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We investigate the step-type contrast structure for high dimensional Tikhonov system with Neumann boundary conditions. We
not only propose a key condition with the existence of the number of mutually independent first integrals under which there exists
a step-type contrast structure, but also determine where an internal transition time is. Using the method of boundary function,
we construct the formal asymptotic solution and give the analytical expression for the higher order terms. At the same time, the
uniformly valid asymptotic expansion and the existence of such an available step-type contrast structure are obtained by sewing
connection method.

1. Introduction

The fundamental characteristic of contrast structure is that
there is 𝑡∗ (or multiple 𝑡

∗) within the domain of interest,
which is called an internal transition point. The position of
𝑡
∗ which is unknown in advance needs to be determined
thereafter. In the neighborhood of 𝑡∗, the genuine solution
will have an abrupt structure change and in the different
side of 𝑡∗, it will approach different reduced solutions when
the small parameter 𝜇 → 0. The contrast structure in
singularly perturbed problems is classified as a step-type
contrast structure [1–6] or a spike-type contrast structure [7–
9]. In theWest, the study on this issue ismainly by themethod
of dynamic systems or geometric method [10–12]. In recent
years, the study on contrast structures is still a hot but difficult
research topic in the theory of singularly perturbed problem,
especially for high dimensional singularly perturbed system
[13]. In fact, the existence of a step-type contrast structure is
closely related to the existence of a heteroclinic orbit of its
auxiliary system in its corresponding phase space. However,
how to find and construct such an orbit in a high dimensional
dynamic is itself difficult in general in the theory of qualitative
analysis. This is why it is nontrivial in extending to high
dimensional case from the contrast structures in plane. Using

the method of boundary function and sewing connection, Ni
andWang [14] investigate the step-type contrast structure for
the following singular perturbed system:

𝜇
𝑑𝑦

𝑑𝑡
= 𝑓 (𝑦, 𝑡) ;

𝐴𝑦 (0, 𝜇) = 𝐴𝑦
0
,

𝐵𝑦 (1, 𝜇) = 𝐵𝑦
1
,

(1)

where𝑦,𝑓 are 𝑛-dimensional vectors. In this paper, we extend
the existence of step-type contrast structure to the following:

𝜇
𝑑𝑧

𝑑𝑡
= 𝑓 (𝑧, 𝑦, 𝑡) ,

𝑑𝑦

𝑑𝑡
= 𝑔 (𝑧, 𝑦, 𝑡) ,

0 ≤ 𝑡 ≤ 1;

(2)

𝐴𝑧
󸀠

(0, 𝜇) + 𝐵𝑧
󸀠

(1, 𝜇) = 𝑧
0

,

𝐶𝑦 (0, 𝜇) + 𝐷𝑦 (1, 𝜇) = 𝑦
0

,

(3)

where 𝜇 > 0 is a small parameter, 𝑧, 𝑓 are 𝑀-dimensional
vectors, 𝑦, 𝑔 are 𝑚-dimensional vectors, 𝐴 = (

𝐸𝑘 0

0 0
),

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2016, Article ID 4569198, 8 pages
http://dx.doi.org/10.1155/2016/4569198



2 Discrete Dynamics in Nature and Society

𝐵 = (
0 0

0 𝐸𝑀−𝑘
) are𝑀×𝑀matrixes, 𝐸

𝑘
is an 𝑘 × 𝑘 unit matrix,

and 𝐸
𝑀−𝑘

is an (𝑀 − 𝑘) × (𝑀 − 𝑘) unit matrix. 𝐶 = (
𝐸ℎ 0

0 0
),

𝐷 = (
0 0

0 𝐸𝑚−ℎ
) are𝑚 × 𝑚matrixes, 𝐸

ℎ
is an ℎ × ℎ unit matrix,

and 𝐸
𝑚−ℎ

is an (𝑚 − ℎ) × (𝑚 − ℎ) unit matrix.

2. Assumptions

The following assumptions are fundamental in theory for the
problem in question.

(𝐻
1
) Suppose that 𝑓(𝑧, 𝑦, 𝑡) and 𝑔(𝑧, 𝑦, 𝑡) are sufficiently

smooth on the domain 𝐷 = {(𝑧, 𝑦, 𝑡) : |𝑧| ≤ 𝑎
1
, |𝑦| ≤ 𝑎

2
, 0 ≤

𝑡 ≤ 1}, where 𝑎
1
, 𝑎
2
are real numbers.

The reduced system of (2) is given by

𝑓 (𝑧, 𝑦, 𝑡) = 0,

𝑑𝑦

𝑑𝑡
= 𝑔 (𝑧, 𝑦, 𝑡) .

(4)

(𝐻
2
) Suppose that the reduced subsystem of (2) given

by 𝑓(𝑧, 𝑦, 𝑡) = 0 has two isolated solutions on 𝐷 : 𝑧 =

𝛼(𝑦, 𝑡) and 𝑧 = 𝛽(𝑦, 𝑡), where 𝛼 = (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑀
)
𝑇, 𝛽 =

(𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑀
)
𝑇.

(𝐻
3
) For 0 ≤ 𝑡 ≤ 1, suppose that𝑓

𝑧
(𝛼(𝑦
(−)

(𝑡), 𝑡), 𝑦
(−)

(𝑡), 𝑡)

and 𝑓
𝑧
(𝛽 (𝑦
(+)

(𝑡), 𝑡), 𝑦
(+)

(𝑡), 𝑡) have characteristic roots 𝜆
1

𝑖
(𝑡)

and 𝜆
2

𝑖
(𝑡), (𝑖 = 1, 2, . . . ,𝑀), respectively, which satisfy

Re 𝜆
𝑗

𝑖
(𝑡) < 0, 𝑖 = 1, 2, . . . , 𝑘 < 𝑀;

Re 𝜆
𝑗

𝑖
(𝑡) > 0, 𝑖 = 𝑘 + 1, 𝑘 + 2, . . . ,𝑀,

(5)

where 𝑗 = 1, 2.
(𝐻
3
) shows that, for fixed 𝑡 ∈ [0, 1], the auxiliary system

given by

𝑑𝑧̃

𝑑𝜏
= 𝑓 (𝑧̃, 𝑦 (𝑡) , 𝑡) (6)

has two equilibriums 𝑧̃ = 𝛼(𝑦
(−)

(𝑡), 𝑡) and 𝑧̃ = 𝛽(𝑦
(+)

(𝑡), 𝑡)

which are all hyperbolic saddle points.

3. Construction of the Asymptotic Expansion

Let 𝑡∗ ∈ (0, 1) be the transition point and it is given by

𝑡
∗

= 𝑡
0
+ 𝜇𝑡
1
+ 𝜇
2

𝑡
2
+ ⋅ ⋅ ⋅ + 𝜇

𝑘

𝑡
𝑘
+ ⋅ ⋅ ⋅ , (7)

with 𝑡
𝑘
(𝑘 = 0, 1, . . .) which will be given in the following.

Suppose that the asymptotic solution is composed of two
parts.

