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The aim of this paper is to highlight current developments and new trends in the stability theory. Due to the outstanding role played
in the study of stable, instable, and, respectively, central manifolds, the properties of exponential dichotomy and trichotomy for
evolution equations represent two domains of the stability theory with an impressive development. Hence, we intend to construct
a framework for an asymptotic approach of these properties for discrete dynamical systems using the associated skew-evolution
semiflows. To this aim, we give definitions and characterizations for the properties of exponential stability and instability, and
we extend these techniques to obtain a unified study of the properties of exponential dichotomy and trichotomy. The results are
underlined by several examples.

1. Introduction

The phenomena of the real world, in domains as economics,
biology, or environmental sciences, do not take place contin-
uously, but at certain moments in time.Therefore, a discrete-
time approach is required. By means of skew-evolution
semiflows, we intend to construct a framework that deepens
the analysis of discrete dynamical systems.

Playing an outstanding role in the study of stable and
instable manifolds and in approaching several types of dif-
ferential equations and difference equations, the exponential
dichotomy for evolution equations is one of the domains
of the stability theory with an impressive development. The
dichotomy is a conditional stability, due to the fact that the
asymptotic properties of the solutions of a given evolution
equation depend on the location of the initial condition in a
certain subspace of the phase space. Over the last decades, the
classic techniques used to characterize asymptotic properties
as stability and instability were generalized towards a natural
generalization of the classic concept of dichotomy, the notion
of trichotomy. The main idea in the study of trichotomy is to
obtain, at any moment, a decomposition of the state space in
three subspaces: a stable subspace, an instable one, and a third
one called the central manifold. We intend to give several

conditions in order to describe the behavior related to the
third subspace.

A relevant step in the study of evolution equations is due
to Henry, who, in [1], studied the property of dichotomy in
the discrete setting, in the spirit of the classic theory initiated
by Perron in [2].

A special interest is dedicated to the study of dynamic
linear systems by means of associated difference equations,
as emphasized by Chow and Leiva in [3] and Latushkin and
Schnaubelt in [4].

In [5], the uniform exponential dichotomy of discrete-
time linear systems given by difference equations is presented,
and the results are applied at the study of dichotomy of
evolution families generated by evolution equations. In [6],
a characterization of exponential dichotomy for evolution
families associated with linear difference systems in terms of
admissibility is given.

In [7], characterizations for the uniform exponential
stability of variational difference equations are obtained and,
in [8], the uniform exponential dichotomy of semigroups
of linear operators in terms of the solvability of discrete-
time equations over N is characterized. In [9], new char-
acterizations for the exponential dichotomy of evolution
families in terms of solvability of associate difference and
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integral equations are deduced. In [10, 11], some dichotomous
behaviors for variational difference equations are empha-
sized, such as a new method in the study of exponential
dichotomy based on the convergence of some associated
series of nonlinear trajectories or characterizations in terms
of the admissibility of pairs of sequence spaces over N with
respect to an associated control system.

The notion of trichotomy was introduced in 1976 by
Sacker and Sell and studied for the case of linear differential
equations in the finite dimensional setting in [12]. For the first
time, a sufficient condition for the existence of the trichotomy,
in fact a continuous invariant decomposition of the state
space R𝑛 into three subspaces, was given. In the same study,
the case of skew-product semiflows was as well approached.

A stronger notion, but still in the finite dimensional case,
was introduced by Elaydi and Hajek in [13], the exponential
trichotomy for linear and nonlinear differential systems,
by means of Lyapunov functions. They prove the fact that
the property of exponential trichotomy of a differential
system implies the Sacker-Sell type trichotomy. Meanwhile,
the notion of invariance to perturbations of the property
of trichotomy is given. Thus, in the case of a nonlinear
perturbation of a linear exponential trichotomic system, the
obtained system preserves the same qualitative behavior as
the nonperturbed one.

In [14], a relation between Lyapunov function and expo-
nential trichotomy for the linear equation on time scales
is given and, as application, the roughness of exponential
trichotomy on time scales is proved. Several asymptotic
properties for difference equations were studied in [15–17]
and, recently, in [18, 19]. Other asymptotic properties for
discrete-time dynamical systems were considered in [20, 21].
A new concept of 𝑙𝑝-trichotomy for linear difference systems
is given in [22], as an extension of the 𝑙𝑝-dichotomy and of
the exponential trichotomy in 𝑙𝑝 spaces.

The notion of skew-evolution semiflow considered in
this paper and introduced by us in [23] generalizes the
concepts of semigroups, evolution operators, and skew-
product semiflows and seems to be more appropriate for the
study of the asymptotic behavior of the solutions of evolution
equations in the nonuniform case, as they depend on three
variables. The applicability of the notion has been studied in
[24–28].

The case of stability for skew-evolution semiflows is
emphasized in [29], and various concepts for trichotomy
are studied in [30]. Some asymptotic properties, as stability,
instability, and trichotomy for difference equations in a
uniform as well in a nonuniform setting, were studied by us
in [31–33].

The following sections outline the structure of this paper.
In Section 2, the definitions for evolution semiflows, evo-
lution cocycles, and skew-evolution semiflows are given,
featured by examples. In Section 3, we present definitions and
characterizations for the properties of exponential growth
and decay, respectively, for the exponential stability and insta-
bility. The main results are stated in Sections 4 and 5, where
we give definitions and characterizations for these asymptotic
properties in discrete time for skew-evolution semiflows.
Finally, some conclusions are emphasized in Section 6.

The list of references allows us to build the overall context in
which the discussed problem is placed.

2. Preparatory Notions

Let us consider (𝑋, 𝑑) a metric space, 𝑉 a real or complex
Banach space, and B(𝑉) the family of linear 𝑉-valued
bounded operators defined on 𝑉. The norm of vectors and
operators is ‖ ⋅ ‖. In what follows, we will denote 𝑌 = 𝑋 × 𝑉,
𝑇 = {(𝑡, 𝑡

0
) ∈ R2, 𝑡 ≥ 𝑡

0
≥ 0}, and Δ = {(𝑚, 𝑛) ∈ N2, 𝑚 ≥ 𝑛}.

By 𝐼 we denoted the identity operator on 𝑉.

Definition 1. The mapping 𝐶 : 𝑇 × 𝑌 → 𝑌 defined by the
relation

𝐶 (𝑡, 𝑠, 𝑥, V) = (𝜑 (𝑡, 𝑠, 𝑥) , Φ (𝑡, 𝑠, 𝑥) V) , (1)

where 𝜑 : 𝑇 × 𝑋 → 𝑋 has the properties

(𝑠
1
) 𝜑(𝑡, 𝑡, 𝑥) = 𝑥, ∀(𝑡, 𝑥) ∈ R

+
× 𝑋,

(𝑠
2
) 𝜑(𝑡, 𝑠, 𝜑(𝑠, 𝑡

0
, 𝑥)) = 𝜑(𝑡, 𝑡

0
, 𝑥), ∀(𝑡, 𝑠, 𝑡

0
) ∈ 𝑇, 𝑥 ∈ 𝑋

and Φ : 𝑇 × 𝑋 →B(𝑉) satisfies

(𝑐
1
) Φ(𝑡, 𝑡, 𝑥) = 𝐼, ∀(𝑡, 𝑥) ∈ R

+
× 𝑋,

(𝑐
2
) Φ(𝑡, 𝑠, 𝜑(𝑠, 𝑡

0
, 𝑥))Φ(𝑠, 𝑡

0
, 𝑥) = Φ(𝑡, 𝑡

0
, 𝑥), ∀(𝑡, 𝑠, 𝑡

0
) ∈

𝑇, 𝑥 ∈ 𝑋,

is called skew-evolution semiflow on 𝑌.

Remark 2. 𝜑 is called evolution semiflow andΦ is an evolution
cocycle.

The approach of asymptotic properties in discrete time is
of an obvious importance because the results obtained in this
setting can easily be extended in continuous time.

