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A nonlinear system describing the interaction between toxin-producing phytoplankton and zooplankton was investigated
analytically and numerically, where the system was represented by a couple of reaction-diffusion equations. We analyzed the effect
of self- and cross-diffusion on the system. Some conditions for the local and global stability of the equilibrium were obtained
based on the theoretical analysis. Furthermore, we found that the equilibrium lost its stability via Turing instability and patterns
formation then occurred. In particular, the analysis indicated that cross-diffusion can play an important role in pattern formation.
Subsequently, we performed a series of numerical simulations to further study the dynamics of the system, which demonstrated
the rich dynamics induced by diffusion in the system. In addition, the numerical simulations indicated that the direction of cross-
diffusion can influence the spatial distribution of the population and the population density. The numerical results agreed with the
theoretical analysis. We hope that these results will prove useful in the study of toxic plankton systems.

1. Introduction

In marine ecosystems, most aquatic life relies on plankton,
which comprises phytoplankton and zooplankton. Phyto-
plankton comprises most of the primary energy sources in
aquatic food webs, and it accounts for a large proportion of
the world’s fixed production. Phytoplankton is consumed by
zooplankton, which provides food for fish and other aquatic
animals. In fact, the phytoplankton can also render very use-
ful service by producing a huge amount of oxygen for other
animals after absorbing carbon dioxide from environments
[1]. Thus, plankton forms the basis of all aquatic food chains
and it has an essential role in the study of marine ecology [2,
3]. However, the biomass of phytoplankton population may
be of rapid increase or almost equally rapid decrease, and this
phenomenon of rapid change in phytoplankton population is
called “bloom” at some fixed time. Because some phytoplank-
ton can produce toxin and the accumulation of high biomass,

some of these blooms are known as “harmful algal blooms”
[4] which can have toxic effects onmarine ecosystems or even
human health, thereby causing great socioeconomic damage.
Thus, research into bloom dynamics is widespread with a
special emphasis on harmful algal blooms.

In the past two decades, there have been major increases
in harmful plankton blooms in aquatic ecosystems [5–7].
Studies have shown that there are at least eight different
modes and mechanisms that allow harmful phytoplankton
species to cause mortality, physiological impairment, or
other negative in situ effects [8]. It is well known that the
toxin-producing phytoplankton has important impacts on
the growth of the zooplankton, and thus studies of marine
plankton are ubiquitous and significant, while the dynamic
behavior of interacting species in the marine is also a
major topic [9]. However, researchers have paid less atten-
tion towards toxin-producing plankton blooms in recent
years [10, 11], although some have recognized the role
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of toxin-producing phytoplankton in reducing the grazing
pressure due to zooplankton [12–15]. In [14], a three-species
model comprised a toxin-producing phytoplankton and zoo-
plankton and fish population was studied by Upadhyay and
Chattopadhyay, who employed Holling type I, II, and III
functional responses to describe the liberation of the toxin,
where they concluded that the toxin-producing phytoplank-
tonmade a stabilizing contribution to aquatic systems. In [15],
the dynamical behaviors of toxin-producing phytoplankton
and zooplankton were investigated, where the phytoplankton
was divided into two groups, that is, susceptible and infected
phytoplankton. Of course, given the global increase in harm-
ful plankton blooms in aquatic ecosystems, the study of the
effects of toxic phytoplankton has begun to become a growing
concern in recent years [16–19].

In marine ecosystems, the diffusion phenomenon of
population exists widely, which can impact the distribution
of population. Many factors can influence the diffusion, such
as turbulence and foraging. Actually, it is indicated that the
diffusion induced by mixing play an important role in the
population dynamics of the phytoplankton [20]. And climate
models predict that global warming will increase the stabi-
lity of vertical stratification [21] and reduce vertical mixing
[22], which means that climate change will affect the popu-
lation dynamics. Hence, in order to understand how climate
changes affect the population dynamics, the study of the
diffusion mechanism of population becomes much more
important. In this aspect, the reaction-diffusion equationmay
be a useful tool to study the spatiotemporal dynamics induced
by diffusion [23, 24].

The dynamics of interacting populations with self- and
cross-diffusion have been studied widely [25–27]. In par-
ticular, Dubey et al. [25] analyzed a mathematical model
of a predator-prey interaction with self- and cross-diffusion
and obtained the criteria for local stability, instability, and
global stability. Another study [26] considered a nutrient-
plankton model of an aquatic environment in the context of
phytoplankton blooms to analyze the diffusion-driven insta-
bility and stability, as well as cross-diffusion of zooplankton,
under the influence of phytoplankton in the spatial model.
The results [26] indicated the influence of cross-diffusion of
zooplankton, and thus we can consider the effects of more
complex cross-diffusion in marine ecosystems. In the previ-
ous work, some researchers have studied the dynamical pro-
perties of the toxic plankton system with diffusion [28–30].
Jang et al. studied a mathematic model which described the
phytoplankton-zooplankton interactions with toxin-produc-
ing phytoplankton; the study revealed that passive diffusion
of both populations can simplify the dynamics of the interac-
tions and exhibit plankton patchiness [28]. In [29], authors
studied a delay-diffusion model of marine plankton eco-
system, which exhibited cyclic nature of blooms. In [30], Roy
considered a nontoxic phytoplankton-toxin-phytoplankton-
zooplankton model which is described by a reaction-
diffusion equation. The study demonstrated that spatial
movements of planktonic systems in the presence of TPP
generate and maintain inhomogeneous biomass distribution
of competing phytoplankton, as well as grazer zooplankton.
These works have studied the influence of diffusion on toxin