The left problem (0 ≤ 𝑡 ≤ 𝑡
∗

):

𝜇
𝑑𝑧
(−)

𝑑𝑡
= 𝐹 (𝑧

(−)

, 𝑦
(−)

, 𝑡) ,

𝑑𝑦
(−)

𝑑𝑡
= 𝑓 (𝑧

(−)

, 𝑦
(−)

, 𝑡) ;

(8)

𝐴𝑧
(−)
󸀠

(0, 𝜇) = 𝐴𝑧
0

,

𝐵𝑧
(−)

(𝑡
∗

, 𝜇) = 𝐵𝑧
∗

,

(9)

𝐶𝑦
(−)

(0, 𝜇) = 𝐶𝑦
0

,

𝐷𝑦
(−)

(𝑡
∗

, 𝜇) = 𝐷𝑦
∗

.

(10)

The right problem (𝑡∗ ≤ 𝑡 ≤ 1):

𝜇
𝑑𝑧
(+)

𝑑𝑡
= 𝐹 (𝑧

(+)

, 𝑦
(+)

, 𝑡) ,

𝑑𝑦
(+)

𝑑𝑡
= 𝑓 (𝑧

(+)

, 𝑦
(+)

, 𝑡) ;

(11)

𝐴𝑧
(+)

(𝑡
∗

, 𝜇) = 𝐴𝑧
∗

,

𝐵𝑧
(+)
󸀠

(1, 𝜇) = 𝐵𝑧
1

,

(12)

𝐶𝑦
(+)

(𝑡
∗

, 𝜇) = 𝐶𝑦
∗

,

𝐷𝑦
(+)

(1, 𝜇) = 𝐷𝑦
1

,

(13)

where 𝑥∗ = (𝑧
∗

, 𝑦
∗

)
𝑇 are parameters which will be deter-

mined in the following but related to 𝑡∗. For convenience, let
𝑥
∗

= 𝑥
∗

0
+ 𝜇𝑥
∗

1
+ ⋅ ⋅ ⋅ .

To obtain the step-type solution, we need

𝑥
(−)

(𝑡
∗

, 𝜇) = 𝑥
(+)

(𝑡
∗

, 𝜇) . (14)

Let 𝑥 = (𝑦, 𝑧)
𝑇. Suppose the formal asymptotic solutions

for the left and the right problem are

𝑥
(−)

(𝑡, 𝜇) =

∞

∑

𝑗=0

𝜇
𝑗

(𝑥
(−)

𝑗
(𝑡) + 𝐿

𝑗
𝑥 (𝜏
0
) + 𝑄
(−)

𝑗
𝑥 (𝜏)) , (15)

𝑥
(+)

(𝑡, 𝜇) =

∞

∑

𝑗=0

𝜇
𝑗

(𝑥
(+)

𝑗
(𝑡) + 𝑄

(+)

𝑗
𝑥 (𝜏) + 𝑅

𝑗
𝑥 (𝜏
1
)) , (16)

respectively, where 𝜏
0

= 𝑡/𝜇 > 0, 𝜏 = (𝑡 − 𝑡
∗

)/𝜇, and
𝜏
1
= (𝑡 − 1)/𝜇 < 0. 𝑥(∓)

𝑖
(𝑡) are coefficients of regular terms;

𝐿
𝑗
𝑥(𝜏
0
) are coefficients of the boundary layer terms at 𝑡 = 0;

𝑅
𝑗
𝑥(𝜏
1
) are coefficients of the boundary layer terms at 𝑡 =

1; 𝑄(∓)
𝑗
𝑥(𝜏) are the left and the right coefficients of internal

transition terms at 𝑡 = 𝑡
∗. Furthermore, lim

𝜏0→+∞
𝐿
𝑗
𝑥(𝜏
0
) =

0, lim
𝜏→∓∞

𝑄
(∓)

𝑗
𝑥(𝜏) = 0, and lim

𝜏1→−∞
𝑅
𝑗
𝑥(𝜏
1
) = 0 (𝑗 =

0, 1, . . .).

3.1. Construction of the Zero-Order Terms. Substituting (15),
(16) into (8)–(10) and (11)–(13), respectively, by the boundary
function method [15], we have

𝑓 (𝑧
(∓)

0
(𝑡) , 𝑦
(∓)

0
(𝑡) , 𝑡) = 0. (17)

By (𝐻
2
) and the assumed solution type, we know

𝑧
(−)

0
(𝑡) = 𝛼 (𝑦

(−)

0
(𝑡) , 𝑡) ,

𝑧
(+)

0
(𝑡) = 𝛽 (𝑦

(+)

0
(𝑡) , 𝑡) ,

(18)
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while 𝑦(∓)
0
(𝑡) satisfy the following problems:

𝑑𝑦
(−)

0
(𝑡)

𝑑𝑡
= 𝑔 (𝛼 (𝑦

(−)

0
(𝑡) , 𝑡) , 𝑦

(−)

0
(𝑡) , 𝑡) ; (19)

𝐶𝑦
(−)

0
(0) = 𝐶𝑦

0

,

𝐷𝑦
(−)

0
(𝑡
0
) = 𝐷𝑦

∗

0
,

(20)

𝑑𝑦
(+)

0
(𝑡)

𝑑𝑡
= 𝑔 (𝛽 (𝑦

(+)

0
(𝑡) , 𝑡) , 𝑦

(+)

0
(𝑡) , 𝑡) ; (21)

𝐶𝑦
(+)

0
(𝑡
0
) = 𝐶𝑦

∗

0
,

𝐷𝑦
(+)

0
(1) = 𝐷𝑦

1

,

(22)

respectively.
(𝐻
4
) Suppose the solution of (19), (20) and the solution of

(21), (22) are transversal at 𝑦∗
0
, where 𝑦∗

0
= 𝑦
∗

0
(𝑡
0
).

Next, we give the equations and their conditions for
determining the zero-order coefficient of𝑄(∓)

0
𝑥(𝜏) as follows:

𝑑𝑄
(−)

0
𝑧

𝑑𝜏

= 𝑓 (𝛼 (𝑡
0
) + 𝑄
(−)

0
𝑧 (𝜏) , 𝑦

(−)

0
(𝑡
0
) + 𝑄
(−)

0
𝑦 (𝜏) , 𝑡

0
) ,

(23)

𝑑𝑄
(−)

0
𝑦

𝑑𝜏
= 0; (24)

𝐵 (𝑧
(−)

0
(𝑡
0
) + 𝑄
(−)

0
𝑧 (0)) = 𝐵𝑧

∗

0
,

𝑄
(−)

0
𝑥 (−∞) = 0,

(25)

𝑑𝑄
(+)

0
𝑧

𝑑𝜏

= 𝑓 (𝛽 (𝑡
0
) + 𝑄
(+)

0
𝑧 (𝜏) , 𝑦

(+)

0
(𝑡
0
) + 𝑄
(+)

0
𝑦 (𝜏) , 𝑡

0
) ,

(26)

𝑑𝑄
(+)

0
𝑦

𝑑𝜏
= 0; (27)

𝐴(𝑧
(+)

0
(𝑡
0
) + 𝑄
(+)

0
𝑧 (0)) = 𝐴𝑧

∗

0
,

𝑄
(+)

0
𝑥 (+∞) = 0.