Example 3. Let𝑉 = R be a Banach space and let𝑋 = C(N, 𝑉)
be the set of R-valued sequences (𝑥

𝑛
)
𝑛≥0

. The mapping

𝜑 : Δ × 𝑋 󳨀→ 𝑋,

𝜑 (𝑚, 𝑛, 𝑥) = 𝑥
𝑛
+ 𝑚 − 𝑛

(2)

is an evolution semiflow on𝑋. We consider the linear system
in discrete time:

𝑥
𝑛+1
= 𝐴
𝑛
𝑥
𝑛
, 𝑛 ∈ N, (3)

where 𝐴 : N→B(𝑉). If we denote

𝐸 (𝑚 + 𝑛, 𝑛) =
{

{

{

𝐴
𝑚+𝑛−1

⋅ ⋅ ⋅ 𝐴
𝑛+1
𝐴
𝑛
, 𝑚 > 0

𝐼, 𝑚 = 0,

(4)

where 𝐸 : N2 → B(𝑉), then every solution of system (3)
satisfies the relation

𝑥
𝑛+𝑝
= 𝐸 (𝑛 + 𝑝, 𝑛) 𝑥

𝑛
, ∀𝑛, 𝑝 ∈ N. (5)
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The pair 𝐶
𝐸
= (𝜑,Φ

𝐸
) is a skew-evolution semiflow, associ-

ated with system (3), where Φ
𝐸
is an evolution cocycle over

the evolution semiflow 𝜑, given by

Φ
𝐸
(𝑚, 𝑛, 𝑥) = 𝐸 (𝑚 − 𝑛 + [𝑥

𝑛
] , [𝑥
𝑛
]) ,

∀ (𝑚, 𝑛) ∈ Δ, ∀𝑥 ∈ 𝑋,

(6)

where [𝑥
𝑘
] denotes the integer part of the term of rank 𝑘.

Example 4. To every skew-evolution semiflow 𝐶 = (𝜑,Φ),
one can associate the mapping 𝐴

Φ
: N→B(𝑉) given by

𝐴
Φ
(𝑛) = Φ (𝑛 + 1, 𝑛, 𝑥) , 𝑛 ∈ N, 𝑥 ∈ 𝑋, (7)

such thatΦ
𝐴Φ
= Φ.

3. Preliminary Results

This section aims to emphasize some asymptotic behaviors,
as exponential growth and decay and exponential stability
and instability, as a foundation for the main results. We give
the definitions of these properties in continuous time and we
underline the characterizations in discrete time, as results that
play the role of equivalent definitions (see [33]).

Definition 5. A skew-evolution semiflow 𝐶 has exponential
growth if there exist mappings𝑀, 𝜔 : R

+
→ R∗
+
, such that

󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) V
󵄩󵄩󵄩󵄩 ≤ 𝑀 (𝑠) 𝑒

𝜔(𝑠)(𝑡−𝑠) 󵄩󵄩󵄩󵄩Φ (𝑠, 𝑡0, 𝑥) V
󵄩󵄩󵄩󵄩 ,

(8)

for all (𝑡, 𝑠), (𝑠, 𝑡
0
) ∈ 𝑇 and all (𝑥, V) ∈ 𝑌.

Definition 6. A skew-evolution semiflow 𝐶 is said to be
exponentially stable if there exist a constant ] > 0 and a
mapping𝑁 : R

+
→ R∗
+
such that

󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) V
󵄩󵄩󵄩󵄩 ≤ 𝑁 (𝑠) 𝑒

−](𝑡−𝑠) 󵄩󵄩󵄩󵄩Φ (𝑠, 𝑡0, 𝑥) V
󵄩󵄩󵄩󵄩 ,

(9)

for all (𝑡, 𝑠), (𝑠, 𝑡
0
) ∈ 𝑇 and all (𝑥, V) ∈ 𝑌.

Proposition 7. A skew-evolution semiflow𝐶with exponential
growth is exponentially stable if and only if there exist a
constant 𝜇 > 0 and a sequence of real numbers (𝑎

𝑛
)
𝑛≥0

with
the property 𝑎

𝑛
≥ 1, ∀𝑛 ≥ 0, such that

‖Φ (𝑛,𝑚, 𝑥) V‖ ≤ 𝑎
𝑚
𝑒
−𝜇(𝑛−𝑚)

‖V‖ , (10)

for all (𝑛,𝑚) ∈ Δ and all (𝑥, V) ∈ 𝑌.

Proof. We have the following.

Necessity. It is obtained immediately if we consider in relation
(9) 𝑡 = 𝑛 and 𝑠 = 𝑡

0
= 𝑚, and if we define

𝑎
𝑚
= 𝑁 (𝑚) , 𝑚 ∈ N,

𝜇 = ] > 0,
(11)

where the existence of 𝑁 : R
+
→ R∗
+
and of ] is given by

Definition 6.

Sufficiency. As a first step, if 𝑡 ≥ 𝑡
0
+ 1, we denote 𝑛 = [𝑡] and

𝑛
0
= [𝑡
0
]. The following relations hold:

𝑛 ≤ 𝑡 < 𝑛 + 1,

𝑛
0
≤ 𝑡
0
< 𝑛
0
+ 1,

𝑛
0
+ 1 ≤ 𝑛.

(12)

We obtain
󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) V

󵄩󵄩󵄩󵄩 ≤ 𝑀 (𝑛)

⋅ 𝑒
𝜔(𝑛)(𝑡−𝑛) 󵄩󵄩󵄩󵄩Φ (𝑛, 𝑛0 + 1, 𝜑 (𝑛0 + 1, 𝑡0, 𝑥))

⋅ Φ (𝑛
0
+ 1, 𝑡
0
, 𝑥) V󵄩󵄩󵄩󵄩 ≤ 𝑎𝑛𝑀

2

(𝑛)

⋅ 𝑒
2[𝜔(𝑛)+𝜇]

𝑒
−𝜇(𝑡−𝑡0) ‖V‖ ,

(13)

for all (𝑥, V) ∈ 𝑌, where functions 𝑀 and 𝜔 are given by
Definition 5.

As a second step, for 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 1), we have

󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) V
󵄩󵄩󵄩󵄩 ≤ 𝑀(𝑡0) 𝑒

𝜔(𝑡0)(𝑡−𝑡0) ‖V‖

≤ 𝑀(𝑡
0
) 𝑒
𝜔(𝑡0)+𝜇𝑒

−𝜇(𝑡−𝑡0) ‖V‖ ,
(14)

for all (𝑥, V) ∈ 𝑌.
Hence, 𝐶 is exponentially stable.

Definition 8. A skew-evolution semiflow 𝐶 has exponential
decay if there exist mappings𝑀, 𝜔 : R

+
→ R∗
+
, such that

󵄩󵄩󵄩󵄩Φ (𝑠, 𝑡0, 𝑥) V
󵄩󵄩󵄩󵄩 ≤ 𝑀 (𝑡) 𝑒

𝜔(𝑡)(𝑡−𝑠) 󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) V
󵄩󵄩󵄩󵄩 ,

(15)

for all (𝑡, 𝑠), (𝑠, 𝑡
0
) ∈ 𝑇 and all (𝑥, V) ∈ 𝑌.

Definition 9. A skew-evolution semiflow 𝐶 is said to be
exponentially instable if there exist a mapping𝑁 : R

+
→ R∗
+

and a constant ] > 0 such that

𝑁(𝑡)
󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) V

󵄩󵄩󵄩󵄩 ≥ 𝑒
](𝑡−𝑠) 󵄩󵄩󵄩󵄩Φ (𝑠, 𝑡0, 𝑥) V

󵄩󵄩󵄩󵄩 ,
(16)

for all (𝑡, 𝑠), (𝑠, 𝑡
0
) ∈ 𝑇 and all (𝑥, V) ∈ 𝑌.

Proposition 10. A skew-evolution semiflow with exponential
decay 𝐶 is exponentially instable if and only if there exist a
constant 𝜇 > 0 and a sequence of real numbers (𝑎

𝑛
)
𝑛≥0

with
the property 𝑎

𝑛
≥ 1, ∀𝑛 ≥ 0, such that

󵄩󵄩󵄩󵄩Φ (𝑛, 𝑛0, 𝑥) V
󵄩󵄩󵄩󵄩 ≤ 𝑎𝑚𝑒

−𝜇(𝑚−𝑛0)
󵄩󵄩󵄩󵄩Φ (𝑚, 𝑛0, 𝑥) V

󵄩󵄩󵄩󵄩 ,
(17)

for all (𝑚, 𝑛), (𝑛, 𝑛
0
) ∈ Δ and all (𝑥, V) ∈ 𝑌.

Proof. We have the following.

Necessity. We take in relation (16) 𝑡 = 𝑚, 𝑠 = 𝑛, and 𝑡
0
= 𝑛
0

and we define
𝑎
𝑚
= 𝑁 (𝑚) , 𝑚 ∈ N,

𝜇 = ] > 0,
(18)
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where the existence of function𝑁 : R
+
→ R∗
+
and of constant

] is given by Definition 9.