plankton system and obtained some good results. However,
the influence of cross-diffusion on the toxin plankton ecosys-
temwas seldom considered. In order to study the influence of
cross-diffusion in the toxic plankton ecosystem, we propose
a toxin-phytoplankton-zooplankton system with self- and
cross-diffusion.

2. Model and Linear Stability Analysis

2.1. Model Analysis. In this study, we consider a toxin-
phytoplankton-zooplankton system with Holling type II
response as follows:
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where 𝑃 = 𝑃(𝑡) is the density of the phytoplankton popula-
tion and 𝑍 = 𝑍(𝑡) is the density of the zooplankton popu-
lation at time 𝑡. 𝑢

1
is the phytoplankton natural birth rate;
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is the phytoplankton natural mortality rate, and thus
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denotes phytoplankton intraspecies competition.𝑃𝑍/(𝐾+𝑃)

is Holling type II response, 𝐾 is the half-saturation constant
for a Holling type II functional response, 𝛽
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is the rate of

predation for zooplankton, V
1
is the zooplankton’s natural

mortality rate, V
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is the zooplankton intraspecies competition,
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its growth, and 𝛽
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denotes the rate of toxin liberation by the

toxin-producing phytoplankton population.Wemake a basic
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Considering the relationship between the climate and the
diffusion of species and the fact on the existence of diffusion
in population, system (1) is developed into a spatial system
with diffusion. We expect to explore the effect of climate
change phytoplankton population by studying the spatial
dynamics of the diffusion system. The spatial system can be
described as

𝜕𝑃

𝜕𝑡
= 𝑢
1
𝑃 − 𝑟
1
𝑃 − 𝑢
2
𝑃
2
−

𝛽
1
𝑃𝑍

𝐾 + 𝑃
+ 𝐷
11
Δ𝑃 + 𝐷

12
Δ𝑍,

𝜕𝑍

𝜕𝑡
=

𝛽
2
𝑃𝑍

𝐾 + 𝑃
− V
1
𝑍 − V
2
𝑍
2
−

𝛽
3
𝑃𝑍

𝐾 + 𝑃
+ 𝐷
21
Δ𝑃

+ 𝐷
22
Δ𝑍,

(2)

where 𝐷
11
and 𝐷

22
are the constant diffusion coefficients for

the phytoplankton and zooplankton, respectively, and 𝐷
12

and 𝐷
21

are the cross-diffusion coefficients for the phyto-
plankton and zooplankton, respectively. Biologically, cross-
diffusion implies countertransport and it means that the prey
exercised a self-defense mechanism to protect against attack
by a predator [10], different from the self-diffusion, and the
values of 𝐷

12
and 𝐷

21
may be positive or negative. We take

the zero-flux boundary condition of the plankton populations
𝑃(𝑠, 𝑡) and 𝑍(𝑠, 𝑡) in 𝑠 ∈ Ω, 𝑡 > 0 as follows:
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=

𝜕𝑍

𝜕𝑛
= 0, 𝑠 ∈ 𝜕Ω, 𝑡 > 0, (3)
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and the initial conditions are

𝑃 (0, 𝑠) = 𝑃
0
(𝑠) > 0,
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(4)

where Ω ⊆ 𝑅
2 is a bounded spatial domain with smooth

boundary 𝜕Ω.
In addition, we take
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as the diffusive matrix. The determinant of 𝐷 is det(𝐷) =
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stronger than cross-diffusion; thus diffusive matrix 𝐷 is
positive definite.

Let 𝑓(𝑃, 𝑍) and 𝑔(𝑃, 𝑍) be the right hand sides of the
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Based on the analysis above, we define
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and the following conclusions can be established.
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If (tr(𝐻

𝑖
))
2
− 4 det(𝐻

𝑖
) ≤ 0, then Re(𝜆±

𝑖
) = (1/2) tr(𝐻

𝑖
) ≤

(1/2)(Γ
11

+ Γ
22
) < 0, and if (tr(𝐻

𝑖
))
2
− 4 det(𝐻

𝑖
) > 0, since

tr(𝐻
𝑖
) < 0 and det(𝐻

𝑖
) > 0, then

Re (𝜆−
𝑖
) =

tr (𝐻
𝑖
) − √(tr (𝐻

𝑖
))
2

− 4 det (𝐻
𝑖
)

2

≤
1

2
tr (𝐻
𝑖
) ≤

1

2
(Γ
11

+ Γ
22
) < 0,

Re (𝜆+
𝑖
) =

tr (𝐻
𝑖
) + √(tr (𝐻

𝑖
))
2

− 4 det (𝐻
𝑖
)

