
Research Article
Asset Price Dynamics in a Chartist-Fundamentalist Model with
Time Delays: A Bifurcation Analysis

Loretti I. Dobrescu,1 Mihaela Neamtu,2 and Gabriela Mircea3

1School of Economics, University of New South Wales, Sydney, NSW 2052, Australia
2Department of Economic Modelling, West University of Timisoara, 16 A J. H. Pestalozzi Street,
300115 Timisoara, Romania
3Department of Business Information Systems, West University of Timisoara, 16 A J. H. Pestalozzi Street,
300115 Timisoara, Romania

Correspondence should be addressed to Loretti I. Dobrescu; dobrescu@unsw.edu.au

Received 25 November 2015; Accepted 11 January 2016

Academic Editor: Zhengqiu Zhang

Copyright © 2016 Loretti I. Dobrescu et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper studies the dynamic behavior of asset prices using a chartist-fundamentalist model with two speculative markets. To
this effect, we employ a differential system with delays à la Dibeh (2007) to describe the price dynamics and we assume that the two
markets are coupled via diffusive coupling terms. We study two different time delay cases, namely, when both markets experience
the same time delay and when the time delay is different acrossmarkets. First, we theoretically determine that the equilibrium exists
and investigate its stability. Second, we establish the general conditions for the existence of local Hopf bifurcations and analyze their
direction and stability.The common conclusion from both the delay scenarios we consider is that coupled speculative markets with
heterogeneous agents in each, butwith different price dynamics, can be synchronized through diffusive coupling. Finally, we provide
some numerical illustrations to confirm our theoretical findings.

1. Introduction

When it comes to financial markets dynamics, there is wide
consensus that the Efficient Market Hypothesis (EMH) is the
standard theory [1]. This theory however fails to explain or
predict situations when, for instance, speculative booms are
followed by severe crashes. In other words, it cannot explain
the excess volatility in these financial markets. As a result,
several models have been developed in the last decade to
describe markets fluctuations [1–12]. For instance, Dibeh [5]
considers a market with two types of participants, namely,
fundamentalists and chartists. The first categories of agents
follow the EMH theory and base their decisions (and hence
their demand formation) on the difference between the actual
asset price and the fundamental asset price. On the other
hand, the chartists base their market participation decision
on the price trend of an asset. Thus, they attempt to exploit
past price informationwhen deciding whether to purchase or

sell an asset. Specifically, Dibeh [5] used the following delay-
differential equation to describe the dynamics of asset prices:

̇
𝑝 (𝑡) = (1 − 𝑚) tanh (𝑝 (𝑡) − 𝑝 (𝑡 − 𝜏)) 𝑝 (𝑡)

− 𝑚 (𝑝 (𝑡) − V) 𝑝 (𝑡) ,
(1)

where 𝑝(𝑡) is the actual asset price, V is the fundamental
asset price, and 𝑚 ∈ (0, 1) is the market fraction of funda-
mentalists. For chartists, the time delay 𝜏 was introduced to
capture the fact that they base the slope estimation of their
asset price trend on adaptive expectations that consider the
past values of the price trend slope. Simulation results showed
that there may exist limit cycles for (1), which could explain
the persistence of deviations from the fundamental price in
speculative markets. These findings are crucial, as Bouchaud
and Potters [13] found that, in models considering one asset
(i.e., one market), feedback mechanisms are the main driver
of market fluctuations, booms, and crashes.
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Using Hassard et al. [14], Qu and Wei [1] provided a
theoretical justification for the results in Dibeh [5]. Applying
the local Hopf bifurcation theory, they analytically inves-
tigated the existence of periodic oscillations for (1), which
depends on both the time delay 𝜏 and the market fraction
of fundamentalists 𝑚. Using the normal form theory and
center manifold theorem (see also [15, 16]), they derived the
sufficient conditions to determine the direction ofHopf bifur-
cation and the stability of the bifurcating periodic solutions.

In modern finance theory however one of the key ideas is
portfolio diversification. And once two or more risky assets
(or markets) are available to investors (beliefs on) correlation
in price/returns also becomes an investment decision factor.
But could agents’ beliefs about returns correlation generate
comovements in risky assets prices? And how can markets
become interdependent? For instance, to what extent may
the price dynamics in one market be affected by changes in
agents’ behavior and beliefs in the alternative market?

In one of the first attempts to tackle these questions,
Chiarella et al. [17] developed a discrete time model that
combines the chartists-fundamentalists setup with the clas-
sical model of diversification between one risk-free and two
risky assets. Their analysis showed how chartists’ beliefs and
behavior may cause increasingly irregular price fluctuations
that can be transmitted from one market to another. Fur-
thermore, extending his previous work on models involving
one asset (or one market), Dibeh [18] studied the role
of feedback mechanism in synchronization and contagion
effects (i.e., high asset prices correlation) between different
markets. To this effect, the author used a nonlinear chartist-
fundamentalist model with two markets coupled through a
position feedback mechanism given by the price differential
between the asset prices.

Drawing on the work in Dibeh [18], in this paper we
consider the following system:

̇
𝑝

1
(𝑡) = (1 − 𝑚

1
) tanh (𝑝

1
(𝑡) − 𝑝

1
(𝑡 − 𝜏

1
)) 𝑝

1
(𝑡)

− 𝑚

1
(𝑝

1
(𝑡) − V

1
) 𝑝

1
(𝑡)

+ 𝑞

1
(𝑝

2
(𝑡) − 𝑝

1
(𝑡)) ,

̇
𝑝

2
(𝑡) = (1 − 𝑚

2
) tanh (𝑝

2
(𝑡) − 𝑝

2
(𝑡 − 𝜏

2
)) 𝑝

2
(𝑡)

− 𝑚

2
(𝑝

2
(𝑡) − V

2
) 𝑝

2
(𝑡)

+ 𝑞

2
(𝑝

1
(𝑡) − 𝑝

2
(𝑡)) ,

(2)

where 𝑚
𝑖
∈ (0, 1), 𝑖 = 1, 2, are the market shares of

fundamentalists, 𝜏
𝑖
≥ 0, 𝑖 = 1, 2, are time delays, V

𝑖
> 0,

𝑖 = 1, 2, denote the fundamental asset prices, 𝑞
𝑖
≥ 0, 𝑖 = 1, 2,

represent the coupling strength between the twomarkets, and
𝐼

𝑡
= 𝑝

1
(𝑡) − 𝑝

2
(𝑡) denotes an asset’s market index. Note that

the expectations function of the chartists is nonlinear, which
is conveyed through the hyperbolic tangent function. This

formulation represents the chartists’ belief that price growth
rates are bounded and so it introduces a saturation effect
into the chartists demand function. Previous results showed
that the synchronization of coupled speculative markets with
different dynamics can occur through diffusive coupling.
When going from an uncoupled to a coupled market model,
the stable converging dynamics is replaced with limit cycle
oscillations around the fundamental prices. Thus, coupling
and contagion between financial markets can be responsible
for the transmission of fluctuations across these markets and
appear crucial for their stability [19].

Here is the rationale. The global financial system is
formed of a multitude of very diverse markets, located all
around the world, and those trade wide-ranging classes of
assets. One of their common denominators is that assets price
changes often respond to the same economic information and
market news [20–22]. This dependency on the same signals
leads to price variations that are often correlated. In other
words, the price time series can exhibit similar characteristics,
which implies that there is “coupling” between markets.
Moreover, Fenn et al. [19, 23] found that the strength of cor-
relations between many different assets increases following
a credit crisis (i.e., 2007-2008 one), as financial institutions
hold similar portfolios of assets [24]. This has important
implications for the robustness of financial markets [25]. If
many assets are correlated and prices fall, this can cause
several financial institutions to write down the value of their
assets. And these write-downs can then significantly impact
the credit relationships between different institutions [26].

The aim of this paper is to provide a detailed theoretical
analysis of the phenomenon of coupling and contagion
between markets from the bifurcation point of view. First, we
will analytically prove that a model involving two financial
markets with correlated prices has equilibriumpoints that are
locally asymptotically stable. Second, for these equilibrium
points, we will determine the specific values 𝜏

1
and 𝜏
2
(i.e.,

the time delay parameters of the two markets) for which a
Hopf bifurcation occurs. Finally, we will study the direction
of the Hopf bifurcation, as well as the stability and period of
the bifurcating periodic solutions.

We choose the time delays 𝜏
1
and 𝜏
2
as bifurcation param-

eters as they represent the “memory” of financial markets.
Frank [27] discusses extensively the importance of time
delays inmodeling financial marketsmemory and their effect
on the qualitative behavior of asset prices. Relatedly, in a 2001
paper, LeBaron [28] also discusses the importance of time
horizons in agent-based computational economics. Other
works that use time delays as parameters of bifurcations
include Hale and Lunel [29], Hassard et al. [14], Mircea et al.
[10], Qu and Wei [1], and Xu and Li [30].