Sufficiency. First step, let us take 𝑡 ≥ 𝑡
0
+ 1 and we denote

𝑛 = [𝑡] and, respectively, 𝑛
0
= [𝑡
0
]. We obtain

𝑛 ≤ 𝑡 < 𝑛 + 1,

𝑛
0
≤ 𝑡
0
< 𝑛
0
+ 1,

𝑛
0
+ 1 ≤ 𝑛.

(19)

It follows that
󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) V

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩Φ (𝑡, 𝑛, 𝜑 (𝑛, 𝑛0 + 1, 𝑥))

⋅ Φ (𝑛, 𝑛
0
+ 1, 𝜑 (𝑛

0
+ 1, 𝑡
0
, 𝑥))Φ (𝑛

0
+ 1, 𝑡
0
, 𝑥) V󵄩󵄩󵄩󵄩

≥ [𝑀 (𝑡)]
−1

𝑒
−𝜔(𝑡−𝑛)

[𝑀 (𝑡)]
−1

⋅ 𝑒
−𝜔(𝑛0+1−𝑡0)

󵄩󵄩󵄩󵄩Φ (𝑛, 𝑛0 + 1, 𝑥) V
󵄩󵄩󵄩󵄩 ≥

[𝑀 (𝑡)]
−2

𝑁̃

⋅ 𝑒
−2𝜔

𝑒
]̃(𝑛−𝑛0+1) ‖V‖ ≥

𝑒
]̃

[𝑀 (𝑡)]
2

𝑁̃𝑒2𝜔
𝑒
]̃(𝑡−𝑡0) ‖V‖ ,

(20)

for all (𝑥, V) ∈ 𝑌, where the existence of function𝑀 and of
constant 𝜔 is assured by Definition 8.

As a second step, if we consider 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 1), we obtain

𝑀
󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) V

󵄩󵄩󵄩󵄩 ≥ 𝑒
−𝜔(𝑡−𝑡0) ‖V‖ ≥ 𝑒−(]̃+𝜔)𝑒]̃(𝑡−𝑡0) ‖V‖ , (21)

for all (𝑥, V) ∈ 𝑌.
Hence,

𝑁
󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) V

󵄩󵄩󵄩󵄩 ≥ 𝑒
](𝑡−𝑡0) ‖V‖ , (22)

for all (𝑡, 𝑡
0
, 𝑥, V) ∈ 𝑇 × 𝑌, where we have denoted

𝑁 = 𝑀𝑒
(]̃+𝜔)

+𝑀
2

𝑁̃𝑒
(−]̃+2𝜔)

, ] = ]̃, (23)

which proves the exponential instability of 𝐶.

4. Nonuniform Discrete Dichotomic Behaviors

Definition 11. Aprojector𝑃 on𝑌 is called invariant relative to
a skew-evolution semiflow𝐶 = (𝜑,Φ) if the following relation

𝑃 (𝜑 (𝑡, 𝑠, 𝑥))Φ (𝑡, 𝑠, 𝑥) = Φ (𝑡, 𝑠, 𝑥) 𝑃 (𝑥) (24)

holds for all (𝑡, 𝑠) ∈ 𝑇 and all 𝑥 ∈ 𝑋.

Definition 12. Two projectors 𝑃
1
and 𝑃

2
are said to be

compatible with a skew-evolution semiflow 𝐶 = (𝜑,Φ) if

(𝑑
1
) projectors 𝑃

1
and 𝑃

2
are invariant on 𝑌;

(𝑑
2
) for all 𝑥 ∈ 𝑋, the projections 𝑃

1
(𝑥) and 𝑃

2
(𝑥) verify

the relations

𝑃
1
(𝑥) + 𝑃

2
(𝑥) = 𝐼,

𝑃
1
(𝑥) 𝑃
2
(𝑥) = 𝑃

2
(𝑥) 𝑃
1
(𝑥) = 0.

(25)

Definition 13. A skew-evolution semiflow𝐶 = (𝜑,Φ) is called
exponentially dichotomic if there exist functions 𝑁

1
, 𝑁
2
:

R
+
→ R∗
+
, constants ]

1
, ]
2
> 0, and two projectors 𝑃

1
and

𝑃
2
compatible with 𝐶 such that

𝑒
]1(𝑡−𝑠) 󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) 𝑃1 (𝑥) V

󵄩󵄩󵄩󵄩

≤ 𝑁
1
(𝑠)
󵄩󵄩󵄩󵄩Φ (𝑠, 𝑡0, 𝑥) 𝑃1 (𝑥) V

󵄩󵄩󵄩󵄩

(26)

𝑒
]2(𝑡−𝑠) 󵄩󵄩󵄩󵄩Φ (𝑠, 𝑡0, 𝑥) 𝑃2 (𝑥) V

󵄩󵄩󵄩󵄩

≤ 𝑁
2
(𝑡)
󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) 𝑃2 (𝑥) V

󵄩󵄩󵄩󵄩

(27)

for all (𝑡, 𝑠), (𝑠, 𝑡
0
) ∈ 𝑇 and all (𝑥, V) ∈ 𝑌.

Example 14. We denote by C = C(R
+
,R
+
) the set of all

continuous functions 𝑥 : R
+
→ R

+
, endowed with the

topology of uniform convergence on compact subsets of R
+
,

metrizable relative to the metric

𝑑 (𝑥, 𝑦) =

∞

∑

𝑛=1

1

2𝑛

𝑑
𝑛
(𝑥, 𝑦)

1 + 𝑑
𝑛
(𝑥, 𝑦)

,

where 𝑑
𝑛
(𝑥, 𝑦) = sup

𝑡∈[0,𝑛]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 .

(28)

If 𝑥 ∈ C, then for all 𝑡 ∈ R
+
we denote 𝑥

𝑡
(𝑠) = 𝑥(𝑡 + 𝑠),

𝑥
𝑡
∈ C. Let 𝑋 be the closure in C of the set {𝑓

𝑡
, 𝑡 ∈ R

+
},

where 𝑓 : R
+
→ R∗
+
is a nondecreasing function with the

property lim
𝑡→∞

𝑓(𝑡) = 𝑙 > 0. Then, (𝑋, 𝑑) is a metric space
and the mapping

𝜑 : 𝑇 × 𝑋 󳨀→ 𝑋,

𝜑 (𝑡, 𝑠, 𝑥) (𝜏) = 𝑥 (𝑡 − 𝑠 + 𝜏)

(29)

is an evolution semiflow on𝑋.
Let 𝑉 = R2 be endowed with the norm

󵄩󵄩󵄩󵄩(V1, V2)
󵄩󵄩󵄩󵄩 =
󵄨󵄨󵄨󵄨V1
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨V2
󵄨󵄨󵄨󵄨 , V = (V

1
, V
2
) ∈ 𝑉. (30)

The mappingΦ : 𝑇 × 𝑋 →B(𝑉), given by

Φ (𝑡, 𝑠, 𝑥) (V
1
, V
2
)

= (𝑒
𝑡 sin 𝑡−𝑠 sin 𝑠−2𝑡+2𝑠V

1
, 𝑒
2𝑡−2𝑠−3𝑡 cos 𝑡+3𝑠 cos 𝑠V

2
) ,

(31)

is an evolution cocycle over the evolution semiflow 𝜑. We
consider the projectors

𝑃
1
(𝑥) (V

1
, V
2
) = (V

1
, 0) ,

𝑃
2
(𝑥) (V

1
, V
2
) = (0, V

2
) .