2

=
2 det (𝐻

𝑖
)

tr (𝐻
𝑖
) − √(tr (𝐻

𝑖
))
2

− 4 det (𝐻
𝑖
)

≤
det (𝐻

𝑖
)

tr (𝐻
𝑖
)

< 𝐶,

(13)

where 𝐶 is independent of 𝑖.
Thus, a negative constant 𝐶 exists, which is independent

of 𝑖, such that Re(𝜆±
𝑖
) < 𝐶 for any 𝑖. By referring to [31], we

can prove that the positive equilibrium 𝐸
𝑒2

= (𝑃
𝑒2
, 𝑍
𝑒2
) of

system (1) is uniformly asymptotically stable when 𝐷
12

> 0,
𝐷
21

< 0.

Theorem 4. (1) If 𝐷
11

= 𝐷
12

= 𝐷
21

= 𝐷
22

= 0, then the
equilibrium 𝐸

𝑒2
= (𝑃
𝑒2
, 𝑍
𝑒2
) is globally asymptotically stable

when 𝑢
2
> 𝛽
1
𝑍/(𝐾 + 𝑃)𝐾.

(2) If𝐷
11

̸= 0,𝐷
22

̸= 0,𝐷
12

̸= 0,𝐷
21

̸= 0, then the positive
equilibrium 𝐸

𝑒2
= (𝑃
𝑒2
, 𝑍
𝑒2
) is globally asymptotically stable

when 𝑢
2
> 𝛽
1
𝑍/(𝐾 + 𝑃)𝐾 and 𝐴

2

12
< 4𝐴
11
𝐴
22
, where

𝐴
11

= 𝐷
11

𝑃

𝑃2
,

𝐴
22

= 𝐷
22

𝛽
1
(𝐾 + 𝑃)

(𝛽
2
− 𝛽
3
)𝐾

𝑍

𝑍2
,

𝐴
12

= −𝐷
12

𝑃

𝑃2
− 𝐷
21

𝛽
1
(𝐾 + 𝑃)

(𝛽
2
− 𝛽
3
)𝐾

𝑍

𝑍2
.

(14)

Proof. (1) Define a Lyapunov function

𝑉
1
(𝑃, 𝑍) = ∫

𝑃

𝑃

𝑋 − 𝑃

𝑋
𝑑𝑋

+
𝛽
1
(𝐾 + 𝑃)

(𝛽
2
− 𝛽
3
)𝐾

∫

𝑍

𝑍

𝑌 − 𝑍

𝑌
𝑑𝑌.

(15)

We note that 𝑉
1
(𝑃, 𝑍) is nonnegative and 𝑉

1
(𝑃, 𝑍) = 0 if and

only if (𝑃(𝑡), 𝑍(𝑡)) = (𝑃, 𝑍).
Furthermore,

𝑑𝑉
1

𝑑𝑡
=

𝑃 − 𝑃

𝑃

𝑑𝑃

𝑑𝑡
+

𝛽
1
(𝐾 + 𝑃)

(𝛽
2
− 𝛽
3
)𝐾

𝑍 − 𝑍

𝑍

𝑑𝑍

𝑑𝑡
. (16)

By substituting the expressions for 𝑑𝑃/𝑑𝑡 and 𝑑𝑍/𝑑𝑡 from
system (1), we obtain

𝑑𝑉
1

𝑑𝑡
= (𝑃 − 𝑃)(𝑢

1
− 𝑟
1
− 𝑢
2
𝑃 −

𝛽
1
𝑍

𝐾 + 𝑃 + 𝑍
)

+
𝛽
1
(𝐾 + 𝑃)

(𝛽
2
− 𝛽
3
)𝐾

(𝑍 − 𝑍)

⋅ (
(𝛽
2
− 𝛽
3
) 𝑃

𝐾 + 𝑃
− V
1
− V
2
𝑍) .

(17)
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Using the condition that

𝑢
1
− 𝑟
1
− 𝑢
2
𝑃 −

𝛽
1
𝑍

𝐾 + 𝑃
= 0,

(𝛽
2
− 𝛽
3
) 𝑃

𝐾 + 𝑃
− V
1
− V
2
𝑍 = 0,

(18)

(17) can be simplified as

𝑑𝑉
1

𝑑𝑡
= −(𝑢

2
−

𝛽
1
𝑍

(𝐾 + 𝑃) (𝐾 + 𝑃)
) (𝑃 − 𝑃)

2

−
𝛽
1
V
2
(𝐾 + 𝑃)

(𝛽
2
− 𝛽
3
)𝐾

(𝑍 − 𝑍)
2

,

(19)

−(𝛽
1
V
2
(𝐾+𝑃)/(𝛽

2
−𝛽
3
)𝐾)(𝑍 − 𝑍)

2

< 0, and −(𝑢
2
−𝛽
1
𝑍/(𝐾+

𝑃)(𝐾 + 𝑃))(𝑃 − 𝑃)
2
< 0 always occurs when 𝑢

2
> 𝛽
1
𝑍/(𝐾 +

𝑃)𝐾.
Therefore, 𝑑𝑉

1
/𝑑𝑡 < 0 if 𝑢

2
> 𝛽
1
𝑍/(𝐾 + 𝑃)𝐾 holds.