The paper proceeds as follows. In Section 2 we determine
the equilibrium points of differential system (2) for V

1
̸=

V
2
. Section 3 investigates the local asymptotic stability of the

equilibrium points and establishes the existence of the Hopf
bifurcation for these points. Section 4 deals with the direction
and the stability of the Hopf bifurcation. In Section 5 we use
numerical simulations to illustrate the validity of our main
results. Section 6 concludes the paper.
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2. Existence and Stability of
the Equilibrium Points

Consider the model given by system (2). Since time delays do
not change, the equilibrium points of this model are given by
the solutions of the system:

𝑚

1
(𝑝

1
− V
1
) 𝑝

1
− 𝑞

1
(𝑝

2
− 𝑝

1
) = 0,

𝑚

2
(𝑝

2
− V
2
) 𝑝

2
− 𝑞

2
(𝑝

1
− 𝑝

2
) = 0,

(3)

where V
𝑖
> 0 and 𝑚

𝑖
∈ (0, 1) and 𝑞

𝑖
> 0, for 𝑖 = 1, 2. The

solution to system (3) is 𝑝
1
= 𝑝

2
= 0. To find the solution of

system (3) with 𝑝
𝑖
> 0 and 𝑞

𝑖
> 0, 𝑖 = 1, 2, we proceed as

follows.
First, from (3) it follows that

𝑝

1
=

𝑝

2

𝑞

2

(𝑞

2
− 𝑚

2
V
2
+ 𝑚

2
𝑝

2
) ,

𝑝

2
=

𝑝

1

𝑞

1

(𝑞

1
− 𝑚

1
V
1
+ 𝑚

1
𝑝

1
) ,

(4)

which yields

𝑝

𝑖
≥ V
𝑖
+

𝑞

𝑖

𝑚

𝑖

, 𝑖 = 1, 2. (5)

Since 𝑝
𝑖
> 0, from (5) it follows that the coupling

coefficients 𝑞
𝑖
, 𝑖 = 1, 2, satisfy the conditions:

𝑞

𝑖
< 𝑚

𝑖
V
𝑖
, 𝑖 = 1, 2. (6)

From (4) it follows that𝑝
2
satisfies the following equation:

𝑎

3
𝑝

2

3
+ 𝑎

2
𝑝

2

2
+ 𝑎

1
𝑝

2
+ 𝑎

0
= 0, (7)

where

𝑎

1
= 𝑚

1
(𝑚

2
V
2
− 𝑞

2
)

2

− 𝑞

2
𝑚

2
(𝑚

1
V
1
− 𝑞

1
) ,

𝑎

2
= −2𝑚

1
𝑚

2
(𝑚

2
V
2
− 𝑞

2
) ,

𝑎

3
= 𝑚

1
𝑚

2

2
,

𝑎

0
= 𝑞

2
(𝑚

2
V
2
(𝑚

1
V
1
− 𝑞

1
) − 𝑞

2
𝑚

1
V
1
) .

(8)

Let

𝑞

20
=

𝑚

2
V
2
(𝑚

1
V
1
− 𝑞

1
)

(𝑚

1
V
1
)

, (9)

and let 𝑞
21
, 𝑞

22
be the roots of

𝑚

1
𝑥

2
− 𝑚

2
(2𝑚

1
V
2
+ 𝑚

1
V
1
− 𝑞

1
) 𝑥 + 𝑚

1
𝑚

2

2V2
2
= 0. (10)

Lemma 1. Let𝑚
𝑖
∈ (0, 1), V

𝑖
> 0, 𝑖 = 1, 2, and 𝑞

1
∈ (0,𝑚

1
V
1
)

is fixed. If

(i) 𝑞
2
∈ (0, 𝑞

20
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> 0, 𝑎

1
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2
< 0, 𝑎

3
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2
∈ (𝑞

20
, 𝑞
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0
< 0, 𝑎

1
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2
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3
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Proof. The proof follows from 𝑎

3
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,

(11)

where 𝑎
3
, 𝑎

2
, 𝑎

1
, and 𝑎

0
are given in (8). The equilibrium point

of system (2) is 𝐸
0
(𝑝

10
, 𝑝

20
), where

𝑝

20
= (−

𝑞

2

+

√

Δ)

1/3

+ (−

𝑞

2

−

√
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−
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(3𝑎
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,
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.

(12)

For𝑚
𝑖
∈ (0, 1) and V

𝑖
> 0, 𝑖 = 1, 2 fixed, the coordinates of 𝐸

0

are positive.

Proof. The proof follows from Lemma 1 and Cardan’s for-
mula, which give the positive solution of a 3rd-degree
equation.

Let 𝐸
0
(𝑝

10
, 𝑝

20
) be an equilibrium point, different from

(0,0), and let 𝑢
1
(𝑡) = 𝑝

1
(𝑡) − 𝑝

10
, and 𝑢

2
(𝑡) = 𝑝

2
(𝑡) − 𝑝

20
.

System (2) then becomes

𝑢̇

1
(𝑡) = 𝑎
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1
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(13)

where
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The terms 𝐹
1
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with 𝑙
𝑖
, 𝑘

𝑖
, 𝑖 = 1, 2, being given by

𝑙
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𝑝
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3
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2
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𝑘
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2
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20
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𝑘

6
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2
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𝑝

20

3

.

(16)

The characteristic function for the linear part of (13) is
given by

𝑙 (𝜆, 𝜏

1
, 𝜏

2
) = 𝜆

2
− 𝛽

1
𝜆 + 𝛽

2
− (𝛽
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𝜆 − 𝛽

4
) 𝑒

−𝜆𝜏
1

− (𝛽

5
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6
) 𝑒

−𝜆𝜏
2
+ 𝛽

7
𝑒

−𝜆(𝜏
1
+𝜏
2
)
,

(17)

where

𝛽

1
= 𝑎
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+ 𝑎
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,

𝛽

2
= 𝑎

11
𝑎
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− 𝑎
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𝑎
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𝛽
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= 𝑏
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= 𝑏
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(18)

In order to study the distribution of the roots of the
transcendental equation 𝑙(𝜆, 𝜏

1
, 𝜏

2
) = 0, we use the lemma

in Ruan and Wei [31] (see Appendix A) and analyze (17)
considering four cases: (i) 𝜏

1
= 𝜏

2
= 0, (ii) 𝜏

1
= 𝜏

2
> 0,

(iii) 𝜏
1
> 0, 𝜏
2
= 0, and (iv) 𝜏

1
> 0, 𝜏
2
> 0.

We note that, generally, the analysis of an equation with
two delay parameters implies first studying the case when
one delay parameter is zero and the other one is different
from zero. For this purpose, we set 𝜏

2
= 0. The next step

is to set 𝜏
2
= 0 as a variable and determine the value (of

𝜏

2
= 0) for which a Hopf bifurcation occurs. From a practical

point of view, only the cases 𝜏
1
= 𝜏

2
> 0 and 𝜏

1
> 0, 𝜏

2
>

0 are relevant. The other two cases (that involve 𝜏
2
= 0)

are however needed methodologically, as they allow us to
derive some of the results that we need when analyzing the
economically relevant cases.

Case 1. If 𝜏
1
= 𝜏

2
= 0, then

𝑙 (𝜆, 0, 0) = 𝜆
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7
. (19)

Using (14) and (18), the equation 𝑙(𝜆, 0, 0) = 0 becomes
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Thenecessary and sufficient conditions for (20) to admit roots
with a negative real part are

(2𝑚
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− 4𝑚

1
𝑚

2
+ 1) 𝑝

10
𝑝

20
− 2𝑚

1
(𝑚

2
V
2
− 𝑞

2
) 𝑝

10

− 2𝑚

2
(𝑚

1
V
1
− 𝑞

1
) − 𝑞

1
𝑞

2
> 0,

2𝑚

1
𝑝

10
+ 2𝑝

10
− (𝑚

1
+ 𝑚

2
) V
2
+ 𝑞

1
+ 𝑞

2
< 0.

(21)

If the conditions in (21) hold, then the equilibrium point
𝐸

0
(𝑝

10
, 𝑝

20
) is locally asymptotically stable.

3. The Local Stability of the Hopf Bifurcation

In the analysis of the Hopf bifurcation, we consider 𝜏
1
and

𝜏

2
as parameters and 𝐸

0
(𝑝

10
, 𝑝

20
) as an equilibrium point

for which one of the situations presented in Proposition 2 is
verified.

Case 2. If 𝜏
1
= 𝜏

2
= 𝜏 > 0, the characteristic function (17)

becomes
𝑙 (𝜆, 𝜏, 𝜏) = 𝜆

2
− 𝛽

1
𝜆 + 𝛽

2
− (𝛽

8
𝜆 − 𝛽

9
) 𝑒

−𝜆𝜏

+ 𝛽

7
𝑒

−2𝜆𝜏
,

(22)

where
𝛽

8
= 𝛽

3
+ 𝛽

5
,

𝛽

9
= 𝛽

4
+ 𝛽

6
.

(23)

We now rewrite (22) as
𝑒

𝜆𝜏
(𝜆

2
− 𝛽

1
𝜆 + 𝛽

2
) − 𝛽

8
𝜆 + 𝛽

9
+ 𝛽

7
𝑒

−𝜆𝜏
= 0, (24)

noting that when 𝜏 > 0, 𝜆 = 𝑖𝜔 (𝜔 > 0) is a root of (24) if
and only if 𝜔 satisfies

(𝛽

2
+ 𝛽

7
− 𝜔

2
) cos (𝜔𝜏) + 𝛽

1
𝜔 sin (𝜔𝜏) = −𝛽

9
,

(𝛽

2
− 𝛽

7
− 𝜔

2
) sin (𝜔𝜏) − 𝛽

1
𝜔 cos (𝜔𝜏) = 𝛽

8
𝜔.