(32)

As

𝑡 sin 𝑡 − 𝑠 sin 𝑠 − 2𝑡 + 2𝑠 ≤ −𝑡 + 3𝑠, ∀ (𝑡, 𝑠) ∈ 𝑇, (33)

we obtain that
󵄩󵄩󵄩󵄩Φ (𝑡, 𝑠, 𝑥) 𝑃1 (𝑥) V

󵄩󵄩󵄩󵄩 ≤ 𝑒
2𝑠

𝑒
−(𝑡−𝑠) 󵄨󵄨󵄨󵄨V1

󵄨󵄨󵄨󵄨 ,

∀ (𝑡, 𝑠, 𝑥, V) ∈ 𝑇 × 𝑌.
(34)
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Similarly, as

2𝑡 − 2𝑠 − 3𝑡 cos 𝑡 + 3𝑠 cos 𝑠 ≥ −𝑡 − 5𝑠, ∀ (𝑡, 𝑠) ∈ 𝑇 (35)

it follows that

𝑒
6𝑡 󵄩󵄩󵄩󵄩Φ (𝑡, 𝑠, 𝑥) 𝑃2 (𝑥) V

󵄩󵄩󵄩󵄩 ≥ 𝑒
5(𝑡−𝑠) 󵄨󵄨󵄨󵄨V2

󵄨󵄨󵄨󵄨 ,

∀ (𝑡, 𝑠, 𝑥, V) ∈ 𝑇 × 𝑌.
(36)

The skew-evolution semiflow 𝐶 = (𝜑,Φ) is exponentially
dichotomic with characteristics

𝑁(𝑢) = 𝑒
6𝑢

,

] = 1.
(37)

In what follows, let us denote 𝐶
𝑘
(𝑡, 𝑠, 𝑥, V) = (𝜑(𝑡, 𝑠, 𝑥),

Φ(𝑡, 𝑡
0
, 𝑥)𝑃
𝑘
(𝑥)V), where (𝑡, 𝑡

0
, 𝑥, V) ∈ 𝑇 × 𝑌 and 𝑘 ∈ {1, 2}.

In discrete time, we will describe the property of expo-
nential dichotomy as given in the next proposition.

Proposition 15. A skew-evolution semiflow 𝐶 = (𝜑,Φ) is
exponentially dichotomic if and only if there exist two projectors
{𝑃
𝑘
}
𝑘∈{1,2}

, compatible with 𝐶, constants ]
1
≤ 0 ≤ ]

2
, and a

sequence of real positive numbers (𝑎
𝑛
)
𝑛≥0

such that

(𝑑
󸀠

1
)

󵄩󵄩󵄩󵄩Φ (𝑚, 𝑛, 𝑥) 𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩 ≤ 𝑎𝑛

󵄩󵄩󵄩󵄩𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩 𝑒

]1(𝑚−𝑛) (38)

(𝑑
󸀠

2
)

󵄩󵄩󵄩󵄩𝑃2 (𝑥) V
󵄩󵄩󵄩󵄩 ≤ 𝑎𝑚

󵄩󵄩󵄩󵄩Φ (𝑚, 𝑛, 𝑥) 𝑃2 (𝑥) V
󵄩󵄩󵄩󵄩 𝑒
−]2(𝑚−𝑛) (39)

for all (𝑚, 𝑛) ∈ Δ and all (𝑥, V) ∈ 𝑌.

Proof. We have the following.

Necessity. If we consider for 𝐶
1
in relation (26) of Defini-

tion 13 𝑡 = 𝑚 and 𝑠 = 𝑡
0
= 𝑛 and if we define

𝑎
𝑛
= 𝑁 (𝑛) , 𝑛 ∈ N, (40)

relation (𝑑󸀠
1
) is obtained.

Statement (𝑑
2
)
󸀠 results from Definition 13 for 𝐶

2
if we

consider in relation (27) 𝑡 = 𝑚 and 𝑠 = 𝑡
0
= 𝑛 and

𝑎
𝑚
= 𝑁 (𝑚) , 𝑚 ∈ N. (41)

Sufficiency. It is obtained by means of Proposition 7 for 𝐶
1

and, respectively, of Proposition 10 for 𝐶
2
.

Hence, 𝐶 is exponentially dichotomic.

Theorem 16. A skew-evolution semiflow 𝐶 = (𝜑,Φ) is
exponentially dichotomic if and only if there exist two projectors
{𝑃
𝑘
}
𝑘∈{1,2}

, compatible with 𝐶 such that

(𝑒𝑑
󸀠

1
) there exist a constant 𝜌

1
> 0 and a sequence of real

positive numbers (𝛼
𝑛
)
𝑛≥0

such that
𝑚

∑

𝑘=𝑛

𝑒
𝜌1(𝑘−𝑛)

󵄩󵄩󵄩󵄩Φ (𝑘, 𝑛, 𝑥) 𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛

󵄩󵄩󵄩󵄩𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩 (42)

(𝑒𝑑
󸀠

2
) there exist a constant 𝜌

2
< 0 and a sequence of real

positive numbers (𝛽
𝑛
)
𝑛≥0

such that

𝑚

∑

𝑘=𝑛

𝑒
−𝜌2(𝑚−𝑘)

󵄩󵄩󵄩󵄩Φ (𝑘, 𝑛, 𝑥) 𝑃2 (𝑥) V
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑚

󵄩󵄩󵄩󵄩Φ (𝑚, 𝑛, 𝑥) 𝑃2 (𝑥) V
󵄩󵄩󵄩󵄩

(43)

for all (𝑚, 𝑝), (𝑝, 𝑛) ∈ Δ and all (𝑥, V) ∈ 𝑌.

Proof. We have the following.

Necessity. According to Proposition 7, there exist a constant
] > 0 and a sequence of real numbers (𝑎

𝑛
)
𝑛≥0

with the
property 𝑎

𝑛
≥ 1, ∀𝑛 ≥ 0. We obtain for 𝜌 = ]/2 > 0 and

according to Proposition 7

𝑚

∑

𝑘=𝑛

𝑒
𝜌(𝑘−𝑛)

‖Φ (𝑘, 𝑛, 𝑥) V‖

≤ 𝑎
𝑛

𝑚

∑

𝑘=𝑛

𝑒
𝜌(𝑘−𝑛)

𝑒
−](𝑘−𝑛)

‖Φ (𝑛, 𝑛, 𝑥) V‖

= 𝑎
𝑛
‖V‖
𝑚

∑

𝑘=𝑛

𝑒
−(]/2)(𝑘−𝑛)

≤ 𝛼
𝑛
‖V‖ ,

∀𝑚, 𝑛 ∈ Δ, ∀ (𝑥, V) ∈ 𝑌,

(44)

where we have denoted

𝛼
𝑛
= 𝑎
𝑛
𝑒
]/2
, 𝑛 ∈ N. (45)

By Proposition 10, there exist a constant ] > 0 and a
sequence of real numbers (𝑎

𝑛
)
𝑛≥0

with the property 𝑎
𝑛
≥ 1,

∀𝑛 ≥ 0. We obtain for 𝜌 = −]/2 > 0

𝑚

∑

𝑘=𝑛

𝑒
−𝜌(𝑚−𝑘)

‖Φ (𝑘, 𝑛, 𝑥) V‖

≤ 𝑎
𝑚

𝑚

∑

𝑘=𝑛

𝑒
−𝜌(𝑚−𝑘)

𝑒
−](𝑚−𝑘)

‖Φ (𝑚, 𝑛, 𝑥) V‖

= 𝑎
𝑚
‖Φ (𝑚, 𝑛, 𝑥) V‖

𝑚

∑

𝑘=𝑛

𝑒
−(]/2)(𝑘−𝑛)

≤ 𝛼
𝑚
‖Φ (𝑚, 𝑛, 𝑥) V‖ ,

(46)

for all (𝑚, 𝑛) ∈ Δ and all (𝑥, V) ∈ 𝑌, where we have denoted

𝛼
𝑚
=

1

1 − 𝑒𝜌
𝑎
𝑚
, 𝑚 ∈ N. (47)
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Sufficiency. Let 𝑡 ≥ 𝑡
0
+ 1, 𝑡

0
≥ 0. We define 𝑛 = [𝑡] and

𝑛
0
= [𝑡
0
]. We consider 𝐶

−𝜌
= (𝜑,Φ

−𝜌
), where we define

Φ
−𝜌
(𝑡, 𝑡
0
, 𝑥) = 𝑒

𝜌(𝑡−𝑡0)Φ(𝑡, 𝑡
0
, 𝑥). We have that

󵄩󵄩󵄩󵄩󵄩
Φ
−𝜌
(𝑡, 𝑡
0
, 𝑥) V

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
Φ
−𝜌
(𝑡, 𝑛, 𝜑 (𝑛, 𝑡

0
, 𝑥))Φ

−𝜌
(𝑛, 𝑡
0
, 𝑥) V

󵄩󵄩󵄩󵄩󵄩

≤ 𝑀 (𝑛) 𝑒
𝜔(𝑡−𝑛)

󵄩󵄩󵄩󵄩󵄩
Φ
−𝜌
(𝑛, 𝑡
0
, 𝑥) V

󵄩󵄩󵄩󵄩󵄩

≤ 𝑀 (𝑛) 𝑒
𝜔
󵄩󵄩󵄩󵄩󵄩
Φ
−𝜌
(𝑛, 𝑡
0
, 𝑥) V

󵄩󵄩󵄩󵄩󵄩
,

(48)

for all (𝑥, V) ∈ 𝑌, where𝑀 and 𝜔 are given by Definition 5.
We obtain further for𝑚 ≥ 𝑛