Proof. (2) Then, by referring to [32, 33], we choose the
following Lyapunov function:

𝑉
2
= ∬
Ω

𝑉
1
(𝑃, 𝑍) 𝑑Ω, (20)

and by differentiating 𝑉
2
with respect to time 𝑡 along the

solutions of system (2), we can obtain

𝑑𝑉
2

𝑑𝑡
= ∬
Ω

𝑑𝑉
1

𝑑𝑡
𝑑Ω + ∬

Ω

((𝐷
11
Δ𝑃 + 𝐷

12
Δ𝑍)

𝜕𝑉
1

𝜕𝑃

+ (𝐷
21
Δ𝑃 + 𝐷

22
Δ𝑍)

𝜕𝑉
1

𝜕𝑍
)𝑑Ω.

(21)

Using Green’s first identity in the plane, we obtain

𝑑𝑉
2

𝑑𝑡
= ∬
Ω

𝑑𝑉
1

𝑑𝑡
𝑑Ω − 𝐷

11
∬
Ω

𝜕
2
𝑉
1

𝜕𝑃2
|∇𝑃|
2
𝑑Ω

− 𝐷
22

∬
Ω

𝜕
2
𝑉
1

𝜕𝑍2
|∇𝑍|
2
𝑑Ω

− 𝐷
21

∬
Ω

𝜕
2
𝑉
1

𝜕𝑍2
∇𝑃∇𝑍𝑑Ω

− 𝐷
12

∬
Ω

𝜕
2
𝑉
1

𝜕𝑃2
∇𝑃∇𝑍𝑑Ω,

(22)

where

𝜕
2
𝑉
1

𝜕𝑃2
=

𝑃

𝑃2
> 0,

𝜕
2
𝑉
1

𝜕𝑍2
=

𝛽
1
(𝐾 + 𝑃)

(𝛽
2
− 𝛽
3
)𝐾

𝑍

𝑍2
> 0.

(23)

Based on the analysis above,

𝑢
2
>

𝛽
1
𝑍

(𝐾 + 𝑃)𝐾
. (24)

In the case of increasing 𝐷
11
, 𝐷
22

to sufficiently large
values and if 𝐷

12
, 𝐷
21
meet the conditions

𝐴
2

12
< 4𝐴
11
𝐴
22

(25)

then 𝑑𝑉
1
/𝑑𝑡 < 0, and thus 𝑑𝑉

2
/𝑑𝑡 < 0. Therefore 𝐸

𝑒2
=

(𝑃
𝑒2
, 𝑍
𝑒2
) of system (2) is globally asymptotically stable when

𝑢
2
> 𝛽
1
𝑍/(𝐾 + 𝑃)𝐾 and 𝐴

2

12
< 4𝐴
11
𝐴
22
.

Under the condition of
𝑢
1
− 𝑟
1

𝑢
2

> 𝐾,

𝑢
2
((𝑢
1
− 𝑟
1
) /𝑢
2
+ 𝐾)
2

4𝛽
1

<
(𝛽
2
− 𝛽
3
) ((𝑢
1
− 𝑟
1
) /𝑢
2
− 𝐾)

V
2
((𝑢
1
− 𝑟
1
) /𝑢
2
+ 𝐾)

−
V
1

V
2

,

(26)

we have the following conclusions.

Lemma 5. If 𝐷
11

= 𝐷
12

= 𝐷
21

= 𝐷
22

= 0, then the
equilibrium 𝐸

𝑒1
= (𝑃
𝑒1
, 𝑍
𝑒1
) is locally asymptotically stable

when

𝐹 (𝑃
∗
) − 𝐺 (𝑃

∗
) > 0,

(𝑃
∗
=

(𝑢
1
− 𝑟
1
− 𝑢
2
𝐾 − 𝛽

2
+ 𝛽
3
+ V
1
) + √(𝑢

1
− 𝑟
1
− 𝑢
2
𝐾 − 𝛽

2
+ 𝛽
3
+ V
1
)
2

+ 8𝑢
2
V
1
𝐾

4𝑢
2

),

(27)

and the equilibrium 𝐸
𝑒1

= (𝑃
𝑒1
, 𝑍
𝑒1
) is unstable when 𝐹(𝑃

∗
) −

𝐺(𝑃
∗
) < 0.