(28)

Let 𝛼(𝑡
0
) + 𝑄

(−)

0
𝑧(𝜏) = 𝑧̃

(−)

(𝜏), 𝛽(𝑡
0
) + 𝑄

(+)

0
𝑧(𝜏) = 𝑧̃

(+)

(𝜏).
Then we have

𝑑𝑧̃
(−)

𝑑𝜏
= 𝑓 (𝑧̃

(−)

, 𝑦
(−)

0
(𝑡
0
) , 𝑡
0
) ;

𝐵𝑧̃
(−)

(0) = 𝐵𝑧
∗

0
,

𝑧̃
(−)

(−∞) = 𝛼 (𝑡
0
) ,

(29)

𝑑𝑧̃
(+)

𝑑𝜏
= 𝑓 (𝑧̃

(+)

, 𝑦
(+)

0
(𝑡
0
) , 𝑡
0
) ;

𝐴𝑧̃
(+)

(0) = 𝐴𝑧
∗

0
,

𝑧̃
(+)

(+∞) = 𝛽 (𝑡
0
) .

(30)

Obviously,𝑀
−
(𝛼(𝑡
0
), 𝑦
(−)

(𝑡
0
)) is a hyperbolic saddle point of

(29) and 𝑀
+
(𝛽(𝑡
0
), 𝑦
(+)

(𝑡
0
)) is a hyperbolic saddle point of

(30).
The existence of the solutions for (23)–(28) will be given

in the following. If they are used in the following calculation
process, we think that they are known. Obviously, they are
associated with 𝑡

0
. Moreover, by the boundary conditions

𝐿
󸀠

0
𝑧(0) = 0, 𝑅󸀠

0
𝑧(0) = 0 and 𝐿

0
𝑥(+∞) = 0, 𝑅

0
𝑥(−∞) = 0,

we have 𝐿
0
𝑧(𝜏
0
) ≡ 0, 𝑅

0
𝑧(𝜏
1
) ≡ 0.

3.2. Construction of the Higher Order Terms. For 𝑥(∓)
𝑗
(𝑡), we

have the equations and their boundary conditions as follows:

𝑑𝑧
(−)

𝑗−1
(𝑡)

𝑑𝑡

= 𝑓
(−)

𝑧
(𝑡) 𝑧
(−)

𝑗
(𝑡) + 𝑓

(−)

𝑦
(𝑡) 𝑦
(−)

𝑗
(𝑡) + 𝑓

(−)

𝑗
(𝑡) ,

(31)

𝑑𝑦
(−)

𝑗
(𝑡)

𝑑𝑡

= 𝑔
(−)

𝑧
(𝑡) 𝑧
(−)

𝑗
(𝑡) + 𝑔

(−)

𝑦
(𝑡) 𝑦
(−)

𝑗
(𝑡) + 𝑔

(−)

𝑗
(𝑡) ;

(32)

𝐶 (𝑦
(−)

𝑗
(0) + 𝐿

𝑗
𝑦 (0)) = 0,

𝐷 (𝑦
(−)

0
(𝑡
0
) 𝑡
𝑗
+ 𝛾
(−)

+ 𝑄
(−)

𝑗
𝑦 (0)) = 𝐷𝑦

∗

𝑗
,

(33)

𝑑𝑧
(+)

𝑗−1
(𝑡)

𝑑𝑡

= 𝑓
(+)

𝑧
(𝑡) 𝑧
(+)

𝑗
(𝑡) + 𝑓

(+)

𝑦
(𝑡) 𝑦
(+)

𝑗
(𝑡) + 𝑓

(+)

𝑗
(𝑡) ,

(34)

𝑑𝑦
(+)

𝑗
(𝑡)

𝑑𝑡

= 𝑔
(+)

𝑧
(𝑡) 𝑧
(+)

𝑗
(𝑡) + 𝑔

(+)

𝑦
(𝑡) 𝑦
(+)

𝑗
(𝑡) + 𝑔

(+)

𝑗
(𝑡) ;

(35)

𝐶 (𝑦
(+)

0
(𝑡
0
) 𝑡
𝑗
+ 𝛾
(+)

+ 𝑄
(+)

𝑗
𝑦 (0)) = 𝐶𝑦

∗

𝑗
,

𝐷 (𝑦
(+)

𝑗
(1) + 𝑅

𝑗
𝑦 (0)) = 0,

(36)

where 𝑓
(−)

𝑧
(𝑡), 𝑓

(+)

𝑧
(𝑡) take value at (𝛼(𝑡), 𝑦

(−)

0
(𝑡), 𝑡) and

(𝛽(𝑡), 𝑦
(+)

0
(𝑡), 𝑡), respectively. 𝑓

(∓)

𝑦
(𝑡), 𝑔(∓)
𝑧
(𝑡), and 𝑔(∓)

𝑦
(𝑡) have

the same significance. 𝑓(∓)
𝑗

(𝑡), 𝑔(∓)
𝑗
(𝑡) are known functions

and 𝛾(∓)
𝑗

are determined.
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𝐿
𝑗
𝑥(𝜏
0
) satisfy the following problems:

𝑑𝐿
𝑗
𝑧

𝑑𝜏
0

= 𝑓̃
(𝑙)

𝑧
(𝜏
0
) 𝐿
𝑗
𝑧 + 𝑓̃
(𝑙)

𝑦
(𝜏
0
) 𝐿
𝑗
𝑦 + 𝐻

(𝑙)

𝑗
(𝜏
0
) , (37)

𝑑𝐿
𝑗
𝑦

𝑑𝜏
0

= 𝐿
𝑗−1

𝑔 (𝜏
0
) ; (38)

𝐴(𝑧
(−)
󸀠

𝑗−1
(0) + 𝐿

𝑗
𝑧 (0)) = 0,

𝐿
𝑗
𝑥 (+∞) = 0,

(39)

where 𝑓̃
(𝑙)

𝑥
(𝜏
0
) = 𝑓
𝑥
(𝛼(0)+𝐿

0
𝑧, 𝑦
(−)

0
(0), 0).𝐻(𝑙)

𝑗
(𝜏
0
), 𝐿
𝑗−1

𝑔(𝜏
0
)

are determined functions.
By (38) and 𝐿

𝑗
𝑦(+∞) = 0, we know that 𝐿

𝑗
𝑦(𝜏
0
) =

∫
𝜏0

+∞

𝐿
𝑗−1

𝑔(𝑠)𝑑𝑠.Then, 𝐿
𝑗
𝑦(0) = ∫

0

+∞

𝐿
𝑗−1

𝑔(𝑠)𝑑𝑠. So we have

𝐶𝑦
(−)

𝑗
(0) = −𝐶𝐿

𝑗
𝑦 (0) = ∫

+∞

0

𝐶𝐿
𝑗−1

𝑔 (𝑠) 𝑑𝑠. (40)

The equations to determine 𝑅
𝑗
𝑥(𝜏
1
) are given by

𝑑𝑅
𝑗
𝑧

𝑑𝜏
1

= 𝑓̃
(𝑟)

𝑧
(𝜏
1
) 𝑅
𝑗
𝑧 + 𝑓̃
(𝑟)

𝑦
(𝜏
1
) 𝑅
𝑗
𝑦 + 𝐻

(𝑟)

𝑗
(𝜏
1
) , (41)

𝑑𝑅
𝑗
𝑦

𝑑𝜏
1

= 𝑅
𝑗−1

𝑔 (𝜏
1
) ; (42)

𝐵 (𝑧
(+)
󸀠

𝑗−1
(1) + 𝑅

𝑗
𝑧 (0)) = 0,

𝑅
𝑗
𝑥 (−∞) = 0,

(43)

where 𝑓̃
(𝑟)

𝑥
(𝜏
1
) = 𝑓

𝑥
(𝛽(1) + 𝑅

0
𝑧, 𝑦(+)
0
(1), 1), while 𝐻(𝑟)

𝑗
(𝜏
1
),

𝑅
𝑗−1

𝑔(𝜏
1
) are known functions.