(25)

By direct computation, we have

cos (𝜔𝜏) =
𝛽

9
(𝜔

2
+ 𝛽

7
− 𝛽

2
) − 𝛽

1
𝛽

8
𝜔

2

(𝛽

2
+ 𝛽

7
− 𝜔

2
) (𝛽

2
− 𝛽

7
− 𝜔

2
) + 𝛽

2

1
𝜔

2
,

sin (𝜔𝜏) =
𝛽

8
𝜔 (𝛽

2
+ 𝛽

7
− 𝜔

2
) − 𝛽

1
𝛽

9
𝜔

(𝛽

2
+ 𝛽

7
− 𝜔

2
) (𝛽

2
− 𝛽

7
− 𝜔

2
) + 𝛽

2

1
𝜔

2
.

(26)
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Using cos(𝜔𝜏)2 + sin(𝜔𝜏)2 = 1, from (26), it follows that

𝜔

8
+ 𝛾

6
𝜔

6
+ 𝛾

4
𝜔

4
+ 𝛾

2
𝜔

2
+ 𝛾

0
= 0, (27)

𝛾

6
= 2 (𝛽

2

1
− 2𝛽

2
) − 𝛽

2

8
,

𝛾

4

= (𝛽

2

1
− 2𝛽

2
)

2

+ 2 (𝛽

2

2
− 𝛽

2

7
)

+ 2𝛽

8
(𝛽

8
(𝛽

2
+ 𝛽

7
) − 𝛽

1
𝛽

9
) − (𝛽

9
− 𝛽

1
𝛽

8
)

2

,

𝛾

2

= 2 (𝛽

2

1
− 2𝛽

2
) (𝛽

2

2
− 𝛽

2

7
)

− 2 (𝛽

9
− 𝛽

1
𝛽

8
) (𝛽

7
− 𝛽

2
) 𝛽

9

− (𝛽

8
(𝛽

2
+ 𝛽

7
) − 𝛽

1
𝛽

9
)

2

,

𝛾

0
= 𝛽

2

2
− 𝛽

2

7
− 𝛽

9
(𝛽

7
− 𝛽

2
)

2

.

(28)

Denoting 𝑧 = 𝜔2, (27) yields

𝑧

4
+ 𝛾

6
𝑧

3
+ 𝛾

4
𝑧

2
+ 𝛾

2
𝑧 + 𝛾

0
= 0. (29)

Let

ℎ (𝑧) = 𝑧

4
+ 𝛾

6
𝑧

3
+ 𝛾

4
𝑧

2
+ 𝛾

2
𝑧 + 𝛾

0
, (30)

and define

𝑝 =

8𝛾

4
− 3𝛾

2

6

16

,

𝑞 =

𝛾

3

6
− 4𝛾

4
𝛾

6
+ 8𝛾

2

32

,

𝐷

0
=

𝑞

2

4

+

𝑝

3

27

.

(31)

Then, from the sign of𝐷
0
, we have that

𝑧

10
= −

𝛾

6

4

+

3
√
−

𝑞

2

+
√
𝐷

0
+

3
√
−

𝑞

2

−
√
𝐷

0
,

if 𝐷
0
> 0,

𝑧

20
= max{−

𝛾

6

4

+

3
√
−

𝑞

2

, −

𝛾

6

4

−

3
√
−

𝑞

2

} , if 𝐷
0
= 0,

𝑧

30
= max {𝑟

10
, 𝑟

20
, 𝑟

30
} , if 𝐷

0
< 0,

(32)

where

𝑟

10
= −

𝛾

6

4

+ 2Re (𝛼) ,

𝑟

20
= −

𝛾

6

4

+ 2Re (𝛼𝜀) ,

𝑟

30
= −

𝛾

6

4

+ 2Re (𝛼𝜀) ,

(33)

and 𝛼 is one of the cubic roots of the complex number −𝑞/2+
√𝐷

0
, and 𝜀 = −1/2 + 𝑖(√3/2).

Assuming that the following conditions hold:

𝛾

0
< 0,

𝑧

10
> 0, ℎ (𝑧

10
) < 0, when 𝐷

0
> 0,

𝑧

20
> 0, ℎ (𝑧

20
) < 0, when 𝐷

0
= 0,

𝑧

30
> 0, ℎ (𝑧

30
) < 0, when 𝐷

0
< 0,

(34)

the equation ℎ(𝑧) = 0 has at least one positive root 𝑧
0
. We

denote 𝜔
0
=
√
𝑧

0
and define

𝜏

𝑗
=

1

𝜔

0

[arccos(Δ 1
Δ

) + 2𝑗𝜋] , 𝑗 = 0, 1, 2, . . . , (35)

where

Δ

1
= 𝛽

9
(𝜔

2

0
+ 𝛽

7
− 𝛽

2
) − 𝛽

1
𝛽

8
𝜔

2

0
,

Δ = (𝛽

2
+ 𝛽

7
− 𝜔

2

0
) (𝛽

2
− 𝛽

7
− 𝜔

2

0
) + 𝛽

2

1
𝜔

2

0
.

(36)

From the above relations, we have the following result.

Proposition 3. Let 𝛽
𝑖
, 𝑖 = 1, . . . , 7, 𝛾

6
, 𝛾

4
, 𝛾

2
, 𝛾

0
, and 𝜏

𝑗
be

given by (18), (28), and (36). Suppose that conditions (34) are
satisfied and that the positive root of (29) satisfies ℎ󸀠(𝑧

0
) ̸=

0. Then, the equilibrium point 𝐸
0
(𝑝

10
, 𝑝

20
) is asymptotically

stable, when 𝜏 ∈ [0, 𝜏

0
), and it is unstable, when 𝜏 >

𝜏

0
. Moreover, at 𝜏 = 𝜏

𝑗
, 𝑗 = 0, 1, 2, . . . , ±𝑖𝜔

0
is a pair

of simple imaginary roots of (29) and system (2) undergoes
Hopf bifurcation near 𝐸

0
(𝑝

10
, 𝑝

20
). If (29) does not have a

positive root, then the equilibrium point 𝐸
0
(𝑝

10
, 𝑝

20
) is locally

asymptotically stable for all 𝜏 ≥ 0.

Case 3. If 𝜏
1
> 0 and 𝜏

2
= 0, then 𝑙(𝜆, 𝜏

1
, 0) = 0 becomes

𝜆

2
− (𝛽

1
+ 𝛽

5
) 𝜆 + 𝛽

2
+ 𝛽

6
− (𝛽

3
𝜆 − 𝛽

4
− 𝛽

7
) 𝑒

−𝜆𝜏
1

= 0.

(37)

For 𝜔 > 0, let 𝜆 = 𝑖𝜔 be a root of (37). It then follows that

(𝛽

4
+ 𝛽

7
) cos (𝜔𝜏

1
) − 𝛽

3
𝜔 sin (𝜔𝜏

1
) = 𝜔

2
− 𝛽

2
− 𝛽

6
,

(𝛽

4
+ 𝛽

7
) sin (𝜔𝜏

1
) + 𝛽

3
𝜔 cos (𝜔𝜏

1
) = − (𝛽

1
+ 𝛽

5
) 𝜔,

(38)

which leads to

𝜔

4
+ 𝛿

2
𝜔

2
+ 𝛿

0
= 0, (39)

𝛿

2
= (𝛽

1
+ 𝛽

5
)

2

− 2 (𝛽

2
+ 𝛽

6
) − 𝛽

2

3
,

𝛿

0
= (𝛽

2
+ 𝛽

6
)

2

− (𝛽

4
+ 𝛽

7
)

2

.

(40)

It is easy to see that if the conditions

𝛿

2
> 0,

𝛿

0
> 0

(41)

hold, then (39) has no positive roots. Hence, all the roots of
(37) have negative real parts when 𝜏

1
∈ [0,∞].

If 𝛿
0
< 0, then (39) has a unique positive root 𝜔2

10
.

Substituting 𝜔2
10
into (38), we obtain
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𝜏

1𝑗
=

[arccos (((𝜔2
10
− 𝛽

2
− 𝛽

6
) (𝛽

2
+ 𝛽

7
) − 𝛽

3
(𝛽

1
+ 𝛽

5
) 𝜔

2

10
) / ((𝛽

1
+ 𝛽

7
)

2

+ 𝛽

3
𝜔

2

10
)) + 2𝑗𝜋]

𝜔

10

,

(42)

with 𝑗 = 0, 1, 2, . . .. If the conditions

𝛿

2
< 0,

𝛿

0
> 0

(43)

hold, then (39) has two positive roots 𝜔2
10+

and 𝜔2
10−

. Substi-
tuting 𝜔2

10±
into (38), we obtain

𝜏

1𝑘±
=

[arccos (((𝜔2
10±

− 𝛽

2
− 𝛽

0
) (𝛽

2
+ 𝛽

7
) − 𝛽

3
(𝛽

1
+ 𝛽

5
) 𝜔

2

10±
) / ((𝛽

1
+ 𝛽

7
)

2

+ 𝛽

3
𝜔

2

10±
)) + 2𝑘𝜋]

𝜔

10±

,

(44)

with 𝑘 = 0, 1, 2, . . ..
Let 𝜆(𝜏

1
) = 𝛼(𝜏

1
) + 𝑖𝜔(𝜏

1
) be a root of (37) near

𝜏

1
= 𝜏

1𝑛
, (𝑛 = 0, 1, 2, . . .) and 𝛼(𝜏

1𝑛
) = 0, 𝜔(𝜏

1𝑛
) = 𝜔

0
.