∫

𝑡

𝑡0+1

󵄩󵄩󵄩󵄩󵄩
Φ
−𝜌
(𝜏, 𝑡
0
, 𝑥) V

󵄩󵄩󵄩󵄩󵄩
𝑑𝜏

≤

𝑚

∑

𝑘=[𝑡0]+1

𝑀(𝑛) 𝑒
𝜔
󵄩󵄩󵄩󵄩󵄩
Φ
−𝜌
(𝑘, 𝑡
0
, 𝑥) V

󵄩󵄩󵄩󵄩󵄩
≤ 𝛽
𝑛
‖V‖ ,

(49)

for all (𝑥, V) ∈ 𝑌, where 𝛽
𝑛
= 𝑀(𝑛)𝛼

𝑛
𝑒
𝜔. Then, there exist

𝑁 ≥ 1 and ] > 0 such that
󵄩󵄩󵄩󵄩󵄩
Φ
−𝜌
(𝑡, 𝑡
0
, 𝑥) V

󵄩󵄩󵄩󵄩󵄩
≤ 𝑁𝑒
−](𝑡−𝑡0) ‖V‖ ,

∀𝑡 ≥ 𝑡
0
+ 1, ∀ (𝑥, V) ∈ 𝑌.

(50)

On the other hand, for 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 1), we have

󵄩󵄩󵄩󵄩󵄩
Φ
−𝜌
(𝑡, 𝑡
0
, 𝑥) V

󵄩󵄩󵄩󵄩󵄩
≤ 𝑀𝑒
𝜔(𝑡−𝑡0) ‖V‖ ≤ 𝑀𝑒𝜔 ‖V‖ ,

∀ (𝑥, V) ∈ 𝑌.
(51)

We obtain that 𝐶
−𝜌

is stable, where

Φ
−𝜌
(𝑚, 𝑛, 𝑥) = 𝑒

𝜌(𝑚−𝑛)

‖Φ (𝑚, 𝑛, 𝑥)‖ ,

(𝑚, 𝑛, 𝑥) ∈ Δ × 𝑋.

(52)

Hence, there exists a sequence (𝑎
𝑛
)
𝑛≥0

with the property 𝑎
𝑛
≥

1, ∀𝑛 ≥ 0, such that

𝑒
𝜌(𝑚−𝑛)

‖Φ (𝑚, 𝑛, 𝑥) V‖ ≤ 𝑎
𝑛
‖V‖ ,

∀ (𝑚, 𝑛, 𝑥, V) ∈ Δ × 𝑌,
(53)

which implies the exponential stability of 𝐶
1
and ends the

proof.
According to the hypothesis, if we consider 𝑘 = 𝑛 we

obtain

𝑒
−𝜌(𝑚−𝑛)

‖Φ (𝑛, 𝑛, 𝑥) V‖ ≤ 𝑎
𝑚
‖Φ (𝑚, 𝑛, 𝑥) V‖ , (54)

for all (𝑚, 𝑛, 𝑥, V) ∈ Δ × 𝑌, which implies the exponential
instability of 𝐶

2
and ends the proof.

5. Nonuniform Discrete
Trichotomic Behaviors

Definition 17. Three projectors {𝑃
𝑘
}
𝑘∈{1,2,3}

are said to be
compatible with a skew-evolution semiflow 𝐶 = (𝜑,Φ) if
(𝑡
1
) each projector 𝑃

𝑘
, 𝑘 ∈ {1, 2, 3} is invariant on 𝑌;

(𝑡
2
) for all 𝑥 ∈ 𝑋, the projections 𝑃

0
(𝑥), 𝑃

1
(𝑥), and 𝑃

2
(𝑥)

verify the relations

𝑃
1
(𝑥) + 𝑃

2
(𝑥) + 𝑃

3
(𝑥) = 𝐼,

𝑃
𝑖
(𝑥) 𝑃
𝑗
(𝑥) = 0, ∀𝑖, 𝑗 ∈ {1, 2, 3} , 𝑖 ̸= 𝑗.

(55)

Definition 18. A skew-evolution semiflow𝐶 = (𝜑,Φ) is called
exponentially trichotomic if there exist the functions 𝑁

1
, 𝑁
2
,

𝑁
3
, 𝑁
4
: R
+
→ R∗

+
, constants ]

1
, ]
2
, ]
3
, and ]

4
with the

properties

]
1
≤ ]
2
≤ 0 ≤ ]

3
≤ ]
4
, (56)

and three projectors 𝑃
1
, 𝑃
2
, and 𝑃

3
compatible with 𝐶 such

that

󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) 𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩

≤ 𝑁
1
(𝑠)
󵄩󵄩󵄩󵄩Φ (𝑠, 𝑡0, 𝑥) 𝑃1 (𝑥) V

󵄩󵄩󵄩󵄩 𝑒
]1(𝑡−𝑠)

(57)

𝑁
4
(𝑡)
󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) 𝑃2 (𝑥) V

󵄩󵄩󵄩󵄩

≥
󵄩󵄩󵄩󵄩Φ (𝑠, 𝑡0, 𝑥) 𝑃2 (𝑥) V

󵄩󵄩󵄩󵄩 𝑒
]4(𝑡−𝑠)

(58)

𝑁
2
(𝑡)
󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) 𝑃3 (𝑥) V

󵄩󵄩󵄩󵄩

≥
󵄩󵄩󵄩󵄩Φ (𝑠, 𝑡0, 𝑥) 𝑃3 (𝑥) V

󵄩󵄩󵄩󵄩 𝑒
]2(𝑡−𝑠)

(59)

󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) 𝑃3 (𝑥) V
󵄩󵄩󵄩󵄩

≤ 𝑁
3
(𝑠)
󵄩󵄩󵄩󵄩Φ (𝑠, 𝑡0, 𝑥) 𝑃3 (𝑥) V

󵄩󵄩󵄩󵄩 𝑒
]3(𝑡−𝑠)

(60)

for all (𝑡, 𝑠), (𝑠, 𝑡
0
) ∈ 𝑇 and all (𝑥, V) ∈ 𝑌.

Example 19. We consider the evolution semiflow 𝜑 defined in
Example 14. Let 𝑉 = R3 be endowed with the norm

󵄩󵄩󵄩󵄩(V1, V2, V3)
󵄩󵄩󵄩󵄩 =
󵄨󵄨󵄨󵄨V1
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨V2
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨V3
󵄨󵄨󵄨󵄨 . (61)

The mappingΦ : 𝑇 × 𝑋 →B(𝑉), given by

Φ (𝑡, 𝑠, 𝑥) V = (𝑒−2(𝑡−𝑠)𝑥(0)+∫
𝑡

0
𝑥(𝜏)𝑑𝜏V

1
, 𝑒
𝑡−𝑠+∫

𝑡

0
𝑥(𝜏)𝑑𝜏V

2
,

𝑒
−(𝑡−𝑠)𝑥(0)+2 ∫

𝑡

0
𝑥(𝜏)𝑑𝜏V

3
) ,

(62)

is an evolution cocycle. Then, 𝐶 = (𝜑,Φ) is a skew-evolution
semiflow.

We consider the projections

𝑃
1
(𝑥) (V) = (V

1
, 0, 0) ,

𝑃
2
(𝑥) (V) = (0, V

2
, 0) ,

𝑃
3
(𝑥) (V) = (0, 0, V

3
) .

(63)



Discrete Dynamics in Nature and Society 7

The skew-evolution semiflow 𝐶 = (𝜑,Φ) is exponentially
trichotomic with characteristics

]
1
= ]
2
= −𝑥 (0) ,

]
3
= 𝑥 (0) ,

]
4
= 1,

𝑁
1
(𝑢) = 𝑒

𝑢𝑥(0)

,

𝑁
2
(𝑢) = 𝑒

−2𝑙𝑢

,

𝑁
3
(𝑢) = 𝑒

2𝑢𝑥(0)

,

𝑁
4
(𝑢) = 𝑒

−𝑙𝑢

.

(64)

As in the case of dichotomy, let 𝐶
𝑘
(𝑡, 𝑠, 𝑥, V) =

(𝜑(𝑡, 𝑠, 𝑥), Φ(𝑡, 𝑡
0
, 𝑥)𝑃
𝑘
(𝑥)V), where (𝑡, 𝑡

0
, 𝑥, V) ∈ 𝑇 × 𝑌 and

𝑘 ∈ {1, 2, 3}.