By (42) and 𝑅
𝑗
𝑦(−∞) = 0, we know that 𝑅

𝑗
𝑦(𝜏
1
) =

∫
𝜏1

−∞

𝑅
𝑗−1

𝑔(𝑠)𝑑𝑠.Then, 𝑅
𝑗
𝑦(0) = ∫

0

+∞

𝑅
𝑗−1

𝑔(𝑠)𝑑𝑠. So we have

𝐷𝑦
(+)

𝑗
(1) = −𝐷𝑅

𝑗
𝑦 (0) = ∫

−∞

0

𝐷𝑅
𝑗−1

𝑔 (𝑠) 𝑑𝑠. (44)

And then 𝑥(±)
𝑗
(𝑡) can be obtained.

(𝐻
5
) Suppose that the solution of (31), (32) and the

solution of (34), (35) are transversal at 𝑦∗
𝑗
(𝑗 = 1, 2, . . .).

The equations to determine 𝑄(−)
𝑗
𝑥(𝜏) are given by

𝑑𝑄
(−)

𝑗
𝑧

𝑑𝜏
= 𝑓
(−)

𝑧
(𝜏) 𝑄
(−)

𝑗
𝑧 + 𝑓
(−)

𝑦
(𝜏) 𝑄
(−)

𝑗
𝑦

+ 𝐺
(−)

𝑗
(𝜏) ,

(45)

𝑑𝑄
(−)

𝑗
𝑦

𝑑𝜏
= 𝑄
(−)

𝑗−1
𝑔 (𝜏) ;

(46)

𝐵𝑄
(−)

𝑗
𝑧 (0) = 𝐵𝑧

∗

𝑗
− 𝐵𝑧
(−)
󸀠

0
(𝑡
0
) 𝑡
𝑗
+ 𝐵𝜌
(−)

𝑗
,

𝑄
(−)

𝑗
𝑥 (−∞) = 0.

(47)

Here

𝐺
(−)

𝑗
(𝜏) = (Δ𝑓

(−)

𝑧
(𝜏) 𝛼
󸀠

(𝑡
0
) + Δ𝑓

(−)

𝑦
(𝜏) (𝑦

(−)

0
(𝑡
0
))
󸀠

+ Δ𝑓
(−)

𝑡
(𝜏)) 𝑡
𝑗
+ 𝐺
(−)

𝑗
(𝜏) ,

𝑓
(−)

𝑥
(𝜏) = 𝑓

𝑥
(𝛼 (𝑡
0
) + 𝑄
(−)

0
𝑧 (𝜏) , 𝑦

(−)

0
(𝑡
0
) , 𝑡
0
) .

(48)

While

Δ𝑓
(−)

𝑥
(𝜏) = 𝑓

𝑥
(𝛼 (𝑡
0
) + 𝑄
0
𝑧, 𝑦
0
(𝑡
0
) , 𝑡
0
)

− 𝑓
𝑥
(𝛼 (𝑡
0
) , 𝑦
0
(𝑡
0
) , 𝑡
0
) ,

(49)

Δ𝑓
(−)

𝑡
(𝜏) has the same significance.𝐺(−)

𝑗
(𝜏),𝑄(−)

𝑗−1
𝑔(𝜏), and𝜌(−)

𝑗

are determined, excluding 𝑡
𝑗
.

By 𝑄
(−)

𝑗
𝑦(−∞) = 0 and (46) we have 𝑄

(−)

𝑗
𝑦(𝜏) =

∫
𝜏

−∞

𝑄
(−)

𝑗−1
𝑔(𝑠)𝑑𝑠. Substituting them into (45) we obtain

𝑄
(−)

𝑗
𝑧(𝜏) under the initial condition (47). Moreover,𝑄(−)

𝑗
𝑧(𝜏)

are related to 𝑡
𝑗
.

As for 𝑄(+)
𝑗
𝑥(𝜏), it satisfies the following boundary value

problem:

𝑑𝑄
(+)

𝑗
𝑧

𝑑𝜏
= 𝑓
(+)

𝑧
(𝜏) 𝑄
(+)

𝑗
𝑧 + 𝑓
(+)

𝑦
(𝜏) 𝑄
(+)

𝑗
𝑦

+ 𝐺
(+)

𝑗
(𝜏) ,

(50)

𝑑𝑄
(+)

𝑗
𝑦

𝑑𝜏
= 𝑄
(+)

𝑗−1
𝑔 (𝜏) ;

(51)

𝐴𝑄
(+)

𝑗
𝑧 (0) = 𝐴𝑧

∗

𝑗
− 𝐴𝑧
(+)
󸀠

0
(𝑡
0
) 𝑡
𝑗
+ 𝐴𝜌
(+)

𝑗
,

𝑄
(+)

𝑗
𝑥 (+∞) = 0.

(52)

Here

𝐺
(+)

𝑗
(𝜏) = (Δ𝑓

(+)

𝑧
(𝜏) 𝛽
󸀠

(𝑡
0
) + Δ𝑓

(+)

𝑦
(𝜏) (𝑦

(+)

0
(𝑡
0
))
󸀠

+ Δ𝑓
(+)

𝑡
(𝜏)) 𝑡
𝑗
+ 𝐺
(+)

𝑗
(𝜏) ,

𝑓
(+)

𝑥
(𝜏) = 𝑓

𝑥
(𝛽 (𝑡
0
) + 𝑄
(+)

0
𝑧 (𝜏) , 𝑦

(+)

0
(𝑡
0
) , 𝑡
0
) .

(53)

While

Δ𝑓
(+)

𝑥
(𝜏) = 𝑓

𝑥
(𝛽 (𝑡
0
) + 𝑄
0
𝑧, 𝑦
0
(𝑡
0
) , 𝑡
0
)

− 𝑓
𝑥
(𝛽 (𝑡
0
) , 𝑦
0
(𝑡
0
) , 𝑡
0
) ,

(54)

Δ𝑓
(+)

𝑡
(𝜏) has the same significance. 𝐺(+)

𝑗
(𝜏), 𝑄(+)

𝑗−1
𝑔(𝜏), and

𝜌
(+)

𝑗
are determined, excluding 𝑡

𝑗
.

By 𝑄
(+)

𝑗
𝑦(+∞) = 0 and (45) we have 𝑄

(+)

𝑗
𝑦(𝜏) =

∫
𝜏

+∞

𝑄
(+)

𝑗−1
𝑔(𝑠)𝑑𝑠. Substituting it into (28), we get a first-order

linear equation, so 𝑦
(+)

1
(𝑡) exists under the initial condition

(47). And then 𝑧
(+)

𝑗
(𝑡) exists. Substituting 𝑄

(+)

𝑗
𝑦(𝜏) into
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(46) we obtain 𝑄
(+)

𝑗
𝑧(𝜏) under the initial condition (46).

Moreover, 𝑄(−)
𝑗
𝑧(𝜏) are related to 𝑡

𝑗
.