According to the functional differential equation theory, for
every 𝜏

1𝑛
(𝑛 = 0, 1, 2, . . .), there exists 𝜀 > 0 such that 𝜆(𝜏

1
) is

continuously differentiable in 𝜏
1
for |𝜏
1
−𝜏

1𝑛
| < 𝜀. Substituting

𝜆(𝜏

1
) into the LHS of (37) and taking derivative with respect

to 𝜏
1
yield

(

𝑑𝜆 (𝜏

1
)

𝑑𝜏

1

)

−1

=

− (2𝜆 − 𝛽

1
− 𝛽

5
) 𝑒

𝜆𝜏
1
+ 𝛽

3

𝜆 (𝛽

3
𝜆 − 𝛽

4
− 𝛽

7
)

−

𝜏

1

𝜆

,
(45)

which leads to

(

𝑑Re (𝜆 (𝜏
1
))

𝑑𝜏

1

)

−1

𝜏
1
=𝜏
1𝑛

=
√
𝛿

2

2
− 4𝛿

0
. (46)

Since sign(𝑑Re(𝜆(𝜏
1
))/𝑑𝜏

1
)

−1

𝜏
1
=𝜏
1𝑛

= sign(Re(𝑑𝜆(𝜏
1
)/

𝑑𝜏

1
))

−1

𝜏
1
=𝜏
1𝑛

, we have that

𝑑Re (𝜆 (𝜏
1
))

𝑑𝜏

1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝜏
1
=𝜏
1𝑛

> 0. (47)

Similarly, we can obtain

𝑑Re (𝜆 (𝜏
1
))

𝑑𝜏

1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝜏
1
=𝜏
1𝑘+

> 0,

𝑑Re (𝜆 (𝜏
1
))

𝑑𝜏

1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝜏
1
=𝜏
1𝑘−

< 0.

(48)

From the above analysis and Ruan andWei [31, Corollary
2.4], we have the following result.

Proposition 4. For 𝜏
2
= 0, assume that either condition (41)

or condition (43) is satisfied. Then, the following results hold.

(i) If (41) holds, the equilibrium point 𝐸
0
(𝑝

10
, 𝑝

20
) is

asymptotically stable for all 𝜏
1
> 0.

(ii) If (43) holds, then there is a positive integer 𝑚 such
that the equilibrium point 𝐸

0
(𝑝

10
, 𝑝

20
) is asymptot-

ically stable when 𝜏

1
∈ [0, 𝜏

10+
] ∪ [𝜏

10−
, 𝜏

11+
] ∪

⋅ ⋅ ⋅ ∪ [𝜏

1𝑚−1−
, 𝜏

1𝑚+
], and it is unstable when 𝜏

1
∈

[𝜏

10+
, 𝜏

10−
]∪[𝜏

11+
, 𝜏

11−
]∪⋅ ⋅ ⋅∪[𝜏

1𝑚+
, 𝜏

1𝑚−
]∪[𝜏

1𝑚+
,∞].

Moreover, at 𝜏
1
= 𝜏

1𝑘±
, 𝑘 = 0, 1, 2, . . ., system (2)

undergoes Hopf bifurcation at 𝐸
0
(𝑝

10
, 𝑝

20
), where 𝜏

1𝑘±

are given by (44).

Case 4. Let 𝜏
1
> 0 and 𝜏

2
> 0. We consider (17), with 𝜏

1
in its

stable interval [0, 𝜏
10
], and regard 𝜏

2
as a parameter. Without

loss of generality, we assume that 𝛿
0
< 0 and let 𝜆 = 𝑖𝜔 (𝜔 >

0) be a root of (17). Then, we can obtain

(𝛽

6
+ 𝛽

7
cos (𝜔𝜏

1
)) cos (𝜔𝜏

2
)

− (𝛽

5
𝜔 + 𝛽

7
sin (𝜔𝜏

1
)) sin (𝜔𝜏

2
) = 𝜔

2
− 𝛽

2

− 𝛽

4
cos (𝜔𝜏

1
) + 𝛽

3
𝜔 sin (𝜔𝜏

1
) ,

(𝛽

5
𝜔 + 𝛽

7
sin (𝜔𝜏

1
)) cos (𝜔𝜏

2
)

+ (𝛽

6
+ 𝛽

7
cos (𝜔𝜏

1
)) sin (𝜔𝜏

2
) = −𝛽

1
𝜔

− 𝛽

3
𝜔 cos (𝜔𝜏

1
) − 𝛽

4
sin (𝜔𝜏

1
) ,

(49)

which leads to

𝜔

4
+ 𝜀

3
𝜔

3
+ 𝜀

2
𝜔

2
+ 𝜀

1
𝜔 + 𝜀

0
= 0, (50)

where
𝜀

3
(𝜔) = 2𝛽

3
sin (𝜔𝜏

1
) ,

𝜀

2
(𝜔) = 𝛽

2

3
− 2𝛽

2
− 2 (𝛽

4
− 𝛽

1
𝛽

3
) cos (𝜔𝜏

1
) ,

𝜀

1
(𝜔) = (2𝛽

1
𝛽

4
− 2𝛽

2
𝛽

3
) sin (𝜔𝜏

1
) ,

𝜀

0
(𝜔) = (𝛽

2

2
+ 𝛽

2

4
+ 2𝛽

1
𝛽

4
) cos (𝜔𝜏

1
) .

(51)

Denote

𝐾

21
(𝜔) = 𝜔

4
+ 𝜀

3
(𝜔) 𝜔

3
+ 𝜀

2
(𝜔) 𝜔

2
+ 𝜀

1
(𝜔) 𝜔

+ 𝜀

0
(𝜔) .

(52)
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We assume that there exists 𝜔
0
> 𝑝 such that 𝐾

21
(𝜔

0
) = 0.

For 𝜔
0
, there exists a sequence {𝜏

2𝑗
, 𝑗 = 1, 2, . . .} such that

(50) holds.
Let 𝜏
21
= max{𝜏

2𝑖
, 𝑖 = 1, . . .}.When 𝜏

2
= 𝜏

21
, (17) has a

pair of purely imaginary roots ±𝑖𝜔
21
, for 𝜏

1
∈ [0, 𝜏

10
).

In the following we assume that

(

𝑑Re (𝜆 (𝜏))
𝑑𝜏

2

)

−1

𝜆=𝑖𝜔
21

̸= 0. (53)

Thus, by the general Hopf bifurcation theorem for FDEs in
Hale and Lunel [29], we have the following result on stability
and Hopf bifurcation for system (2).

Proposition 5. Assume that the above condition,
(𝑑Re(𝜆(𝜏))/𝑑𝜏

2
)

−1

𝜆=𝑖𝜔
21

̸= 0, is satisfied and that
𝜏

1
∈ [0, 𝜏

10
). Then, the equilibrium point 𝐸

0
(𝑝

10
, 𝑝

20
) is

locally asymptotically stable when 𝜏

2
∈ [0, 𝜏

21
). Moreover,

when 𝜏

2
= 𝜏

21
, system (2) undergoes Hopf bifurcation at

𝐸

0
(𝑝

10
, 𝑝

20
).

If 𝜔
21
is a positive root of (50), then 𝜏

2𝑗
is given by

𝜏

2𝑗
=

1

𝜔

21

[arccos(𝐻21
𝐿

21

) + 2𝑗𝜋] , 𝑗 = 0, 1, 2, . . . , (54)

where

𝐻

21

= (𝜔

2

21
− 𝛽

2
− 𝛽

1
cos (𝜔

21
𝜏

1
) + 𝛽

3
𝜔

21
sin (𝜔

21
𝜏

1
))

⋅ (𝛽

6
+ 𝛽

7
cos (𝜔

21
𝜏

1
))

− (𝜔

21
𝛽

1
+ 𝛽

3
𝜔

21
cos (𝜔

21
𝜏

1
) + 𝛽

1
sin (𝜔

21
𝜏

1
))

⋅ (𝛽

2
𝜔

21
+ 𝛽

7
sin (𝜔

21
𝜏

1
)) ,

𝐿

21
= (𝛽

6
+ 𝛽

7
cos (𝜔

21
𝜏

1
))

2

+ (𝛽

3
𝜔

21
+ 𝛽

7
sin (𝜔

21
𝜏

1
))

2

.