Proof. Define

𝐻(𝑃) = 𝐹 (𝑃) − 𝐺 (𝑃) ,

(0 < 𝑃 <
(𝑢
1
− 𝑟
1
) /𝑢
2
− 𝐾

2
) ,

(28)

under the condition of Lemma 1, we can find that 𝐻

(𝑃) <

0 (0 < 𝑃 < ((𝑢
1
− 𝑟
1
)/𝑢
2
− 𝐾)/2).
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Thus

(𝛽
2
− 𝛽
3
)𝐾

V
2
(𝐾 + 𝑃)

2
< −

𝑢
2

𝛽
1

[2𝑃 + (𝐾 −
𝑢
1
− 𝑟
1

𝑢
2

)] ,

(0 < 𝑃 <
(𝑢
1
− 𝑟
1
) /𝑢
2
− 𝐾

2
) ,

(29)

and combined with det(𝐸
𝑒1
), we can find that det(𝐸

𝑒1
) > 0,

and

tr (𝐸
𝑒1
)

=
−2𝑢
2
𝑃
2

𝑒1
+ (𝑢
1
− 𝑟
1
− 𝑢
2
𝐾 − 𝛽

2
+ 𝛽
3
+ V
1
) 𝑃
𝑒1

+ V
1
𝐾

𝐾 + 𝑃
𝑒1

.

(30)

Hence, if 𝐹(𝑃
∗
) − 𝐺(𝑃

∗
) > 0, then 𝑃

𝑒1
> 𝑃
∗, and in this case

tr(𝐸
𝑒1
) < 0; thus, 𝐸

𝑒1
= (𝑃
𝑒1
, 𝑍
𝑒1
) is stable. If 𝐹(𝑃

∗
)−𝐺(𝑃

∗
) <

0, then 𝑃
𝑒1

< 𝑃
∗ and in this case, tr(𝐸

𝑒1
) > 0; thus 𝐸

𝑒1
=

(𝑃
𝑒1
, 𝑍
𝑒1
) is unstable.

By analyzing Lemma 5, we can find that 𝐹(𝑃
∗
) −𝐺(𝑃

∗
) =

0 is the value where the plankton system populations bifur-
cate into periodic oscillation. By 𝐹(𝑃

∗
) = 𝐺(𝑃

∗
), then we can

obtain

𝛽
1
= 𝛽 =

−𝑢
2
V
2
(𝐾 + 𝑃

∗
) ((𝑃
∗
)
2

+ (𝐾 − (𝑢
1
− 𝑟
1
) /𝑢
2
) 𝑃
∗
− ((𝑢
1
− 𝑟
1
) /𝑢
2
)𝐾)

(𝛽
2
− 𝛽
3
− V
1
) 𝑃∗ − V

1
𝐾

, (31)

which is a bifurcation value of the parameter 𝛽
2
. Now, the

characteristic equation of the 𝐸
𝑒1
reduces to

𝜆
2
+ det (𝐸

𝑒1
) = 0, (32)

where det(𝐸
𝑒1
) > 0, and the equation has purely imaginary

roots.We take 𝜆 = 𝑎+𝑏𝑖. If the stability change occurs at 𝛽
1
=

𝛽, it is obvious that 𝑎(𝛽) = 0, 𝑏(𝛽) ̸= 0, and using 𝑎(𝛽) = 0,
𝑏(𝛽) ̸= 0, we get (𝑑𝑎/𝑑𝛽

1
)|
𝛽
1
=𝛽

= ((1/2)𝑑 tr(𝐸
𝑒1
)/𝑑𝛽
1
)|
𝛽
1
=𝛽

>

0. Thus, the transversality condition for a Hopf bifurcation is
satisfied.

Theorem 6. If (𝑢
1
− 𝑟
1
)/𝑢
2
> 𝐾, 𝑢

2
((𝑢
1
− 𝑟
1
)/𝑢
2
+𝐾)
2
/4𝛽
1
<

(𝛽
2
− 𝛽
3
)((𝑢
1
− 𝑟
1
)/𝑢
2
− 𝐾)/V

2
((𝑢
1
− 𝑟
1
)/𝑢
2
+ 𝐾) − V

1
/V
2
, and

𝐹(𝑃
∗
) −𝐺(𝑃

∗
) > 0, then the criterion for the Turing instability

of system (2) satisfies the following condition (𝑎
11
𝐷
22

+𝑎
22
𝐷
11

−

𝐷
12
𝑎
21

− 𝐷
21
𝑎
12
)
2
> 4 det(𝐷) det(𝐽

𝐸
𝑒1

). Consider

(𝐽
𝐸
𝑒1

= (
𝑎
11

𝑎
12

𝑎
21

𝑎
22

) 𝑖𝑠 𝑡ℎ𝑒 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑎𝑡 𝐸
𝑒1

= (𝑃
𝑒1
, 𝑍
𝑒1
)) .

(33)

Proof. The linearized form of system (2) corresponding to the
equilibrium 𝐸

𝑒1
(𝑃
𝑒1
, 𝑍
𝑒1
) is given by

𝜕𝑝

𝜕𝑡
= 𝑎
11
𝑝 + 𝑎
12
𝑧 + 𝐷

11

𝜕
2
𝑝

𝜕𝑠2
+ 𝐷
12

𝜕
2
𝑧

𝜕𝑠2
,

𝜕𝑧

𝜕𝑡
= 𝑎
21
𝑝 + 𝑎
22
𝑧 + 𝐷

21

𝜕
2
𝑝

𝜕𝑠2
+ 𝐷
22

𝜕
2
𝑧

𝜕𝑠2
,

(34)

where 𝑃 = 𝑃
𝑒1

+ 𝑝, 𝑍 = 𝑍
𝑒1

+ 𝑧, and (𝑝, 𝑧) are
small perturbations in (𝑃, 𝑍) about the equilibrium 𝐸

𝑒1
=

(𝑃
𝑒1
, 𝑍
𝑒1
). We expand the solution of system (34) into a

Fourier series:

(
𝑝

𝑧
) = ∑

𝑘

(
𝑐
1

𝑘

𝑐
2

𝑘

)𝑒
𝜆
𝑘
𝑡+𝑖𝑘𝑠

, (35)

where 𝑘 is the wave number of the solution. By combining
(34) and (35), we obtain

𝜆
𝑘
(
𝑐
1

𝑘

𝑐
2

𝑘

) = (
𝑎
11

− 𝑘
2
𝐷
11

𝑎
12

− 𝑘
2
𝐷
12

𝑎
21

− 𝑘
2
𝐷
21

𝑎
22

− 𝑘
2
𝐷
22

)(

𝑐
1

𝑘

𝑐
2

𝑘

) . (36)

Hence, we can obtain the characteristic equation as follows:

𝜆
2
− tr
𝑘
𝜆
𝑘
+ Δ
𝑘
= 0, (37)

where

tr
𝑘
= 𝑎
11

+ 𝑎
22

− 𝑘
2
(𝐷
11

+ 𝐷
22
) ,

Δ
𝑘
= det (𝐽

𝐸
𝑒1

)

− 𝑘
2
(𝑎
11
𝐷
22

+ 𝑎
22
𝐷
11

− 𝐷
12
𝑎
21

− 𝐷
21
𝑎
12
)

+ 𝑘
4
(𝐷
11
𝐷
22

− 𝐷
12
𝐷
21
) .

(38)

In order to allow the system to achieve Turing instability,
at least one of the following conditionsmust be satisfied: tr

𝑘
>

0 and Δ
𝑘
< 0. However, it is obvious that tr

𝑘
< 0. Thus only

the condition that Δ
𝑘

< 0 exists can give rise to instability.
Therefore, a necessary condition for the system to be unstable
is that

det (𝐽
𝐸
𝑒1

) − 𝑘
2
(𝑎
11
𝐷
22

+ 𝑎
22
𝐷
11

− 𝐷
12
𝑎
21

− 𝐷
21
𝑎
12
)

+ 𝑘
4
(𝐷
11
𝐷
22

− 𝐷
12
𝐷
21
) < 0.

(39)

We define

𝐹 (𝑘
2
) = 𝑘
4
(𝐷
11
𝐷
22

− 𝐷
12
𝐷
21
)

− 𝑘
2
(𝑎
11
𝐷
22

+ 𝑎
22
𝐷
11

− 𝐷
12
𝑎
21

− 𝐷
21
𝑎
12
)

+ det (𝐽
𝐸
𝑒1

) .

(40)



Discrete Dynamics in Nature and Society 7

If we let 𝑘2min be the corresponding value of 𝑘
2 for the mini-

mum value of 𝐹(𝑘
2
), then

𝑘
2

min =
𝑎
11
𝐷
22

+ 𝑎
22
𝐷
11

− 𝐷
12
𝑎
21

− 𝐷
21
𝑎
12

2 (𝐷
11
𝐷
22

− 𝐷
12
𝐷
21
)

> 0. (41)

Thus, the corresponding minimum value of 𝐹(𝑘
2
) is

𝐹 (𝑘
2

min)

= det (𝐽
𝐸
𝑒1

)

−
(𝑎
11
𝐷
22

+ 𝑎
22
𝐷
11

− 𝐷
12
𝑎
21

− 𝐷
21
𝑎
12
)
2

4 det (𝐷)
.

(42)

In addition, if we let 𝐹(𝑘
2

min) < 0, the sufficient condition for
the system to be unstable reduces to

(𝑎
11
𝐷
22

+ 𝑎
22
𝐷
11

− 𝐷
12
𝑎
21

− 𝐷
21
𝑎
12
)
2

> 4 det (𝐷) det (𝐽
𝐸
𝑒1

) .

(43)

Noting. If there exists three positive equilibria 𝐸
𝑒31

=

(𝑃
𝑒31

, 𝑍
𝑒31

), 𝐸
𝑒32

= (𝑃
𝑒32

, 𝑍
𝑒32

), and 𝐸
𝑒33

= (𝑃
𝑒33

, 𝑍
𝑒33

) in
system (1), where 𝑃

𝑒31
< 𝑃
𝑒32

< (1/2)((𝑢
1
− 𝑟
1
)/𝑢
2
− 𝐾),

𝑃
𝑒33

> (1/2)((𝑢
1
− 𝑟
1
)/𝑢
2
− 𝐾), then a bistable system exists

when

𝑃
𝑒31

>
(𝑢
1
− 𝑟
1
− 𝑢
2
𝐾 − 𝛽

1
+ V
1
) + √(𝑢

1
− 𝑟
1
− 𝑢
2
𝐾 − 𝛽

1
+ V
1
)
2

+ 8𝑢
2
V
1
𝐾

4𝑢
2

. (44)

We take 𝑢
1
= 0.9, 𝑟

1
= 0.2, 𝑢

2
= 0.14, 𝛽

1
= 1.2, 𝛽

2
= 0.7,

𝛽
3
= 0.1, V

1
= 0.05, V

2
= 0.5. Table 1 show that the condition

for Lemma 1(3) is achievable.