In the following, we will give the analytical expression for
𝑄
(∓)

𝑗
𝑧(𝜏). Because𝑄(∓)

𝑗
𝑦(𝜏) are solved, we rewrite (45), (50) as

follows:

𝑑𝑄
(∓)

𝑗
𝑧

𝑑𝜏
= 𝑓
(∓)

𝑧
(𝜏) 𝑄
(∓)

𝑗
𝑧 + 𝐺̃
(∓)

𝑗
(𝜏) ,

(55)

where

𝐺̃
(∓)

𝑗
(𝜏) = 𝑓

(∓)

𝑦
(𝜏) 𝑄
(∓)

𝑗
𝑦 + (Δ𝑓

(∓)

𝑧
(𝜏) 𝛽
󸀠

(𝑡
0
)

+ Δ𝑓
(∓)

𝑦
(𝜏) 𝑦
(∓)
󸀠

0
(𝑡
0
) + Δ𝑓

(∓)

𝑡
(𝜏)) 𝑡
𝑗
+ 𝐺
(∓)

𝑗
(𝜏) .

(56)

Writing it into block structure given by

(

𝑑𝑄
(∓)

𝑗
𝑢

𝑑𝜏

𝑑𝑄
(∓)

𝑗
V

𝑑𝜏

) = (

𝐹
(∓)

11
(𝜏) 𝐹

(∓)

12
(𝜏)

𝐹
(∓)

21
(𝜏) 𝐹

(∓)

22
(𝜏)

)(

𝑄
(∓)

𝑗
𝑢 (𝜏)

𝑄
(∓)

𝑗
V (𝜏)

)

+ (

𝜓
(∓)

1
(𝜏)

𝜓
(∓)

2
(𝜏)

) ,

(57)

we obtain

𝑄
(−)

𝑗
𝑢 = 𝐻

(−)

(𝜏) (Δ
0

𝑗
)
(−)

Φ
(−)

(𝜏) (Φ
(−)

(0))
−1

+ 𝐻
(−)

(𝜏) ∫

𝜏

0

Φ
(−)

(𝜏) (Φ
(−)

(𝑠))
−1

[𝐹
(−)

21
(𝑠)

⋅ ∫

𝑠

−∞

Ψ
(−)

(𝜏) (Ψ
(−)

(𝜉))
−1

⋅ (𝜓
(−)

1
(𝜉) − 𝐻

(−)

(𝜉) 𝜓
(−)

2
(𝜉)) 𝑑𝜉

+ 𝜓
(−)

2
(𝑠)] 𝑑𝑠 + ∫

𝜏

−∞

Ψ
(−)

(𝜏) (Ψ
(−)

(𝑠))
−1

⋅ (𝜓
(−)

1
(𝑠) − 𝐻

(−)

(𝑠) 𝜓
(−)

2
(𝑠)) 𝑑𝑠,

𝑄
(−)

𝑗
V = (Δ

0

𝑗
)
(−)

Φ
(−)

(𝜏) (Φ
(−)

(0))
−1

+ ∫

𝜏

0

Φ
(−)

(𝜏)

⋅ (Φ
(−)

(𝑠))
−1

[𝐹
(−)

21
(𝑠) ∫

𝑠

−∞

Ψ
(−)

(𝜏) (Ψ
(−)

(𝜉))
−1

⋅ (𝜓
(−)

1
(𝜉) − 𝐻

(−)

(𝜉) 𝜓
(−)

2
(𝜉)) 𝑑𝜉

+ 𝜓
(−)

2
(𝑠)] 𝑑𝑠,

(58)

where (Δ
0

𝑗
)
(−)

= 𝐵𝑧
∗

𝑗
− 𝐵𝑧
(−)
󸀠

0
(𝑡
0
)𝑡
𝑗
+ 𝐵𝜌
(−)

𝑗
(𝜏), 𝐻(−)(𝜏) =

𝜕𝜙
𝑢
/𝜕𝑄
(−)

𝑗
V, while Φ(−)(𝜏) and Ψ(−)(𝜏) are the solutions of

𝑑𝑄
(−)

0
𝑢

𝑑𝜏
= (𝐹
21
(𝜏)𝐻
(−)

(𝜏) + 𝐹
22
(𝜏))𝑄

(−)

0
𝑢,

Φ
(−)

(0) = 𝐸
𝑘
,

(59)

𝑑𝑄
(−)

0
V

𝑑𝜏
= (𝐹
11
(𝜏) − 𝐻

(−)

(𝜏) 𝐹
21
(𝜏))𝑄

(−)

0
V,

Ψ
(−)

(0) = 𝐸
𝑀−𝑘

,

(60)

respectively. Consider

𝑄
(+)

𝑗
𝑢 = (Δ

0

𝑗
)
(+)

Φ
(+)

(𝜏) (Φ
(+)

(0))
−1

+ ∫

𝜏

0

Φ
(+)

(𝜏)

⋅ (Φ
(+)

(𝑠))
−1

[𝐹
(+)

12
(𝑠) ∫

𝑠

+∞

Ψ
(+)

(𝜏) (Ψ
(+)

(𝜉))
−1

⋅ (𝜓
(+)

2
(𝜉) − 𝐻

(+)

(𝜉) 𝜓
(+)

1
(𝜉)) 𝑑𝜉

+ 𝜓
(+)

1
(𝑠)] 𝑑𝑠,

𝑄
(+)

𝑗
V = 𝐻

(+)

(𝜏) (Δ
0

𝑗
)
(+)

Φ
(+)

(𝜏) (Φ
(+)

(0))
−1

+ 𝐻
(+)

(𝜏) ∫

𝜏

0

Φ
(+)

(𝜏) (Φ
(+)

(𝑠))
−1

[𝐹
(+)

12
(𝑠)

⋅ ∫

𝑠

+∞

Ψ
(+)

(𝜏) (Ψ
(+)

(𝜉))
−1

⋅ (𝜓
(+)

2
(𝜉) − 𝐻

(+)

(𝜉) 𝜓
(+)

1
(𝜉)) 𝑑𝜉

+ 𝜓
(+)

1
(𝑠)] 𝑑𝑠 + ∫

𝜏

+∞

Ψ
(+)

(𝜏) (Ψ
(+)

(𝑠))
−1

⋅ (𝜓
(+)

2
(𝑠) − 𝐻

(+)

(𝑠) 𝜓
(+)

1
(𝑠)) 𝑑𝑠,

(61)

where (Δ0
𝑗
)
(+)

= 𝐴𝑧
∗

𝑗
− 𝐴𝑧
(+)
󸀠

0
(𝑡
0
)𝑡
𝑗
+ 𝐴𝜌
(+)

𝑗
(𝜏), 𝐻(+)(𝜏) =

𝜕𝜙V/𝜕𝑄
(+)

𝑗
𝑢, while Φ(+)(𝜏) and Ψ(+)(𝜏) are solutions of

𝑑𝑄
(+)

0
𝑢

𝑑𝜏
= (𝐹
11
(𝜏) + 𝐹

12
(𝜏)𝐻
(+)

(𝜏))𝑄
(+)

0
𝑢,

Φ
(−)

(0) = 𝐸
𝑘
,

(62)

𝑑𝑄
(+)

0
V

𝑑𝜏
= (𝐹
22
(𝜏) − 𝐻

(+)

(𝜏) 𝐹
12
(𝜏))𝑄

(+)

0
V,

Ψ
(−)

(0) = 𝐸
𝑀−𝑘

,

(63)

respectively. The system to determine 𝐿
𝑗
𝑥(𝜏
0
), 𝑅
𝑗
𝑥(𝜏
1
) is

similar to the system to determine𝑄(∓)
𝑗
𝑥(𝜏), so we can obtain

𝐿
𝑗
𝑥(𝜏
0
) and 𝑅

𝑗
𝑥(𝜏
1
) using the same method.
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4. The Existence of the Heteroclinic Orbit

We consider the associated system

𝑑𝑧̃

𝑑𝜏
= 𝑓 (𝑧̃, 𝑦

0
(𝑡
0
) , 𝑡
0
) , (64)

for (25), (26), which coincide with the auxiliary system
(6) when 𝑡 = 𝑡

0
. Obviously, there are two equilibriums

𝑀
−
(𝛼(𝑡
0
), 𝑦
(−)

(𝑡
0
), 𝑡
0
) and 𝑀

+
(𝛽(𝑡
0
), 𝑦
(+)

(𝑡
0
), 𝑡
0
) for (64).