(55)

4. The Direction and the Stability of
the Hopf Bifurcation

In the previous section, we have obtained the condition for
the Hopf bifurcation to occur when 𝜏

1
= 𝜏

10
, where 𝜏

10
is

given by (42). Using the techniques from normal form and
center manifold theory introduced by Hassard et al. [14], we
now derive the explicit formulae determining the direction,
stability, and periodicity of these solutions bifurcating from
the positive equilibrium 𝐸

0
(𝑝

10
, 𝑝

20
) at the critical value 𝜏

1
=

𝜏

10
. To this effect, we will use the first Lyapunov coefficient.
Throughout this section, we assume that differential

system (2) undergoes a Hopf bifurcation at the positive
equilibrium 𝐸

0
(𝑝

10
, 𝑝

20
) for 𝜏

1
= 𝜏

10
and that ±𝑖𝜔

10
are

the corresponding purely imaginary roots of the character-
istic equation at 𝐸

0
(𝑝

10
, 𝑝

20
). Without loss of generality, we

assume that 𝜏
2
< 𝜏

10
, where 𝜏

2
∈ (0, 𝜏

21
) and 𝜏

21
is given

in (54). For convenience, let 𝑢
𝑖
(𝑡) = 𝑢

𝑖
(𝜏

1
𝑡), 𝑖 = 1, 2, and

𝜏

1
= 𝜏

10
+𝜇, where 𝜏

10
is given by (42) and 𝜇 ∈ R.Differential

system (2) can be written as a FDE in 𝐶 = 𝐶([−1, 0],R2) as
follows:

𝑢̇ (𝑡) = 𝐿

𝜇
(𝑢

𝑡
) + 𝐹 (𝜇, 𝑢

𝑡
) , (56)

where 𝑢(𝑡) = (𝑢

1
(𝑡), 𝑢

2
(𝑡))

𝑇
∈ 𝐶 and 𝑢

𝑡
(𝜙) = 𝑢(𝑡 + 𝜃) =

(𝑢

1
(𝑡 + 𝜃), 𝑢

2
(𝑡 + 𝜃))

𝑇
∈ 𝐶. The terms 𝐿

𝜇
: 𝐶 → R and

𝐹 : R × 𝐶 → R are, respectively, given by

𝐿

𝜇
𝜙 = 𝐴𝜙 (0) + 𝐵

1
𝜙 (−1) + 𝐵

2
𝜙(−

𝜏

2

𝜏

10

) ,

𝐹 (𝜇, 𝜙) = (𝐹

11
(𝜙) , 𝐹

12
(𝜙))

𝑇

,

(57)

where 𝜙(𝜃) = (𝜙
1
(𝜃), 𝜙

2
(𝜃))

𝑇
∈ 𝐶 and

𝐴 = (

𝑎

11
𝑎

12

𝑎

21
𝑎

22

) ,

𝐵

1
= (

𝑏

11
0

0 0

) ,

𝐵

2
= (

0 0

0 𝑏

22

) ,

𝐹

11
(𝜙) = (𝜏

10
+ 𝜇) 𝐹

1
(𝜙

1
(0) , 𝜙

1
(−1)) ,

𝐹

12
(𝜙) = (𝜏

10
+ 𝜇) 𝐹

2
(𝜙

2
(0) , 𝜙

2
(−

𝜏

2

𝜏

10

)) ,

(58)

with 𝐹
1
and 𝐹

2
being given by (13).

From Section 3 we know that if 𝜇 = 0, then differential
system (2) undergoes a Hopf bifurcation at 𝐸

0
(𝑝

10
, 𝑝

20
) and

the characteristic equation associated with system (2) has
a pair of simple imaginary roots ±𝑖𝜔

10
𝜏

10
. By the Reisz

representation theorem, there is a matrix function with
bounded variation components 𝜂(𝜃, 𝜇), 𝜃 ∈ [−1, 0] such that

𝐿

𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , for 𝜙 ∈ 𝐶. (59)

We can choose

𝜂 (𝜃, 𝜇) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝐴

1
+ 𝐵

11
+ 𝐵

12
, 𝜃 = 0

𝐵

11
+ 𝐵

12
, 𝜃 ∈ [−

𝜏

2

𝜏

10

, 0)

𝐵

11
, 𝜃 ∈ (−1, −

𝜏

2

𝜏

10

)

0, 𝜃 = −1.

(60)

For 𝜙 ∈ 𝐶([−1, 0],R3), we define

𝐴 (𝜇) 𝜙 (𝜃) =

{

{

{

{

{

{

{

𝑑𝜙 (𝜃)

𝑑𝜃

, 𝜃 ∈ [−1, 0)

∫

0

−1

𝑑𝜂 (𝑠, 𝜇) 𝜙 (𝑠) , 𝜃 = 0,

𝑅 (𝜇

2
) 𝜙 =

{

{

{

0, 𝜃 ∈ [−1, 0)

𝐹 (𝜇, 𝜙) , 𝜃 = 0.

(61)
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Then, (57) is equivalent to the abstract differential equation:

𝑢̇

𝑡
(𝑡) = 𝐴 (𝜇) 𝑢

𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (62)

where 𝑢
𝑡
= 𝑢(𝑡 + 𝜃), for 𝜃 ∈ [−1, 0].

For 𝜙 ∈ 𝐶([−1, 0], (R2)∗), we define

𝐴

∗
𝜓 (𝑠) =

{

{

{

{

{

{

{

−𝑑𝜓 (𝑠)

𝑑𝑠

, 𝑠 ∈ (0, 1]

∫

0

−1

𝑑𝜂

𝑇
(𝑡, 0) 𝜓 (𝑠) , 𝑠 = 0.

(63)

For 𝜙 ∈ 𝐶([−1, 0],R2) and𝜓 ∈ 𝐶([0, 1], (R2)∗), we define the
bilinear form

⟨𝜓, 𝜙⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

−1

∫

𝜃

𝜉=0

𝜓

𝑇
(𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(64)

where 𝜂(𝜃) = 𝜂(𝜃, 0),𝐴 = 𝐴(0), and𝐴∗ are adjoint operators.
Following from Section 3 discussion, we also know that
±𝑖𝜔

10
𝜏

10
are eigenvalues of𝐴(0), but they are also eigenvalues

of 𝐴∗.

Proposition 6. (i) If the eigenvector 𝑞 of 𝐴(𝜇) is given by

𝑞 (𝜃) = (1, 𝛼)

𝑇
𝑒

𝑖𝜔
10
𝜏
10
𝜃
, 𝜃 ∈ (−1, 0] , then (65)

𝛼 =

𝑖𝜔

10
𝜏

10
− 𝑎

11
− 𝑏

11
𝑒

−𝑖𝜔
10
𝜏
10

𝑎

12

.
(66)

(ii) If the eigenvector 𝑞∗ of 𝐴∗ is given by

𝑞

∗
(𝑠) =

1

𝜌

(1, 𝛼

∗
)

𝑇

𝑒

𝑖𝜔
10
𝜏
10
𝑠
, 𝑠 ∈ [0, 1) , then (67)

𝛼

∗
= −

𝑖𝜔

10
𝜏

10
+ 𝑎

11
+ 𝑏

11
𝑒

−𝑖𝜔
10
𝜏
10

𝑎

21

.
(68)

The proof is provided in Appendix A.

Using ⟨𝑞, 𝑞∗⟩ = 1, we can obtain 𝜌 as follows:

⟨𝑞, 𝑞

∗
⟩

= 𝑞

∗
(0)

𝑇
𝑞 (0)

− ∫

0

𝜃=−1

∫

𝜃

𝜉=0

𝑞

∗𝑇
(𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝑞 (𝜉) 𝑑𝜉

=

1

𝜌

(1 + 𝛼𝛼

∗
)

+

1

𝜌

[𝜏

10
𝑏

11
𝑒

−𝑖𝜔
10
𝜏
10
+

𝜏

2

𝜏

10

𝑏

22
𝛼𝛼

∗
𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
]

= 1.

(69)

Hence, we have

𝜌 = 1 + 𝛼𝛼

∗
+ 𝜏

10
𝑏

11
𝑒

−𝑖𝜔
10
𝜏
10
+

𝜏

2

𝜏

10

𝑏

22
𝛼𝛼

∗
𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
. (70)

Similarly, we can verify that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.

We now turn to studying the stability of the bifurcating
periodic solution. As in Xu and Li [30], the bifurcating
periodic solution 𝑍(𝑡, 𝜇(𝜀)) has amplitude 𝑂(𝜀) and nonzero
Floquet exponent 𝛽(𝜀), with 𝛽(0) = 0. Under these assump-
tions, 𝜇 and 𝛽 are given by

𝜇 = 𝜇

2
𝜀

2
+ 𝜇

4
𝜀

4
+ ⋅ ⋅ ⋅ ,

𝛽 = 𝛽

2
𝜀

2
+ 𝛽

4
𝜀

4
+ ⋅ ⋅ ⋅ .

(71)

The sign of 𝜇
2
indicates the direction of the bifurcation, while

𝛽

2
determines the stability of 𝑍(𝑡, 𝜇(𝜀)), with 𝑍(𝑡, 𝜇(𝜀)) being

stable if 𝛽
2
< 0 and unstable if 𝛽

2
> 0.

In what follows, we will show how to derive these
coefficients (i.e., 𝜇

2
and 𝛽

2
). To this effect, we first construct

the coordinates needed to describe the center manifold Ω
0

near 𝜇 = 0, which is a local invariant, attracting a two-
dimensional manifold [30].

Let 𝑢
𝑡
be the solution of (63) when 𝜇 = 0, and define

𝑧 (𝑡) = ⟨𝑞

∗
, 𝑢

𝑡
⟩ ,

𝑊 (𝑡, 𝜃) = 𝑢

𝑡
(𝑡, 𝜃) − 2Re (𝑧 (𝑡) , 𝑞 (𝜃)) .

(72)

On the center manifold Ω

0
, we have 𝑊(𝑡, 𝜃) = 𝑊(𝑧(𝑡),

𝑧(𝑡), 𝜃), where

𝑊(𝑧, 𝑧, 𝜃) = 𝑊

20
(𝜃)

𝑧

2

2

+𝑊

11
(𝜃) 𝑧𝑧 +𝑊

02
(𝜃)

𝑧

2

2

+ ⋅ ⋅ ⋅

(73)

and 𝑧 and 𝑧 are local coordinates for the centermanifoldΩ
0
in

the direction of 𝑞∗ and 𝑞∗.Note that𝑊 is real if 𝑢
𝑡
is real (i.e.,

we consider only the real solutions). For the solution 𝑢
𝑡
∈ Ω

0
,

since 𝜇 = 0, it follows that

𝑧̇

1
(𝑡) = ⟨𝑞

∗
, 𝑢̇

𝑡
⟩ = ⟨𝑞

∗
, 𝐴 (𝜇) 𝑢

𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
⟩

= 𝑖𝜔

10
𝜏

10
𝑧 (𝑡)

+ 𝑞

∗
(0) 𝐹 (0,𝑊 (𝑡, 0) + 2Re (𝑧 (𝑡) 𝑞 (𝜃))) .

