 2010.

[26] Y. Tian, K.-B. Sun, and L.-S. Chen, “Modelling and qualitative
analysis of a predator-prey system with state-dependent impul-
sive effects,”Mathematics and Computers in Simulation, vol. 82,
no. 2, pp. 318–331, 2011.

[27] L. C. Zhao, L. S. Chen, and Q. L. Zhang, “The geometrical
analysis of a predator-prey model with two state impulses,”
Mathematical Biosciences, vol. 238, no. 2, pp. 55–64, 2012.

[28] T. Q. Zhang, X. Z. Meng, R. Liu, and T. H. Zhang, “Periodic
solution of a pest management Gompertzmodel with impulsive
state feedback control,” Nonlinear Dynamics, vol. 78, no. 2, pp.
921–938, 2014.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