Whether the step-type solution from 𝛼(𝑡) to 𝛽(𝑡) for problem
(2), (3) exists or not largely depends on the existence of the
heteroclinic orbit Γ

𝑀−𝑀+
for system (64) which connects𝑀

−

to𝑀
+
.

The following assumptions ensure the existence of such
heteroclinic orbit.

(𝐻
6
) For fixed 𝑡

0
∈ (0, 1), suppose that there exist𝑀 − 1

linearly independent first integrals for system (64) given by

Φ
𝑗
(𝑧̃
1
, 𝑧̃
2
, . . . , 𝑧̃

𝑀
, 𝑡
0
) = 𝐶
𝑗
, (𝑗 = 1, 2, . . . ,𝑀 − 1) , (65)

where 𝐶
𝑗
(𝑗 = 1, 2, . . . ,𝑀 − 1) are independent arbitrary

parameters.
Then, the orbit passing through𝑀

−
(𝑡
0
) is given by

Φ
𝑗
(𝑧̃
(−)

1
, 𝑧̃
(−)

2
, . . . , 𝑧̃

(−)

𝑀
, 𝑡
0
) = Φ

𝑗
(𝑀
−
(𝑡
0
) , 𝑡
0
) ,

(𝑗 = 1, . . . ,𝑀 − 1) .

(66)

The orbit passing through𝑀
+
(𝑡
0
) is given by

Φ
𝑗
(𝑧̃
(+)

1
, 𝑧̃
(+)

2
, . . . , 𝑧̃

(+)

𝑀
, 𝑡
0
) = Φ

𝑗
(𝑀
+
(𝑡
0
) , 𝑡
0
) ,

(𝑗 = 1, . . . ,𝑀 − 1) .

(67)

It is noted that

Φ
𝑗
(𝑀
−
(𝑡
0
) , 𝑡
0
) = Φ

𝑗
(𝑀
+
(𝑡
0
) , 𝑡
0
) ,

(𝑗 = 1, 2, . . . ,𝑀 − 1) .

(68)

If (68) hold, a heteroclinic orbit connecting 𝑀
−
(𝑡
0
) and

𝑀
+
(𝑡
0
) can be obtained. Meanwhile, 𝑡

0
will be determined

through (68) under the following assumption.
(𝐻
7
) Suppose that (68) are compatible and have a solution

𝑡
0
= 𝑡
0
.

Under condition (𝐻
6
), there exists a heteroclinic orbit

which connects𝑀
−
(𝑡
0
) and𝑀

+
(𝑡
0
).

Let 𝑢̃(∓) = (𝑧̃
(∓)

1
, . . . , 𝑧̃

(∓)

𝑘
)
𝑇, Ṽ(∓) = (𝑧̃

(∓)

𝑘+1
, . . . , 𝑧̃

(∓)

𝑀
)
𝑇.

𝑢̃
(−)

(𝜏) = 𝜙
𝑢
(Ṽ(−)(𝜏)) are 𝑀 − 𝑘 dimensional unstable

manifolds which pass 𝑀
−
(𝑡
0
) and Ṽ(+)(𝜏) = 𝜙V(𝑢̃

(+)

(𝜏))

are 𝑘 dimensional stable manifolds which pass 𝑀
+
(𝑡
0
).

Then, 𝑢̃(−)(0) = 𝜙
𝑢
(Ṽ(−)(0)). By (66), we know Ṽ(−)(0) =

(𝑧
∗

𝑘+1
, . . . , 𝑧

∗

𝑀
)
𝑇. So 𝑢̃

(−)

(0) = (𝑧
∗−

1
, . . . , 𝑧

∗−

𝑘
)
𝑇. Similarly,

Ṽ(+)(0) = 𝜙V(𝑢̃
(+)

(0)), while 𝑢̃(+)(0) = (𝑧
∗

1
, . . . , 𝑧

∗

𝑘
)
𝑇 by (67).

So Ṽ(+)(0) = (𝑧
∗+

𝑘+1
, . . . , 𝑧

∗+

𝑀
)
𝑇.

Take 𝑧∗
𝑖
= 𝑧
∗−

𝑖
(𝑖 = 1, 2, . . . , 𝑘), and then 𝑢̃(+)(0) = 𝑢̃

(−)

(0).
Because of the existence of the heteroclinic orbit, we have

Ṽ(−) (0) = Ṽ(+) (0) = 𝜙V (𝜙𝑢 (Ṽ
(−)

(0))) . (69)

In (69), the coefficient matrix for 𝑧
∗

𝑘+1
, 𝑧
∗

𝑘+2
, . . . , 𝑧

∗

𝑀
is as

follows:

𝐸
𝑀−𝑘

−
𝜕𝜙V

𝜕𝜙
𝑢

𝜕𝜙
𝑢

𝜕Ṽ(−) (0)
= 𝐸
𝑀−𝑘

−
𝜕𝜙V

𝜕𝑢̃
(+)

(0)

𝜕𝑢̃
(+)

(0)

𝜕Ṽ(−) (0)

= 𝐸
𝑀−𝑘

− 𝐻
(+)

(0)𝐻
(−)

(0) .

(70)

(𝐻
8
) Suppose that det(𝐸

𝑀−𝑘
− 𝐻
(+)

(0)𝐻
(−)

(0)) ̸= 0.

According to (𝐻
6
), we know that the solutions for the left

and the right problem satisfy condition (14). So the federated
system for (50)

𝑑

𝑑𝜏
𝑄
𝑗
𝑧 = 𝑓
𝑧
(𝜏) 𝑄
𝑗
𝑧 + 𝐺̃
𝑗
(𝜏) (71)

has a solution which satisfies 𝑄
𝑗
𝑧(−∞) = 0, 𝑄

𝑗
𝑧(+∞) = 0,

where

𝐺̃
𝑗
(𝜏)

= 𝑓
𝑦
(𝜏) 𝑄
𝑗
𝑦

+ (Δ𝑓
𝑧
(𝜏) 𝛽
󸀠

(𝑡
0
) + Δ𝑓

𝑦
(𝜏) (𝑦

0
(𝑡
0
))
󸀠

+ Δ𝑓
𝑡
(𝜏)) 𝑡
𝑗

+ 𝐺
𝑗
(𝜏) .