In discrete time, the trichotomy of a skew-evolution
semiflow can be described as in the next proposition.

Proposition 20. A skew-evolution semiflow 𝐶 = (𝜑,Φ)

is exponentially trichotomic if and only if there exist three
projectors {𝑃

𝑘
}
𝑘∈{1,2,3}

compatible with 𝐶, constants ]
1
, ]
2
, ]
3
,

and ]
4
with the property ]

1
≤ ]
2
≤ 0 ≤ ]

3
≤ ]
4
, and a sequence

of positive real numbers (𝑎
𝑛
)
𝑛≥0

such that

(𝑡
1
)

󵄩󵄩󵄩󵄩Φ (𝑚, 𝑛, 𝑥) 𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩

≤ 𝑎
𝑝

󵄩󵄩󵄩󵄩Φ (𝑝, 𝑛, 𝑥) 𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩 𝑒

]1(𝑚−𝑝),
(65)

(𝑡
2
)

󵄩󵄩󵄩󵄩Φ (𝑝, 𝑛, 𝑥) 𝑃2 (𝑥) V
󵄩󵄩󵄩󵄩

≤ 𝑎
𝑚

󵄩󵄩󵄩󵄩Φ (𝑚, 𝑛, 𝑥) 𝑃2 (𝑥) V
󵄩󵄩󵄩󵄩 𝑒
−]4(𝑚−𝑝),

(66)

(𝑡
3
)

󵄩󵄩󵄩󵄩Φ (𝑝, 𝑛, 𝑥) 𝑃3 (𝑥) V
󵄩󵄩󵄩󵄩

≤ 𝑎
𝑚

󵄩󵄩󵄩󵄩Φ (𝑚, 𝑛, 𝑥) 𝑃3 (𝑥) V
󵄩󵄩󵄩󵄩 𝑒
−]2(𝑚−𝑝),

(67)

(𝑡
4
)

𝑎
𝑝

󵄩󵄩󵄩󵄩Φ (𝑝, 𝑛, 𝑥) 𝑃3 (𝑥) V
󵄩󵄩󵄩󵄩

≥
󵄩󵄩󵄩󵄩Φ (𝑚, 𝑛, 𝑥) 𝑃3 (𝑥) V

󵄩󵄩󵄩󵄩 𝑒
−]3(𝑚−𝑝)

(68)

for all (𝑚, 𝑝), (𝑝, 𝑛) ∈ Δ and all (𝑥, V) ∈ 𝑌.

Proof. We have the following.

Necessity. (𝑡
1
) is obtained if we consider for 𝐶

1
in relation (9)

of Definition 6 𝑡 = 𝑛 and 𝑠 = 𝑡
0
= 𝑚 and if we define

𝑎
𝑝
= 𝑁 (𝑝) , 𝑝 ∈ N,

]
1
= −] < 0.

(69)

(𝑡
2
) follows according to Definition 9 for 𝐶

2
if we consider in

relation (16) 𝑡 = 𝑚, 𝑠 = 𝑛, and 𝑡
0
= 𝑛
0
and

𝑎
𝑚
= 𝑁 (𝑚) , 𝑚 ∈ N,

]
4
= ] > 0.

(70)

(𝑡
3
) is obtained for 𝐶

3
out of relation (8) of Definition 5 for

𝑡 = 𝑚, 𝑠 = 𝑝, and 𝑡
0
= 𝑛 and if we define

𝑎
𝑚
= 𝑀(𝑚) ,

]
2
= −𝜔 (𝑚) < 0,

𝑚 ∈ N.

(71)

(𝑡
4
) follows for𝐶

3
from relation (15) of Definition 8 for 𝑡 = 𝑚,

𝑠 = 𝑝, and 𝑡
0
= 𝑛 and if we consider

𝑎
𝑝
= 𝑀(𝑝) ,

]
3
= 𝜔 (𝑝) > 0,

𝑝 ∈ N.

(72)

Sufficiency. Let 𝑡 ≥ 𝑡
0
+1. We denote 𝑛 = [𝑡] and 𝑛

0
= [𝑡
0
] and

we obtained the relations

𝑛 ≤ 𝑡 < 𝑛 + 1,

𝑛
0
≤ 𝑡
0
< 𝑛
0
+ 1,

𝑛
0
+ 1 ≤ 𝑛.

(73)

According to (𝑡
1
), we have

󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) 𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩 ≤ 𝑀 (𝑛)

⋅ 𝑒
𝜔(𝑛)(𝑡−𝑛) 󵄩󵄩󵄩󵄩Φ (𝑛, 𝑛0 + 1, 𝜑 (𝑛0 + 1, 𝑡0, 𝑥))

⋅ Φ (𝑛
0
+ 1, 𝑡
0
, 𝑥) 𝑃
1
(𝑥) V󵄩󵄩󵄩󵄩 ≤ 𝑎𝑛𝑀

2

(𝑛)

⋅ 𝑒
2[𝜔(𝑛)+𝜇]

𝑒
−𝜇(𝑡−𝑡0)

󵄩󵄩󵄩󵄩𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩 ,

(74)

for all (𝑥, V) ∈ 𝑌, where functions𝑀 and 𝜔 are given as in
Definition 5.

For 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 1), we have

󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) 𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩 ≤ 𝑀(𝑡0) 𝑒

𝜔(𝑡0)(𝑡−𝑡0)
󵄩󵄩󵄩󵄩𝑃1 (𝑥) V

󵄩󵄩󵄩󵄩

≤ 𝑀(𝑡
0
) 𝑒
𝜔(𝑡0)+𝜇𝑒

−𝜇(𝑡−𝑡0)
󵄩󵄩󵄩󵄩𝑃1 (𝑥) V

󵄩󵄩󵄩󵄩 ,

(75)

for all (𝑥, V) ∈ 𝑌. Hence, relation (57) is obtained.
Let 𝑡 ≥ 𝑡

0
+ 1 and 𝑛 = [𝑡] and, respectively, 𝑛

0
= [𝑡
0
]. It

follows that

𝑛 ≤ 𝑡 < 𝑛 + 1,

𝑛
0
≤ 𝑡
0
< 𝑛
0
+ 1,

𝑛
0
+ 1 ≤ 𝑛.

(76)
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From (𝑡
2
), it is obtained that

󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) 𝑃2 (𝑥) V
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩Φ (𝑡, 𝑛, 𝜑 (𝑛, 𝑛0 + 1, 𝑥))

⋅ Φ (𝑛, 𝑛
0
+ 1, 𝜑 (𝑛

0
+ 1, 𝑡
0
, 𝑥))Φ (𝑛

0
+ 1, 𝑡
0
, 𝑥)

⋅ 𝑃
2
(𝑥) V󵄩󵄩󵄩󵄩 ≥ [𝑀 (𝑡)]

−1

𝑒
−𝜔(𝑡−𝑛)

[𝑀 (𝑡)]
−1

⋅ 𝑒
−𝜔(𝑛0+1−𝑡0)

󵄩󵄩󵄩󵄩Φ (𝑛, 𝑛0 + 1, 𝑥) 𝑃2 (𝑥) V
󵄩󵄩󵄩󵄩

≥
[𝑀 (𝑡)]

−2

𝑁̃
𝑒
−2𝜔

𝑒
]̃(𝑛−𝑛0+1) 󵄩󵄩󵄩󵄩𝑃2 (𝑥) V

󵄩󵄩󵄩󵄩

≥
𝑒
]̃

[𝑀 (𝑡)]
2

𝑁̃𝑒2𝜔
𝑒
]̃(𝑡−𝑡0) 󵄩󵄩󵄩󵄩𝑃2 (𝑥) V

󵄩󵄩󵄩󵄩 ,

(77)

for all (𝑥, V) ∈ 𝑌, where𝑀 and 𝜔 are given by Definition 8.
For 𝑡 ∈ [𝑡

0
, 𝑡
0
+ 1), we have

𝑀
󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) 𝑃2 (𝑥) V

󵄩󵄩󵄩󵄩 ≥ 𝑒
−𝜔(𝑡−𝑡0)

󵄩󵄩󵄩󵄩𝑃2 (𝑥) V
󵄩󵄩󵄩󵄩

≥ 𝑒
−(]̃+𝜔)

𝑒
]̃(𝑡−𝑡0) 󵄩󵄩󵄩󵄩𝑃2 (𝑥) V

󵄩󵄩󵄩󵄩 ,

(78)

for all (𝑥, V) ∈ 𝑌. It follows that

𝑁
󵄩󵄩󵄩󵄩Φ (𝑡, 𝑡0, 𝑥) 𝑃2 (𝑥) V

󵄩󵄩󵄩󵄩 ≥ 𝑒
](𝑡−𝑡0) 󵄩󵄩󵄩󵄩𝑃2 (𝑥) V

󵄩󵄩󵄩󵄩 ,
(79)

for all (𝑡, 𝑡
0
, 𝑥, V) ∈ 𝑇 × 𝑌, where we have denoted

𝑁 = 𝑀𝑒
(]̃+𝜔)

+𝑀
2

𝑁̃𝑒
(−]̃+2𝜔)

, ] = ]̃ (80)

and which implies relation (58).
By a similar reasoning, from (𝑡

3
) relation (59) is obtained,

and from (𝑡
4
) relation (60) follows.