3. Numerical Results

3.1. Numerical Analysis. In this section, system (2) is analyzed
using the numerical technique to show its dynamic complex-
ity. However, the existence of a positive equilibrium and its
stability in system (1) are given first before this. Table 2 shows
the existence of the equilibrium and its stability for different
values of the parameter𝐾, while the other parameters remain
fixed: 𝑢

1
= 0.7, 𝑟

1
= 0.2, 𝑢

2
= 0.382, 𝛽

1
= 0.21, 𝛽

2
=

0.2428, 𝛽
3
= 0.1, V

1
= 0.09, and V

2
= 0.013.Table 2 indicates

that the positive equilibrium is unstable when 𝐾 = 0.1, but it
is locally asymptotically stable when 𝐾 = 0.205 and global
asymptotically stable when 𝐾 = 0.6.

The parameters are taken as follows: 𝑢
1

= 0.7, 𝑟
1

= 0.2,
𝑢
2
= 0.382, 𝛽

1
= 0.21, 𝛽

2
= 0.2428, 𝛽

3
= 0.1, V

1
= 0.09, and

V
2
= 0.013.
Figure 2 presents a series of one-dimensional numerical

solutions of system (2). Figure 2(a) shows that the solution of
system (2) tends to a positive equilibrium,where𝐷

21
= 𝐷
12

=

0, which implies that positive equilibrium is stable. This
means that the self-diffusion does not lead to the occurrence
of instability. In fact, as shown in Figure 1, the self-diffusion
does not cause instability in system (2) when 𝐷

21
= 𝐷
12

=

0. However, instability may occur when the cross-diffusion
coefficients satisfy some conditions.

Therefore, different values of 𝐷
12

and 𝐷
21

are employed
to illustrate the instability induced by cross-diffusion.
Figure 2(b) shows the phytoplankton density, where the
values of 𝐷

12
and 𝐷

21
are negative, whereas the values

of 𝐷
12

and 𝐷
21

are positive in Figure 2(d). It is obvious
that the spatial distributions of phytoplankton in Figures
2(b) and 2(d) are markedly different. In ecology, positive

cross-diffusion indicates that one species tends to move in
the direction with a lower concentration of another species,
whereas negative cross-diffusion denotes that the population
tends to move in the direction with a higher concentration of
another species [30]. In Figures 2(c) and 2(f), 𝐷

12
= 0, and

𝐷
21

= 0.5,−1.5, respectively, whichmeans that only the influ-
ence of zooplankton cross-diffusion is considered in the sys-
tem. The spatial distributions of phytoplankton are not obvi-
ously different in Figures 2(c) and 2(f), but the amplitudes
of the phytoplankton density differ, which means that the
direction of zooplankton cross-diffusion can affect the phy-
toplankton density. In Figure 2(e), coefficient 𝐷

21
is positive

and𝐷
12
is negative, and it is not difficult to see that the spatial

distribution of phytoplankton differs significantly from the
other panels shown in Figure 2. These results demonstrate
that cross-diffusion plays a significant role in the stability of
the system, but they also show the effects of the various types
of cross-diffusion that a plankton system may encounter.

3.2. Pattern Formation. In order to illustrate the spatial
distribution of phytoplankton more clearly, we show the
patterns formed by system (2) in a two-dimensional space in
Figure 3.

Figure 3 shows two different spatial distributions of phy-
toplankton. Figure 3(a) shows the initial spatial distributions
of phytoplankton. Figures 3(b) and 3(c) illustrate different
types of pattern formation for different values of 𝐷

12
and

𝐷
21

at 𝑡 = 1000. When 𝐷
21

= 0.4, 𝐷
12

= 0.1, Figure 3(b)
shows that a spotted pattern and the spots appear to be
cluttered with an irregular shape. However, when 𝐷

21
=

0.91, 𝐷
12

= −0.5, a circular spotted pattern appears, and
the distribution of the spots is more regular, as shown in
Figure 3(c). As discussed in Section 3.1, cross-diffusion will
lead to instability in the system, where both positive cross-
diffusion and negative cross-diffusion play important roles
in the stability of the system. The spatial distributions of
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Figure 1: Bifurcation diagramwith𝐷
12
and𝐷

21
, where the parameters values are taken as𝐾 = 0.205, 𝑢

1
= 0.7, 𝑟

1
= 0.2, 𝑢

2
= 0.382, 𝛽

1
= 0.21,

𝛽
2
= 0.2428, 𝛽

3
= 0.1, V

1
= 0.09, V

2
= 0.013, 𝐷

11
= 0.04, and 𝐷

22
= 3.5. The gray line represents 𝐷

11
𝑎
22

+ 𝐷
22
𝑎
11

− 𝐷
12
𝑎
21

− 𝐷
21
𝑎
12

= 0,
the blue curve represents det(𝐷) det(𝐽

𝐸𝑒1
) = 0, and the red curve represents 𝐷

11
𝑎
22

+ 𝐷
22
𝑎
11

− 𝐷
12
𝑎
21

− 𝐷
21
𝑎
12

− 2√det(𝐷) det(𝐽
𝐸𝑒1

) = 0;
thus 𝐼 shows the zone where the instability induced by diffusion occurs. The remainder of this paper is organized as follows. In Section 2, we
describe and analyze the toxin-phytoplankton-zooplankton system, and we derive the criteria for the stability and instability of a system with
cross-diffusion. In Section 3, we present the results of numerical simulations and discuss their implications. Finally, we give our conclusions
in Section 4.