(72)

By [16], system (71) has an exponential dichotomy in 𝑅− and
𝑅
+. (𝐹𝑄

𝑗
𝑧)(𝜏) = (𝑑/𝑑𝜏)𝑄

𝑗
𝑧 − 𝑓

𝑧
(𝜏)𝑄
𝑗
𝑧 is Fredholm with

index zero [17]. Because (𝑑/𝑑𝜏)𝑄
0
𝑧(𝜏) ∈ Ker𝐹, there exist

𝜓(𝜏) which satisfy 𝜓(𝜏) ∈ Ker𝐹∗. If the solution for (71)
exists, the necessary and sufficient condition is given by

∫

+∞

−∞

𝜓
∗

(𝑡) 𝐺̃
𝑗
(𝜏) 𝑑𝜏 = ∫

+∞

−∞

𝜓
∗

(𝑡) {𝑓
𝑦
(𝜏) 𝑄
𝑗
𝑦

+ (Δ𝑓
𝑧
(𝜏) 𝛽
󸀠

(𝑡
0
) + Δ𝑓

𝑦
(𝜏) (𝑦

0
(𝑡
0
))
󸀠

+ Δ𝑓
𝑡
(𝜏)) 𝑡
𝑗

+ 𝐺
𝑗
(𝜏)} 𝑑𝜏 = 0.

(73)

We rewrite (73) as follows:

𝑡
𝑗
∫

+∞

−∞

𝜓
∗

(𝑡) (Δ𝑓
𝑧
(𝜏) 𝛽
󸀠

(𝑡
0
) + Δ𝑓

𝑦
(𝜏) (𝑦

0
(𝑡
0
))
󸀠

+ Δ𝑓
𝑡
(𝜏)) 𝑑𝜏 = −∫

+∞

−∞

𝜓
∗

(𝑡) {𝑓
𝑦
(𝜏) 𝑄
𝑗
𝑦

+ 𝐺
𝑗
(𝜏)} 𝑑𝜏.

(74)

(𝐻
9
) Suppose that ∫

+∞

−∞

𝜓
∗

(𝑡)(Δ𝑓
𝑧
(𝜏)𝛽
󸀠

(𝑡
0
) +

Δ𝑓
𝑦
(𝜏)(𝑦
0
(𝑡
0
))
󸀠

+ Δ𝑓
𝑡
(𝜏))𝑑𝜏 ̸= 0.

Under this assumption, 𝑡
𝑗
is completely determined. So

far, we have already determined all coefficients of the formal
asymptotic solution.
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5. Existence of a Step-Type Solution

The formal asymptotic solution of 𝑥(−)(𝑡, 𝜇) is given by

𝑥
(−)

(𝑡, 𝜇)

=

𝑛

∑

𝑗=0

𝜇
𝑗

(𝑥
(−)

𝑗
(𝑡) + 𝐿

𝑗
𝑥 (𝜏
0
) + 𝑄
(−)

𝑗
𝑥 (𝜏)) + 𝑂 (𝜇

𝑛

)

(75)

and the formal asymptotic solution of 𝑥(+)(𝑡, 𝜇) is given by

𝑥
(+)

(𝑡, 𝜇)

=

𝑛

∑

𝑗=0

𝜇
𝑗

(𝑥
(+)

𝑗
(𝑡) + 𝑄

(+)

𝑗
𝑥 (𝜏) + 𝑅

𝑗
𝑥 (𝜏
1
)) + 𝑂 (𝜇

𝑛

) .

(76)

Substituting (75), (76) into the left problem and the right
problem, respectively, completely similar to the previous
calculation process, we can obtain the systems to determine
all the coefficients of the asymptotic expansions. It is noted
that 𝑡∗ is given by

𝑡
∗

= 𝑡
0
+ 𝜇𝑡
1
+ 𝜇
2

𝑡
2
+ ⋅ ⋅ ⋅ + 𝜇

𝑛

(𝑡
𝑛
+ 𝛿
𝑡
) , (77)

while
𝑥
∗

𝑝
(𝜇) = 𝑥

∗

𝑝0
+ 𝜇𝑥
∗

𝑝1
+ ⋅ ⋅ ⋅ + 𝜇

𝑛

(𝑥
∗

𝑝𝑛
+ 𝛿
∗

𝑝
) ,

𝑝 = 𝑘 + 1, 𝑘 + 2, . . . ,𝑀.

(78)

Obviously, the system to determine 𝑄(∓)
𝑗
𝑥(𝜏) (𝑗 = 0, 1, . . . , 𝑛)

is the same as the front. When 𝑗 = 𝑛, we only need to change
𝑥
∗

𝑛
into 𝑥∗

𝑛
+ 𝛿
𝑡
in (47), (52).

Let

𝑈 (𝑡
∗

, 𝜇) = 𝑥
(−)

(𝑡
∗

, 𝜇) − 𝑥
(+)

(𝑡
∗

, 𝜇) , (79)

where 𝑈 = (𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑀
). Since 𝐿

𝑗
𝑥(𝜏
0
) and 𝑅

𝑗
𝑥(𝜏
1
) at

𝑡 = 𝑡
∗ are both exponentially small quantities, without loss of

generality, we can regard 𝑈(𝑡∗, 𝜇) as follows:

𝑈 (𝑡
∗

, 𝜇) =

𝑛

∑

𝑗=0

𝜇
𝑗

[(𝑥
(−)

𝑗
(𝑡
∗

) + 𝑄
(−)

𝑗
𝑥 (0))

− (𝑥
(+)

𝑗
(𝑡
∗

) + 𝑄
(+)

𝑗
𝑥 (0))] + 𝑂 (𝜇

𝑛+1

) .

(80)

In terms of the boundary value conditions of the left and right
associated problems, we have 𝐴𝑧

(+)

(𝑡
∗

, 𝜇) = 𝐴𝑧
(−)

(𝑡
∗

, 𝜇).
Then (80) yields

𝑈
1
(𝑡
∗

, 𝜇) = 𝑈
2
(𝑡
∗

, 𝜇) = ⋅ ⋅ ⋅ = 𝑈
𝑘
(𝑡
∗

, 𝜇) = 0. (81)

In the same time,

𝑈
𝑝
(𝑡
∗

, 𝜇) =

𝑛

∑

𝑗=0

𝜇
𝑗

[(𝑧
(−)

𝑝𝑗
(𝑡
∗

) + 𝑄
(−)

𝑗
𝑧
𝑗
(0))

− (𝑧
(+)

𝑝𝑗
(𝑡
∗

) + 𝑄
(+)

𝑗
𝑧
𝑝
(0))] + 𝑂 (𝜇

𝑛+1

) = (𝑧
(−)

𝑝𝑛
(𝑡
∗

)

+ 𝑄
(−)

𝑛
𝑧
𝑝
(0)) − (𝑧

(+)

𝑝𝑛
(𝑡
∗

) + 𝑄
(+)

𝑛
𝑧
𝑝
(0))

+ 𝑂 (𝜇
𝑛+1

) .

(82)

When 𝑝 takes its value from 𝑘 + 1 to𝑀, (82) can be written
as

(𝐸
𝑀−𝑘

− 𝐻
(+)

(0) 𝐻̇
(−)

(0))(

𝛿
∗

𝑘+1

.

.

.