Hence, the skew-evolution semiflow 𝐶 is exponentially
trichotomic.

Some characterizations in discrete time for the exponen-
tial trichotomy for skew-evolution semiflows are given in
what follows.

Theorem 21. A skew-evolution semiflow 𝐶 = (𝜑,Φ) is
exponentially trichotomic if and only if there exist three
projectors {𝑃

𝑘
}
𝑘∈{1,2,3}

compatible with 𝐶 such that 𝐶
1
has

exponential growth, and 𝐶
2
has exponential decay and such

that the following relations hold:

(𝑡
󸀠

1
) there exist a constant 𝜌

1
> 0 and a sequence of positive

real numbers (𝛼
𝑛
)
𝑛≥0

such that

𝑚

∑

𝑘=𝑛

𝑒
𝜌1(𝑘−𝑛)

󵄩󵄩󵄩󵄩Φ (𝑘, 𝑛, 𝑥) 𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛

󵄩󵄩󵄩󵄩𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩 , (81)

(𝑡
󸀠

2
) there exist a constant 𝜌

2
> 0 and a sequence of positive

real numbers (𝛽
𝑛
)
𝑛≥0

such that

𝑚

∑

𝑘=𝑛

𝑒
−𝜌2(𝑘−𝑛)

󵄩󵄩󵄩󵄩Φ (𝑘, 𝑛, 𝑥) 𝑃2 (𝑥) V
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑚
𝑒
−𝜌2(𝑚−𝑛)

󵄩󵄩󵄩󵄩Φ (𝑚, 𝑛, 𝑥) 𝑃2 (𝑥) V
󵄩󵄩󵄩󵄩 ,

(82)

(𝑡
󸀠

3
) there exist a constant 𝜌

3
> 0 and a sequence of positive

real numbers (𝛾
𝑛
)
𝑛≥0

such that
𝑚

∑

𝑘=𝑝

𝑒
−𝜌3(𝑘−𝑛)

󵄩󵄩󵄩󵄩Φ (𝑘, 𝑛, 𝑥) 𝑃3 (𝑥) V
󵄩󵄩󵄩󵄩

≤ 𝛾
𝑛
𝑒
−𝜌3(𝑝−𝑛)

󵄩󵄩󵄩󵄩Φ (𝑝, 𝑛, 𝑥) 𝑃3 (𝑥) V
󵄩󵄩󵄩󵄩 ,

(83)

(𝑡
󸀠

4
) there exist a constant 𝜌

4
> 0 and a sequence of positive

real numbers (𝛿
𝑛
)
𝑛≥0

such that
𝑚

∑

𝑘=𝑝

𝑒
𝜌4(𝑘−𝑛)

󵄩󵄩󵄩󵄩Φ (𝑘, 𝑛, 𝑥) 𝑃3 (𝑥) V
󵄩󵄩󵄩󵄩

≤ 𝛿
𝑚
𝑒
𝜌4(𝑚−𝑛)

󵄩󵄩󵄩󵄩Φ (𝑚, 𝑛, 𝑥) 𝑃3 (𝑥) V
󵄩󵄩󵄩󵄩

(84)

for all (𝑚, 𝑝), (𝑝, 𝑛) ∈ Δ and all (𝑥, V) ∈ 𝑌.

Proof. We have the following.

(𝑡
1
) ⇔ (𝑡

󸀠

1
) Necessity. As 𝐶 is exponentially trichotomic,

Proposition 20 assures the existence of a projector 𝑃, of a
constant ]

1
≤ 0, and of a sequence of positive real numbers

(𝑎
𝑛
)
𝑛≥0

such (𝑡
1
) holds. Let 𝑃

1
= 𝑃. If we consider

𝜌
1
= −

]
1

2
> 0, (85)

we obtain
𝑚

∑

𝑘=𝑛

𝑒
𝜌1(𝑘−𝑛)

󵄩󵄩󵄩󵄩Φ (𝑘, 𝑛, 𝑥) 𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩

≤ 𝑎
𝑛

𝑚

∑

𝑘=𝑛

𝑒
𝜌1(𝑘−𝑛)𝑒

]1(𝑘−𝑛) 󵄩󵄩󵄩󵄩Φ (𝑛, 𝑛, 𝑥) 𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩

= 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩

𝑚

∑

𝑘=𝑛

𝑒
(𝜌1+]1)(𝑘−𝑛) ≤ 𝛼

𝑛

󵄩󵄩󵄩󵄩𝑃1 (𝑥) V
󵄩󵄩󵄩󵄩 ,

∀𝑚, 𝑛 ∈ N, ∀ (𝑥, V) ∈ 𝑌,

(86)

where we have denoted

𝛼
𝑛
= 𝑎
𝑛
𝑒
−]1/2, 𝑛 ∈ N. (87)

Sufficiency. As 𝐶
1
has exponential growth, there exist con-

stants𝑀 ≥ 1 and 𝑟 > 1 such that relation
󵄩󵄩󵄩󵄩Φ (𝑛 + 𝑝, 𝑛, 𝑥) V

󵄩󵄩󵄩󵄩 ≤ 𝑀𝑟
𝑝

‖V‖ , (88)

holds for all 𝑛, 𝑝 ∈ N and all (𝑥, V) ∈ 𝑌. If we denote 𝜔 =
ln 𝑟 > 0, the inequality can be written as follows:

‖Φ (𝑚, 𝑛, 𝑥)‖ ≤ 𝑀𝑒
𝜔(𝑚−𝑘)

‖Φ (𝑘, 𝑛, 𝑥)‖ ,

∀ (𝑚, 𝑘) , (𝑘, 𝑛) ∈ Δ, 𝑥 ∈ 𝑋.

(89)

We consider successively the𝑚−𝑛+ 1 relations. By denoting
𝑃 = 𝑃

1
, we obtain

‖Φ (𝑚, 𝑛, 𝑥) 𝑃 (𝑥) V‖

≤
𝑀𝑒
𝜔(𝑚−𝑛)

1 + 𝑒𝜌1 + ⋅ ⋅ ⋅ + 𝑒𝜌1(𝑚−𝑛)
𝛼
𝑛
‖𝑃 (𝑥) V‖ ,

(90)
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for all (𝑚, 𝑛) ∈ Δ and all (𝑥, V) ∈ 𝑌. If we define the constant

]
1
= 𝜔 − 𝜌

1
for 𝜔 < 𝜌

1
(91)

and the sequence of nonnegative real numbers

𝑎
𝑛
= 𝑀𝛼

𝑛
, 𝑛 ∈ N, (92)

relation (𝑡
1
) is obtained.

Similarly, the other equivalences can also be proved.

In order to characterize the exponential trichotomy by
means of four projectors, we give the next definition.