Table 1: The condition for three positive equilibria exists in system.

𝐾 Equilibrium tr (𝐽) det (𝐽) Stability

0.5
(0.7441, 0.6177) <0 >0 Locally stable

(1, 0.7) \ <0 Unstable
(2.2559, 0.8823) <0 >0 Locally stable

phytoplankton shown in Figures 2(b) and 2(c) agree well with
the results given in the previous section.

4. Conclusion and Discussion

The system is simple because it is only an abstract description
of a marine plankton system. However, the system exhibited
some rich features of the marine plankton system.The results
show that the spatial distribution of phytoplankton is rela-
tively uniform and stable under some conditions if we only
consider the self-diffusion in system (2). When the influence
of cross-diffusion is considered, however, the distribution of
phytoplanktonwill change significantly, as shown in Figure 2.
Our results demonstrate that the cross-diffusion can greatly
affect the dynamic behavior of plankton system.

In Section 2, we showed that complex equilibria exist
in the system and that a bistable system exists when the
equilibrium satisfies certain conditions. The results shown
in Table 1 verified these conclusions. We also found the
condition forHopf bifurcation. InTable 2, we take parameters
values of 𝑢

1
= 0.7, 𝑟

1
= 0.2, 𝑢

2
= 0.382, 𝛽

1
= 0.21,

𝛽
2

= 0.2428, 𝛽
3

= 0.1, V
1

= 0.09, and V
2

= 0.013, and

Table 2: The positive equilibrium and its stability.

𝐾 Equilibrium tr (𝐽) det (𝐽) Stability
0.1 (0.2205, 0.6346) >0 >0 Unstable
0.205 (0.5408, 1.0420) <0 >0 Locally stable
0.6 (1.1915, 0.3826) <0 >0 Global stable

we illustrated the changes in stability by varying the half-
saturation constant for Holling type II functional response in
system (1). Although the system is simple, the behavior of the
system was found to be very rich.

In contrast to previous studies of marine plankton sys-
tems, diffusion system (2) considered the mutual effects
of self-diffusion and cross-diffusion. Furthermore, various
effects of the saturation of cross-diffusion were considered
in our study and we analyzed the influence of differences in
real saturation. In the paper, theoretical proof of the stability
of the system, we considered positive or negative or zero
cross-diffusion and we found that the conditions for system
instability were caused by cross-diffusion. In our numerical
analysis, we focused on the influence of cross-diffusion on
the system. Figure 2 shows the influence of cross-diffusion
on the system, where we considered the complexity of the
actual situation, and the results are illustrated for different
values of 𝐷

12
and 𝐷

21
. In Figures 2(a)–2(f), the results of

our theoretical derivation are verified, and they also reflect
the complex form of the system under the influence of cross-
diffusion. Turing first proposed the reaction-diffusion equa-
tion and described the concept of Turing instability in 1952
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Figure 2: Numerical stability of system (2) with the following parameters: 𝐾 = 0.205, 𝑢
1
= 0.7, 𝑟

1
= 0.2, 𝑢

2
= 0.382, 𝛽

1
= 0.21, 𝛽

2
= 0.2428,

𝛽
3
= 0.1, V

1
= 0.09, V

2
= 0.013, 𝐷

11
= 0.04, and 𝐷

22
= 3.5. (a) 𝐷

21
= 0, 𝐷

12
= 0; (b): 𝐷

21
= −0.05, 𝐷

12
= −1.5; (c) 𝐷

21
= 0.5, 𝐷

12
= 0; (d)

𝐷
21

= 0.5, 𝐷
12

= 0.1; (e) 𝐷
21

= 1, 𝐷
12

= −0.5; (f) 𝐷
21

= −1.5, 𝐷
12

= 0.

[34], and pattern formation has now become an important
component when studying the reaction-diffusion equation.
Thus, based on Figure 2, we analyzed the patterns formed to
further illustrate the instability of the system as in Figure 3.

In addition, it is known that climate change can affect
the diffusion of population in marine. Our studies show that
the diffusion of phytoplankton and zooplankton can affect
the spatial distribution of population under some conditions.
Hence, climate change may have a significant effect on the
population in marine. We hope that this finding can be

further studied and proved to be useful in the study of toxic
plankton systems.
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Figure 3: Patterns obtained with system (2) using the following parameters: 𝐾 = 0.205, 𝑢
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