(74)

We can rewrite this equation as

𝑧̇

1
(𝑡) = 𝑖𝜔

10
𝜏

10
𝑧 (𝑡) + 𝑔 (𝑧 (𝑡) , 𝑧 (𝑡)) , where (75)

𝑔 (𝑧 (𝑡) , 𝑧 (𝑡)) = 𝑔

20

𝑧

2
(𝑡)

2

+ 𝑔

11
𝑧 (𝑡) 𝑧 (𝑡) + 𝑔

02

𝑧

2
(𝑡)

2

+ 𝑔

21

𝑧

2
(𝑡) 𝑧 (𝑡)

2

+ ⋅ ⋅ ⋅ .

(76)

In Appendix B, we show how to compute the 𝑔
20
, 𝑔
11
, 𝑔
02
,

and 𝑔
21
coefficients explicitly. Using these coefficients, we can

therefore compute

𝐶

1
(0) =

𝑖

2𝜔

10

(𝑔

20
𝑔

11
− 2

󵄨

󵄨

󵄨

󵄨

𝑔

11

󵄨

󵄨

󵄨

󵄨

2

−

1

3

󵄨

󵄨

󵄨

󵄨

𝑔

02

󵄨

󵄨

󵄨

󵄨

) +

𝑔

21

2

. (77)
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From (77), it is easy to get the values of 𝑇
2
, 𝜇

2
, and 𝛽

2
, as

follows:

𝜇

2
= −

Re (𝐶
1
(0))

Re 𝜆󸀠 (𝜏
10
)

,

𝑇

2
= −

Im (𝐶

1
(0) + 𝜇

2
Im (𝜆

󸀠
(𝜏

10
)))

𝜔

10
𝜏

10

,

𝛽

2
= 2Re (𝐶

1
(0)) .

(78)

Using these results, we establish the following theorem on
the system trajectories properties.

Theorem 7 (see [14]). If all the conditions above are satisfied
(i.e., differential system (2) undergoes a Hopf bifurcation at the
positive equilibrium 𝐸

0
(𝑝

10
, 𝑝

20
) for 𝜏

1
= 𝜏

10
), then

(i) 𝜇 = 0 is the Hopf bifurcation value of system (57);
(ii) 𝜇
2
establishes the direction of the Hopf bifurcation: if

𝜇

2
> 0 (< 0), then the Hopf bifurcation is supercritical

(subcritical) and the bifurcating periodic solution exists
for 𝜏
1
> 𝜏

10
(< 𝜏

10
);

(iii) 𝛽
2
determines the stability of the bifurcating periodic

solutions: if 𝛽
2
< 0 (> 0), then the bifurcating periodic

solutions are stable (unstable);
(iv) 𝑇

2
determines the period of the bifurcating periodic

solutions: the period increases (decreases) if 𝑇
2
> 0 (<

0).

5. Numerical Illustrations

To illustrate our results, we employ several numerical sim-
ulations. To this purpose, we set 𝑚

𝑖
∈ (0, 1) and V

𝑖
> 0

(with 𝑖 = 1, 2) and choose 𝑞
1
, 𝑞

2
according to Lemma 1 and

Proposition 2. Specifically, let 𝑚
1
= 0.2, 𝑚

2
= 0.3, V

1
=

20, V
2
= 10, and 𝑞

1
= 2.5 < 𝑚

1
V
1
= 4. Using Lemma 1

and Proposition 2, we set 𝑞
2
= 1.525. From Proposition 2, we

then get 𝑎
3
= 0.18, 𝑎

2
= −0.77, 𝑎

1
= −0.251, and 𝑎

0
= −2.44.

Using (9), we have that 𝑝
10
= 16.53 and 𝑝

20
= 11.95. With

this set of parameters, we obtain the following results:

(1) If 𝜏
1
= 𝜏

2
= 0, from (20) it follows that 𝜆

1
= −3.4302

and 𝜆

2
= −7.378. The system is therefore locally

asymptotically stable.
(2) If 𝜏

1
= 𝜏

2
= 𝜏, from (27) it follows that 𝜔

0
=

0.6292394611 and from (35) it follows that 𝜏
0
= 1.02.

For 𝜏 < 𝜏

0
, the system is asymptotically stable; for

𝜏 = 𝜏

0
, it has a Hopf bifurcation; and for 𝜏 > 𝜏

0
, it

is unstable.

The orbits (𝑡, 𝑝
1
(𝑡)) (in black) and (𝑡, 𝑝

2
(𝑡)) (in blue) are

given in Figures 1, 3, and 5 for 𝜏 < 𝜏

0
, 𝜏 = 𝜏

0
, and 𝜏 > 𝜏

0
,

respectively. Similarly, Figures 2, 4, and 6 plot the market
index (𝑡, 𝐼(𝑡)), where 𝐼(𝑡) = 𝑝

1
(𝑡)−𝑝

2
(𝑡), for each of the three

cases.

(3) If 𝜏
1
< 𝜏

10
, 𝜏

2
= 0; from (39) it follows that 𝜔

10
=

12.265. From (42) it follows that 𝜏
10
= 0.57185. For
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Figure 1: (𝑡, 𝑝
1
(𝑡)) and (𝑡, 𝑝

2
(𝑡)), for 𝜏 < 𝜏

0
.
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Figure 2: (𝑡, 𝐼(𝑡)), for 𝜏 < 𝜏
0
.
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Figure 3: (𝑡, 𝑝
1
(𝑡)) and (𝑡, 𝑝

2
(𝑡)), for 𝜏 = 𝜏

0
.
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Figure 4: (𝑡, 𝐼(𝑡)), for 𝜏 = 𝜏
0
.
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Figure 5: (𝑡, 𝑝
1
(𝑡)) and (𝑡, 𝑝

2
(𝑡)), for 𝜏 > 𝜏

0
.
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Figure 6: (𝑡, 𝐼(𝑡)), for 𝜏 > 𝜏
0
.
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Figure 7: (𝑡, 𝑝
1
(𝑡)) and (𝑡, 𝑝

2
(𝑡)), for 𝜏 < 𝜏

0
.
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Figure 8: (𝑡, 𝐼(𝑡)), for 𝜏 < 𝜏
0
.

𝜏

1
< 𝜏

10
, the system is locally asymptotically stable.

For 𝜏
1
= 𝜏

10
, the system has a Hopf bifurcation.

Finally, for 𝜏
1
> 𝜏

10
, the system is unstable.

(4) If 𝜏
1
> 0, 𝜏

2
> 0, let 𝜏

1
= 0.5. From (50), using the plot

of the function 𝐾
12
(𝜔), it follows that 𝜔

21
= 9.5, and

from (55) we get that 𝜏
21
= 0.1981. For 𝜏

10
= 0.5 and

𝜏

2
< 𝜏

21
, the system is locally asymptotically stable. If

𝜏

2
< 𝜏

21
, the system has a Hopf bifurcation. Finally, if

𝜏

2
> 𝜏

21
, the system is unstable.

The Lyapunov coefficients are 𝜇
2
= 2.203985594, 𝑇

2
=

8.289687798, and 𝛽

20
= 89.44496112. Hence, the Hopf

bifurcation is supercritical and with increasing period, while
the bifurcating periodic solutions are unstable.

As before, for 𝜏
2
< 𝜏

21
, the orbits (𝑡, 𝑝

1
(𝑡)) (in black) and

(𝑡, 𝑝

2
(𝑡)) (in blue) are given in Figure 7, while Figure 8 plots

(𝑡, 𝐼(𝑡)), where 𝐼(𝑡) = 𝑝
1
(𝑡) − 𝑝

2
(𝑡) denotes the market index.

We thus can conclude that all numerical simulations
verify our previous theoretical findings.
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6. Conclusions

This paper considers a deterministic dynamic model with
delay for two financialmarkets that trade one asset.Thedeter-
ministic system is analyzed both analytically and numerically.
We study two different cases of time delay, namely, when both
markets experience the same time delay and when the time
delay is different across markets. The common conclusion
from these two scenarios is that coupled speculative markets
with chartists and fundamentalists in each, but with different
dynamics, can be synchronized through diffusive coupling.
The stable converging dynamics is replaced with limit cycle
oscillations around the fundamental price. This qualitative
change in the dynamic behavior shows that coupling and
contagion between different markets can indeed lead to
transmission of fluctuations across financial markets. Since
the delay can lead to instability, the next natural step would
be to consider the stochastic approach.We leave this issue for
future research.

In terms of contribution, our work ultimately provides a
real-world application of bifurcation concepts to a situation
widely observed in the financial world. To this effect, we pro-
vide a rigorous analysis of the dynamic properties of a model
that can successfully explain stylized facts related to financial
market behavior. Once established, the same methodology
could be easily implemented in economics, demography, and
social sciences in general, allowing further literature advances
in these fields. For instance, this application fits well and can
be quickly integrated in the structural work done in these
fields.