Definition 22. Four invariant projectors {𝑅
𝑘
}
𝑘∈{1,2,3,4}

that
satisfy for all (𝑥, V) ∈ 𝑌 the following relations

(𝑝𝑐
󸀠

1
) 𝑅
1
(𝑥) + 𝑅

3
(𝑥) = 𝑅

2
(𝑥) + 𝑅

4
(𝑥) = 𝐼,

(𝑝𝑐
󸀠

2
) 𝑅
1
(𝑥)𝑅
2
(𝑥) = 𝑅

2
(𝑥)𝑅
1
(𝑥) = 0 and 𝑅

3
(𝑥)𝑅
4
(𝑥) =

𝑅
4
(𝑥)𝑅
3
(𝑥),

(𝑝𝑐
󸀠

3
) ‖[𝑅
1
(𝑥) + 𝑅

2
(𝑥)]V‖2 = ‖𝑅

1
(𝑥)V‖2 + ‖𝑅

2
(𝑥)V‖2,

(𝑝𝑐
󸀠

4
) ‖[𝑅
1
(𝑥) + 𝑅

3
(𝑥)𝑅
4
(𝑥)]V‖2 = ‖𝑅

1
(𝑥)V‖2 +

‖𝑅
3
(𝑥)𝑅
4
(𝑥)V‖2,

(𝑝𝑐
󸀠

5
) ‖[𝑅
2
(𝑥) + 𝑅

3
(𝑥)𝑅
4
(𝑥)]V‖2 = ‖𝑅

2
(𝑥)V‖2 +

‖𝑅
3
(𝑥)𝑅
4
(𝑥)V‖2,

are called compatible with the skew-evolution semiflow 𝐶.

Theorem 23. A skew-evolution semiflow 𝐶 = (𝜑,Φ) is expo-
nentially trichotomic if and only if there exist four projectors
{𝑅
𝑘
}
𝑘∈{1,2,3,4}

compatible with 𝐶, constants 𝜇 > ] > 0, and a
sequence of positive real numbers (𝛼

𝑛
)
𝑛≥0

such that

(𝑡
󸀠󸀠

1
)

󵄩󵄩󵄩󵄩Φ (𝑚 + 𝑝,𝑚, 𝑥) 𝑅1 (𝑥) V
󵄩󵄩󵄩󵄩 ≤ 𝛼𝑚

󵄩󵄩󵄩󵄩𝑅1 (𝑥) V
󵄩󵄩󵄩󵄩 𝑒
−]𝑝
, (93)

(𝑡
󸀠󸀠

2
)

󵄩󵄩󵄩󵄩𝑅2 (𝑥) V
󵄩󵄩󵄩󵄩 ≤ 𝛼𝑝

󵄩󵄩󵄩󵄩Φ (𝑚 + 𝑝,𝑚, 𝑥) 𝑅2 (𝑥) V
󵄩󵄩󵄩󵄩 𝑒
−𝜇𝑝

, (94)

(𝑡
󸀠󸀠

3
)

󵄩󵄩󵄩󵄩𝑅3 (𝑥) V
󵄩󵄩󵄩󵄩 ≤ 𝛼𝑝

󵄩󵄩󵄩󵄩Φ (𝑚 + 𝑝,𝑚, 𝑥) 𝑅3 (𝑥) V
󵄩󵄩󵄩󵄩 𝑒

]𝑝
, (95)

(𝑡
󸀠󸀠

4
)

󵄩󵄩󵄩󵄩Φ (𝑚 + 𝑝,𝑚, 𝑥) 𝑅4 (𝑥) V
󵄩󵄩󵄩󵄩 ≤ 𝛼𝑚

󵄩󵄩󵄩󵄩𝑅4 (𝑥) V
󵄩󵄩󵄩󵄩 𝑒
𝜇𝑝 (96)

for all𝑚, 𝑝 ∈ N and all (𝑥, V) ∈ 𝑌.

Proof. We have the following.

Necessity. As 𝐶 is exponentially trichotomic, according to
Proposition 20 there exist three projectors {𝑃

𝑘
}
𝑘∈{1,2,3}

com-
patible with 𝐶, constants ]

1
≤ ]
2
≤ 0 ≤ ]

3
≤ ]
4
, and a

sequence of positive real numbers (𝑎
𝑛
)
𝑛≥0

such that relations
(65)–(68) hold.

We will define the projectors

𝑅
1
= 𝑃
1
,

𝑅
2
= 𝑃
2
,

𝑅
3
= 𝐼 − 𝑃

1
,

𝑅
4
= 𝐼 − 𝑃

2
,

(97)

such that
𝑅
3
𝑅
4
= 𝑅
4
𝑅
3
= 𝑃
3
. (98)

Projectors 𝑅
1
, 𝑅
2
, 𝑅
3
, and 𝑅

4
are compatible with 𝐶. Let us

define
𝜇 = ]
3
= ]
4
> 0,

] = −]
1
= −]
2
> 0,

𝛼
𝑛
= 𝑎
𝑛
, 𝑛 ∈ N.

(99)

Hence, relations (93)–(96) hold.

Sufficiency. We consider the projectors

𝑃
1
= 𝑅
1
,

𝑃
2
= 𝑅
2
,

𝑃
3
= 𝑅
3
𝑅
4
.

(100)

These are compatible with 𝐶.
The statements of Proposition 20 follow if we consider

]
1
= ]
2
= −] < 0,

]
3
= ]
4
= 𝜇 > 0,

𝑎
𝑛
= 𝛼
𝑛
, 𝑛 ∈ N.

(101)

Hence, 𝐶 is exponentially trichotomic, which ends the proof.

6. Conclusions

The paper emphasizes a way to unify the analysis of
continuous and discrete asymptotic properties for skew-
evolution semiflows, such as the exponential dichotomy and
trichotomy. Thus, we give characterizations for the asymp-
totic behaviors in discrete time, in order to gain necessary
instruments in punctuating the properties of the solutions of
difference equations.
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[2] O. Perron, “Die Stabilitätsfrage bei Differentialgleichungen,”
Mathematische Zeitschrift, vol. 32, no. 1, pp. 703–728, 1930.

[3] S.-N. Chow and H. Leiva, “Existence and roughness of the
exponential dichotomy for skew-product semiflow in Banach
spaces,” Journal of Differential Equations, vol. 120, no. 2, pp. 429–
477, 1995.

[4] Y. Latushkin and R. Schnaubelt, “Evolution semigroups, trans-
lation algebras, and exponential dichotomy of cocycles,” Journal
of Differential Equations, vol. 159, no. 2, pp. 321–369, 1999.

[5] M. Megan, A. L. Sasu, and B. Sasu, “Discrete admissibility
and exponential dichotomy for evolution families,”Discrete and
Continuous Dynamical Systems, vol. 9, no. 2, pp. 383–397, 2003.

[6] P. H. Anh Ngoc and T. Naito, “New characterizations of expo-
nential dichotomy and exponential stability of linear difference
equations,” Journal of Difference Equations andApplications, vol.
11, no. 10, pp. 909–918, 2005.

[7] A. L. Sasu, “New criteria for exponential stability of variational
difference equations,” Applied Mathematics Letters, vol. 19, no.
10, pp. 1090–1094, 2006.

[8] A. L. Sasu, “Discrete methods and exponential dichotomy of
semigroups,” Acta Mathematica Universitatis Comenianae, vol.
73, no. 2, pp. 197–205, 2004.

[9] B. Sasu, “Uniform dichotomy and exponential dichotomy of
evolution families on the half-line,” Journal of Mathematical
Analysis and Applications, vol. 323, no. 2, pp. 1465–1478, 2006.

[10] B. Sasu, “On exponential dichotomy of variational difference
equations,” Discrete Dynamics in Nature and Society, vol. 2009,
Article ID 324273, 18 pages, 2009.

[11] B. Sasu, “On dichotomous behavior of variational difference
equations and applications,” Discrete Dynamics in Nature and
Society, vol. 2009, Article ID 140369, 16 pages, 2009.

[12] R. J. Sacker and G. R. Sell, “Existence of dichotomies and
invariant splittings for linear differential systems III,” Journal of
Differential Equations, vol. 22, no. 2, pp. 497–522, 1976.

[13] S. Elaydi and O. Hajek, “Exponential trichotomy of differential
systems,” Journal ofMathematical Analysis andApplications, vol.
129, no. 2, pp. 362–374, 1988.

[14] J. Zhang, “Lyapunov function and exponential trichotomy on
time scales,” Discrete Dynamics in Nature and Society, vol. 2011,
Article ID 958381, 22 pages, 2011.

[15] L. Barreira and C. Valls, “Stability in delay difference equations
with nonuniform exponential behavior,” Journal of Differential
Equations, vol. 238, no. 2, pp. 470–490, 2007.

[16] S. Elaydi and K. Janglajew, “Dichotomy and trichotomy of
difference equations,” Journal of Difference Equations and Appli-
cations, vol. 3, no. 5-6, pp. 417–448, 1998.

[17] G. Papaschinopoulos and G. Stefanidou, “Trichotomy of a
system of two difference equations,” Journal of Mathematical
Analysis and Applications, vol. 289, no. 1, pp. 216–230, 2004.
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