𝛿
∗

𝑀

)−𝐻
(+)

(0)

⋅ ∫

0

−∞

(Ψ
(−)

(𝑠))
−1

(𝜓
(−)

1𝛿𝑡

(𝑠) − 𝐻
(−)

(𝑠) 𝜓
(−)

2𝛿𝑡

(𝑠)) 𝑑𝑠

− ∫

0

+∞

(Ψ
(+)

(𝑠))
−1

(𝜓
(+)

2𝛿𝑡

(𝑠) − 𝐻
(+)

(𝑠) 𝜓
(+)

1𝛿𝑡

(𝑠)) 𝑑𝑠

+ 𝑂 (𝜇
𝑛+1

) ,

(83)

where 𝜓(−)
1𝛿𝑡

(𝜏) and 𝜓(−)
2𝛿𝑡

(𝜏) are the first 𝑘 components and the
rest of components of

(Δ𝑓
(−)

𝑧
(𝜏) 𝛼
󸀠

(𝑡
0
) + Δ𝑓

(−)

𝑦
(𝜏) (𝑦

(−)

0
(𝑡
0
))
󸀠

+ Δ𝑓
(−)

𝑡
(𝜏))

⋅ 𝛿
𝑡

(84)

respectively. 𝜓(+)
1𝛿𝑡

(𝜏) and 𝜓
(+)

2𝛿𝑡

(𝜏) are the first 𝑘 components
and the rest of the components of

(Δ𝑓
(+)

𝑧
(𝜏) 𝛽
󸀠

(𝑡
0
) + Δ𝑓

(+)

𝑦
(𝜏) (𝑦

(+)

0
(𝑡
0
))
󸀠

+ Δ𝑓
(+)

𝑡
(𝜏))

⋅ 𝛿
𝑡
,

(85)

respectively.
By (𝐻

8
), there exist 𝛿∗

𝑘+1
, 𝛿
∗

𝑘+2
, 𝛿
∗

𝑀
, such that (83) is equal

to zero. Namely, (82) is equal to zero. Then, we obtain a step-
type contrast structure at the neighborhood of 𝑡∗. Similarly,
we can prove 𝑦(−)(𝑡∗, 𝜇) = 𝑦

(+)

(𝑡
∗

, 𝜇). In summary, we have
the following result.

Theorem1. Suppose that (𝐻
1
)–(𝐻
9
) hold. Problem (2), (3) has

a step-type contrast structure solution 𝑥(𝑡, 𝜇). Moreover, the
following asymptotic expansion holds:

𝑥 (𝑡, 𝜇)

=

{{{{

{{{{

{

𝑛

∑

𝑖=0

𝜇
𝑖

(𝑥
(−)

𝑖
(𝑡) + 𝐿

𝑖
𝑥 (𝜏
0
) + 𝑄
(−)

𝑖
𝑥 (𝜏)) + 𝑂 (𝜇

𝑛

) , 0 ≤ 𝑡 ≤ 𝑡
∗

;

𝑛

∑

𝑖=0

𝜇
𝑖

(𝑥
(+)

𝑖
(𝑡) + 𝑄

(+)

𝑖
𝑥 (𝜏) + 𝑅

𝑖
𝑥 (𝜏
1
)) + 𝑂 (𝜇

𝑛

) , 𝑡
∗

≤ 𝑡 ≤ 1.

(86)

Conflict of Interests

Authors declare that there is no conflict of interests regarding
the publication of this paper.

Acknowledgments

The authors acknowledge the following: (1) the National Nat-
ural Science Funds (no. 11501236); (2) the National Natural
Science Funds (no. 11471118); (3) the National Natural Science



8 Discrete Dynamics in Nature and Society

Funds (nos. 30921064, 90820307) supported by Knowledge
Innovation Project in the Chinese Academy; (4) Department
of Mathematics, Shanghai Key Laboratory of PMMP, East
China Normal University, 500 Dongchuan Road, Shanghai
200241, China.

References

[1] V. F. Butuzov and A. B. Vasil’eva, “Asymptotic behavior of a
solution of contrasting structure type,”Mathematical Notes, vol.
42, no. 2, pp. 956–961, 1987.

[2] A. S. Aedeev and A. B. Vasil’eva, “On a contrast structure
of step type for a system of two second-order singularly
perturbed equations,” Computational Mathematics and Mathe-
matical Physics, vol. 36, no. 5, pp. 75–89, 1996.

[3] A. B. Vasil’eva, “Contrast structures of step-like type for
a second-order singularly perturbed quasilinear differen-
tial equation,” Computational Mathematics and Mathematical
Physics, vol. 35, no. 4, pp. 520–531, 1995.

[4] M. A. Davydova, “On contrast structure in a system of sin-
gularly perturbed equations,” Computational Mathematics and
Mathematical Physics, vol. 41, no. 7, pp. 1026–1037, 2001.

[5] A. B. Vasileva, “Inner layer in the boundary problem for a
system of two singularly perturbed equations order with the
same procedure singularity,” Computational Mathematics and
Mathematical Physics, vol. 41, no. 7, pp. 1067–1077, 2001.

[6] A. F. Wang and M. K. Ni, “The interior layer for a nonlin-
ear singularly perturbed differential-difference equation,” Acta
Mathematica Scientia, vol. 32, no. 2, pp. 695–709, 2012.

[7] A. F. Wang and M. K. Ni, “Spike-type contrast structures for
a nonlinear singularly perturbed second-order equation,” Acta
Mathematic Scientia, vol. 29, no. 1, pp. 208–216, 2009.

[8] F. Xie, Z. Y. Jin, andM. K. Ni, “On the spike-type contrast struc-
ture of a second-order semi-linear differential equation with
integral boundary condition,” Electronic Journal of Qualitative
Theory of Differential Equations, vol. 62, pp. 1–14, 2010.

[9] A. B. Vasileva, “Contrast structure in the three systems of singu-
larly perturbed,”ComputationalMathematics andMathematical
Physics, vol. 39, no. 12, pp. 2007–2018, 1999.

[10] X.-B. Lin, “Construction and asymptotic stability of structurally
stable internal layer solutions,” Transactions of the American
Mathematical Society, vol. 353, no. 8, pp. 2983–3043, 2001.

[11] J. K. Hale and X.-B. Lin, “Multiple internal layer solutions
generated by spatially oscillatory perturbations,” Journal of
Differential Equations, vol. 154, no. 2, pp. 364–418, 1999.

[12] W. S. Liu, “Geometric singular perturbations for multiple
turning points: invariant manifolds and exchange lemmas,”
Journal of Dynamics and Differential Equations, vol. 18, no. 3,
pp. 667–691, 2006.

[13] M. K. Ni and Z. M. Wang, “On step-like contrast structure of
singularly perturbed systems,” Boundary Value Problems, vol.
2009, Article ID 634324, 17 pages, 2009.

[14] M. K. Ni and Z. M. Wang, “On higher-dimensional contrast
structure of singularly perturbed Dirichlet problem,” Science
China Mathematics, vol. 55, no. 3, pp. 495–507, 2012.

[15] A. B. Vasil’eva and V. F. Butuzov, Asymptotic Expansions of
Singularly Perturbed Differential Equations, Nauka, Moscow,
Russia, 1973.

[16] W.A.Coppel,Dichotomies in StabilityTheory, vol. 629 ofLecture
Notes in Mathematics, Springer, Berlin, Germany, 1978.

[17] K. J. Palmer, “Exponential dichotomies and transversal homo-
clinic points,” Journal of Differential Equations, vol. 55, no. 2, pp.
225–256, 1984.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