Appendices

A. Data of Lemma A.1

Lemma A.1 (see [31, Corollary 2.4, page 867]). For the
transcendental equation

𝑛

∑

𝑖=0

𝑃 (𝜆, 𝑒

−𝜆𝜏
1
, . . . , 𝑒

−𝜆𝜏
𝑛
)

= 𝜆

𝑛
+

𝑛

∑

𝑖=0

𝑃

𝑖
(𝜆, 𝑒

−𝜆𝜏
1
, . . . , 𝑒

−𝜆𝜏
𝑛
) = 0,

(A.1)

where

𝑃

𝑖
(𝜆, 𝑒

−𝜆𝜏
1
, . . . , 𝑒

−𝜆𝜏
𝑛
)

= [𝛽

(𝑖)

1
𝜆

𝑛−1
+ ⋅ ⋅ ⋅ + 𝛽

(𝑖)

𝑛−1
𝜆 + 𝛽

(𝑖)

𝑛
] 𝑒

−𝜆𝜏
𝑖
,

𝑖 = 0, 1, . . . , 𝑛,

(A.2)

as (𝜏
1
, . . . , 𝜏

𝑛
) vary, the sum of the orders of the zeros of

𝑃(𝜆, 𝑒

−𝜆𝜏
1
, . . . , 𝑒

−𝜆𝜏
𝑛
) in the open right half plane can change

only if a zero appears on or crosses the imaginary axis.

Proof of Proposition 6. (i) Let 𝑞(𝜃) be given by (66). It follows
from above that

𝐴𝑞 (0) = 𝑖𝜔

10
𝜏

10
𝑞 (0) , (A.3)

implying

𝜏

10
(

𝑖𝜔

10
𝜏

10
− 𝑎

11
− 𝑏

11
𝑒

−𝑖𝜔
10
𝜏
10

−𝑎

12

−𝑎

21
𝑖𝜔

10
𝜏

10
− 𝑎

22
− 𝑏

22
𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10

)(

1

𝛼

) = (

0

0

) . (A.4)

As a result, (67) follows.
(ii) Let 𝑞∗(𝑠) be given by (68). From

𝐴

∗
𝑞

∗
(0) = −𝑖𝜔

10
𝜏

10
𝑞

∗
(0) , (A.5)

it follows that 𝛼∗ is given by (70).

B. Coefficients of Center Manifold

Following Hassard et al. [14], by substituting (63) in (75) we
have

̇

𝑊 = 𝑢̇

𝑡
− 𝑧̇𝑞 −

̇

𝑧𝑞. (B.1)

Hence,

̇

𝑊 = 𝐴𝑊 − 2Re [𝑞∗ (0) 𝐹 (𝑧, 𝑧) 𝑞 (𝜃)] + 𝑅𝑢
𝑡

= {

𝐴𝑊 − 2Re [𝑞∗ (0) 𝐹 (𝑧, 𝑧) 𝑞 (𝜃)] , if 𝜃 ∈ [−1, 0) , if 𝜃 = [−1, 0)
𝐴𝑊 − 2Re [𝑞∗ (0) 𝐹 (𝑧, 𝑧) 𝑞 (0)] + Re (𝑤 (0) + 2Re (𝑧 (𝑡) 𝑞 (0))) , if 𝜃 = 0

def
= 𝐴𝑊

+𝐻 (𝑧, 𝑧, 𝜃) ,

(B.2)

where

𝐻(𝑧, 𝑧, 𝜃) = ℎ

20
(𝜃)

𝑧

2
(𝑡)

2

+ ℎ

11
(𝜃) 𝑧 (𝑡) 𝑧 (𝑡)

+ ℎ

02
(𝜃)

𝑧

2
(𝑡)

2

+ ⋅ ⋅ ⋅ .

(B.3)

Taking the derivative of𝑊 with respect to 𝑡 in (74), we have

̇

𝑊 = 𝑊

𝑧
𝑧̇ + 𝑊

𝑧
̇

𝑧. (B.4)
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From (74), (76), and (B.4), we obtain

̇

𝑊 = (𝑊

20
𝑧 +𝑊

11
𝑧 + ⋅ ⋅ ⋅) (𝑖𝜔

10
𝜏

10
𝑧 + 𝑔)

+ (𝑊

11
𝑧 +𝑊

02
𝑧 + ⋅ ⋅ ⋅) (−𝑖𝜔

10
𝜏

10
𝑧 + 𝑔) ,

(B.5)

and substituting (74), (B.3), and (B.2) yields

̇

𝑊 = (𝐴𝑊

20
+ ℎ

20
)

𝑧

2

2

+ (𝐴𝑊

11
+ ℎ

11
) 𝑧𝑧

+ (𝐴𝑊

02
+ ℎ

02
)

𝑧

2

2

+ ⋅ ⋅ ⋅ .

(B.6)

Comparing the coefficients of (B.5) and (B.6), the following
equalities hold:

(𝐴 − 2𝑖𝜔

10
𝜏

10
𝐼)𝑊

20
(𝑡) = −ℎ

20
(𝜃) , (B.7)

𝐴𝑊

11
(𝑡) = −ℎ

11
(𝜃) , (B.8)

where 𝐼 is a 2 × 2 unity matrix.
From (75) and (76), we obtain

𝑔 (𝑧 (𝑡) , 𝑧 (𝑡)) = 𝑞

∗
𝐹 (𝑧, 𝑧)

=

𝜏

10

𝜌

(1, 𝛼

∗
)(

𝐹

1
(𝑢

1𝑡
(0) , 𝑢

1𝑡
(−1))

𝐹

2
(𝑢

2𝑡
(0) , 𝑢

2𝑡
(−

𝜏

2

𝜏

10

))

) ,

(B.9)

where

𝑢

𝑡
= (𝑢

1𝑡
(𝜃) , 𝑢

2𝑡
(𝜃))

𝑇

= 𝑊(𝑡, 𝜃) + 𝑧𝑞 (𝜃) + 𝑧𝑞 (𝜃) ,

𝑞 (𝜃) = (1, 𝛼) 𝑒

𝑖𝜔
10
𝜏
10
𝜃
,

𝑢

1𝑡
(0) = 𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧

2

2

+𝑊

(1)

11
(0) 𝑧𝑧

+𝑊

(1)

02
(0)

𝑧

2

2

+ ⋅ ⋅ ⋅ ,

𝑢

2𝑡
(0) = 𝛼𝑧 + 𝛼𝑧 +𝑊

(2)

20
(0)

𝑧

2

2

+𝑊

(2)

11
(0) 𝑧𝑧

+𝑊

(2)

02
(0)

𝑧

2

2

+ ⋅ ⋅ ⋅ ,

𝑢

1𝑡
(−1) = 𝑧𝑒

−𝑖𝜔
10
𝜏
10
+ 𝑧𝑒

𝑖𝜔
10
𝜏
10
+𝑊

(1)

20
(−1)

𝑧

2

2

+𝑊

(1)

11
(−1) 𝑧𝑧 +𝑊

(1)

02
(−1)

𝑧

2

2

+ ⋅ ⋅ ⋅ ,

𝑢

2𝑡
(−

𝜏

2

𝜏

10

) = 𝛼𝑧𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10

+ 𝛼𝑧𝑒

𝑖𝜔
10
𝜏
2
/𝜏
10
𝑊

(2)

20
(−

𝜏

2

𝜏

10

)

𝑧

2

2

+𝑊

(2)

11
(−

𝜏

2

𝜏

10

)𝑧𝑧

+𝑊

(2)

02
(−

𝜏

2

𝜏

10

)

𝑧

2

2

+ ⋅ ⋅ ⋅ .

(B.10)

Proposition B.1. The coefficients 𝑔
20
, 𝑔
11
, 𝑔
02
, and 𝑔

21
are

given by

𝑔

20
=

2𝜏

10

𝜌

(𝑙

1
+ 𝑙

2
𝑒

−𝑖𝜔
10
𝜏
10
+ 𝛼

2
𝛼

∗
(𝑘

1

+ 𝑘

2
𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
)) ,

𝑔

11
=

𝜏

10

𝜌

(𝑙

1
+ 𝑙

2
(𝑒

𝑖𝜔
10
𝜏
10
+ 𝑒

−𝑖𝜔
10
𝜏
10
) + 𝛼

2
𝛼

∗
(𝑘

1

+ 𝑘

2
(𝑒

𝑖𝜔
10
𝜏
2
/𝜏
10
+ 𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
))) ,

𝑔

02
=

2𝜏

10

𝜌

(𝑙

1
+ 𝑙

2
𝑒

𝑖𝜔
10
𝜏
10
+ 𝛼

2
𝛼

∗
(𝑘

1
+ 𝑘

2
𝑒

𝑖𝜔
10
𝜏
2
/𝜏
10
)) ,

𝑔

21
=

2𝜏

10

𝜌

(𝑙

1
(2𝑊

(1)

11
(0) + 𝑊

(1)

20
(0))

+ 𝑙

2
(𝑊

(1)

11
(0) 𝑒

−𝑖𝜔
10
𝜏
10
+

1

2

𝑊

(1)

20
(0) 𝑒

𝑖𝜔
10
𝜏
10

+𝑊

(1)

11
(−1) +

1

2

𝑊

(1)

20
(−1)) + 3𝑙

3
+ 𝑙

4
(𝑒

𝑖𝜔
10
𝜏
10

+ 2𝑒

−𝑖𝜔
10
𝜏
10
)) + 𝑙

5
(2 + 𝑒

−2𝑖𝜔
10
𝜏
10
) + 3𝑙

6
𝑒

−2𝑖𝜔
10
𝜏
10

+ 𝛼

∗
(𝑘

1
(2𝛼𝑊

(2)

11
(0) + 𝛼𝑊

(2)

20
(0))

+ 𝑘

2
(𝛼𝑊

(2)

11
(−

𝜏

2

𝜏

10

) + 𝛼𝑊

(2)

11
(0) 𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10

+

𝛼

2

𝑊

(2)

11
(0) 𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
+ 𝛼𝛼𝑊

(2)

20
(−

𝜏

2

𝜏

10

))

+ 3𝑘

3
𝛼

2
𝛼 + 𝑘

4
𝛼

2
𝛼 (𝑒

𝑖𝜔
10
𝜏
2
/𝜏
10
+ 2𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
)

+ 𝑘

5
𝛼

2
𝛼 (2 + 𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
) + 3𝑘

6
𝛼

2
𝛼𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
) .

(B.11)

Proof. Comparing the coefficients of (77) and (B.9), (B.10)
follows.
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Proposition B.2. The vectors, 𝑊
11
(𝜃) and 𝑊

20
(𝜃), are given

by

𝑊

20
(𝜃) = −

𝑖𝑔

20

𝜔

10
𝜏

10

𝑞 (0) 𝑒

𝑖𝜔
10
𝜏
10
𝜃

−

𝑖𝑔

02

3𝜔

10
𝜏

10

𝑞 (0) 𝑒

−𝑖𝜔
10
𝜏
10
𝜃
+ 𝐸

2
𝑒

2𝑖𝜔
10
𝜏
10
𝜃
,

𝑊

11
(𝜃) = −

𝑖𝑔

11

𝜔

10
𝜏

10

𝑞 (0) 𝑒

𝑖𝜔
10
𝜏
10
𝜃

−

𝑔

11

𝑖𝜔

10
𝜏

10

𝑞 (0) 𝑒

−𝑖𝜔
10
𝜏
10
𝜃
+ 𝐸

1
,

(B.12)

where

𝐸

2
= (

2𝑖𝜔

10
𝜏

10
− 𝑎

11
− 𝑏

11
𝑒

−2𝑖𝜔
10
𝜏
10

−𝑎

12

−𝑎

21
2𝑖𝜔

10
𝜏

10
− 𝑎

22
− 𝑏

22
𝑒

−2𝑖𝜔
10
𝜏
2
/𝜏
10

)

−1

(

2𝑙

1
+ 2𝑙

2
𝑒

−𝑖𝜔
10
𝜏
10

2𝛼

2
(𝑘

1
+ 𝑘

2
𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
)

) ,

𝐸

1
= (

−𝑎

11
− 𝑏

11
−𝑎

12

−𝑎

21
−𝑎

22
− 𝑏

22

)

−1

(

𝑙

1
+ 𝑙

2
(𝑒

𝑖𝜔
10
𝜏
10
+ 𝑒

−𝑖𝜔
10
𝜏
10
)

𝛼𝛼 (𝑘

1
+ 𝑘

2
(𝑒

𝑖𝜔
10
𝜏
2
/𝜏
10
+ 𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
))

) .

(B.13)

Proof. First, we use (B.2) to obtain

𝐻(𝑧, 𝑧, 𝜃) = −2Re [𝑞∗ (0) 𝐹 (𝑧, 𝑧) 𝑞 (𝜃)] + 𝑅𝑢
𝑡

= −𝑔𝑞 (𝜃) − 𝑔 𝑞 (𝜃) + 𝑅𝑢

𝑡

= −(

1

2

𝑔

20
𝑧

2
+ 𝑔

11
𝑧𝑧 +

1

2

𝑔

02
𝑧

2
+ ⋅ ⋅ ⋅) 𝑞 (𝜃)

− (

1

2

𝑔

20
𝑧

2
+ 𝑔

11
𝑧𝑧 +

1

2

𝑔

02
𝑧

2
+ ⋅ ⋅ ⋅) 𝑞 (𝜃)

+ 𝑅𝑢

𝑡
.

(B.14)

Comparing the coefficients with (B.3), for 𝜃 ∈ (−1, 0], we
obtain

ℎ

20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

20
𝑞 (𝜃) ,

ℎ

11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) .

(B.15)

Substituting the above equalities into (B.7) and (B.8), respec-
tively, and with 𝐴 = 𝐴(0) being given by (62), we get that

̇

𝑊

20
(𝜃) = 2𝑖𝜔

10
𝜏

10
𝑊

20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

20
𝑞 (𝜃) ,

̇

𝑊

11
(𝜃) = 𝑔

11
𝑞 (𝜃) + 𝑔

11
𝑞 (𝜃) .

(B.16)

Solving (B.16) leads to (B.12). To obtain the appropriate 𝐸
1

and 𝐸
2
, we proceed as follows.

From (B.7) and (B.8), it follows that

𝐴𝑊

20
(0) = 2𝑖𝜔

10
𝜏

10
𝑊

20
(0) − ℎ

20
(0) ,

𝐴𝑊

11
(0) = −ℎ

11
(0) .

(B.17)

From the definition of 𝐴 in (62), we obtain

∫

0

−1

𝑑𝜂 (𝜃)𝑊

20
(𝜃) = 2𝑖𝜔

10
𝜏

10
𝑊

20
(0) − ℎ

20
(0) ,

∫

0

−1

𝑑𝜂 (𝜃)𝑊

11
(𝜃) = −ℎ

11
(0) .

(B.18)

From (B.15) and the definition of 𝐹(𝜇, 𝜙), we have that

ℎ

20
(0)

= −𝑔

20
𝑞 (𝜃) − 𝑔

20
𝑞 (𝜃)

+ 𝜏

0
(

2𝑙

1
+ 2𝑙

2
𝑒

−𝑖𝜔
10
𝜏
10

2𝛼

2
(𝑘

1
+ 𝑘

2
𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
)

) ,

ℎ

11
(0)

= −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃)

+ 𝜏

0
(

𝑙

1
+ 𝑙

2
(𝑒

𝑖𝜔
10
𝜏
10
+ 𝑒

−𝑖𝜔
10
𝜏
10
)

𝛼𝛼 (𝑘

1
+ 𝑘

2
(𝑒

𝑖𝜔
10
𝜏
2
/𝜏
10
+ 𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
))

) .

(B.19)

Substituting (B.12) and (B.19) into (B.18) and using the fact
that

(𝑖𝜔

10
𝜏

10
𝐼 − ∫

0

−1

𝑒

𝑖𝜔
10
𝜏
10
𝜃
𝑑𝜂 (𝜃)) 𝑞 (0) = 0,

(−𝑖𝜔

10
𝜏

10
𝐼 − ∫

0

−1

𝑒

−𝑖𝜔
10
𝜏
10
𝜃
𝑑𝜂 (𝜃)) 𝑞 (0) = 0,

(B.20)

we obtain

(2𝑖𝜔

10
𝜏

10
𝐼 − ∫

0

−1

𝑒

2𝑖𝜔
10
𝜏
10
𝜃
𝑑𝜂 (𝜃))𝐸

2

= 𝜏

0
(

2𝑙

1
+ 2𝑙

2
𝑒

−𝑖𝜔
10
𝜏
10

2𝛼

2
(𝑘

1
+ 𝑘

2
𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
)

) ,

(B.21)
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which leads to

(

2𝑖𝜔

10
𝜏

10
− 𝑎

11
− 𝑏

11
𝑒

−2𝑖𝜔
10
𝜏
10

−𝑎

12

−𝑎

21
2𝑖𝜔

10
𝜏

10
− 𝑎

22
− 𝑏

22
𝑒

−2𝑖𝜔
10
𝜏
2
/𝜏
10

)𝐸

2
= (

2𝑙

1
+ 2𝑙

2
𝑒

−𝑖𝜔
10
𝜏
10

2𝛼

2
(𝑘

1
+ 𝑘

2
𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
)

) , (B.22)

and so

𝐸

2
= (

2𝑖𝜔

10
𝜏

10
− 𝑎

11
− 𝑏

11
𝑒

−2𝑖𝜔
10
𝜏
10

−𝑎

12

−𝑎

21
2𝑖𝜔

10
𝜏

10
− 𝑎

22
− 𝑏

22
𝑒

−2𝑖𝜔
10
𝜏
2
/𝜏
10

)

−1

(

2𝑙

1
+ 2𝑙

2
𝑒

−𝑖𝜔
10
𝜏
10

2𝛼

2
(𝑘

1
+ 𝑘

2
𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
)

) .
(B.23)

Similarly, substituting (B.12) and (B.19) into (B.17), we
have that

𝐸

1
= (

−𝑎

11
− 𝑏

11
−𝑎

12

−𝑎

21
−𝑎

22
− 𝑏

22

)

−1

⋅ (

𝑙

1
+ 𝑙

2
(𝑒

𝑖𝜔
10
𝜏
10
+ 𝑒

−𝑖𝜔
10
𝜏
10
)

𝛼𝛼 (𝑘

1
+ 𝑘

2
(𝑒

𝑖𝜔
10
𝜏
2
/𝜏
10
+ 𝑒

−𝑖𝜔
10
𝜏
2
/𝜏
10
))

) .

(B.24)

We can therefore derive 𝑊
20
(𝜃) and 𝑊

11
(𝜃), with 𝑔

𝑖𝑗
in

(B.10) being determined by the parameters and the time
delays in system (2).
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