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The paper is devoted to the study of operational matrix method for approximating solution for nonlinear coupled system fractional
differential equations.Themain aim of this paper is to approximate solution for the problem under two different types of boundary
conditions, 𝑚̂-point nonlocal boundary conditions and mixed derivative boundary conditions. We develop some new operational
matrices. These matrices are used along with some previously derived results to convert the problem under consideration into a
system of easily solvable matrix equations. The convergence of the developed scheme is studied analytically and is conformed by
solving some test problems.

1. Introduction

Fractional calculus is generalization of integer order integra-
tion and differentiation to its noninteger (fractional) order
counterpart. Fractional calculus has proved to be a valu-
able tool in modeling many natural phenomena of physics,
chemistry, engineering, aerodynamics, electrodynamics of
complexmedium, polymer rheology, and so forth [1]. It is well
known that fractional order operator is a nonlocal operator.
Unlike integer order models the fractional order models have
the property that the current state of the system depends on
all its historic states.This makes fractional models interesting
and remains as an active and hot area of research.

Differential equations are used tomodel different physical
and engineering phenomena. The aim is to know about the
future state of the system under consideration. It is some
time necessary to model differential equations with different

kinds of initial and boundary conditions (depends on the
nature of the problem). Various types of conditions which are
used as boundary conditions are multipoint local boundary
conditions, integral type boundary conditions, multipoint
nonlocal boundary conditions, and mixed derivative bound-
ary conditions. The multipoint boundary value problems
appear in wave propagation and in elastic stability. For
example, the vibrations of a guy wire of a uniform cross
section composed of 𝑚 sections of different densities can be
molded as a multipoint boundary value problem (see [2, 3]
and the references therein).

In this paper, we are interested in finding approximate
solutions for the following generalized class of nonlinear
coupled systems of fractional order differential equations:

𝑢

𝜎
1
= 𝑓 (𝑡, 𝑢

𝛾
1
, V𝛾1 , 𝑢, V) ,

V𝜎2 = 𝑔 (𝑡, 𝑢𝛾1 , V𝛾1 , 𝑢, V) ,
(1)
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where 𝑢 = 𝑢(𝑡) and V = V(𝑡) are the unknown solutions
to be determined. These solutions are defined on finite time
domain; that is, 𝑡 ∈ [0, 𝜏]. The superscripts represent the
order of derivatives defined in Caputo sense and are defined
as 1 < 𝜎

1
, 𝜎

2
≤ 2, and 0 < 𝛾

1
≤ 1. 𝑓 and 𝑔

are nonlinear functional of 𝑢 and V and their fractional
derivatives. The method developed in this paper is designed
for approximating 𝑢 and V under any of the following two
types of boundary conditions.

(i) M-point nonlocal boundary conditions are as follows:

𝑢 (0) = 𝑢

0
,

𝑢 (𝜏) =

𝑚−2

∑

𝑖=1

𝜁

𝑖
𝑢 (𝜉

𝑖
) ,

V (0) = V
0
,

V (𝜏) =
𝑚−2

∑

𝑖=1

𝜌

𝑖
V (𝜉

𝑖
) ,

(2)

where 𝑢
0
and V

0
are some real constants and 𝜉

𝑖
are

intermediate points of the domain defined as

0 < 𝜉

1
< 𝜉

2
⋅ ⋅ ⋅ < 𝜉

𝑚−2
< 𝜏. (3)

(ii) Mixed derivative boundary conditions are as follows:

𝑢

󸀠

(0) = 𝑎

1
𝑢 (0) + 𝑎

2
𝑢 (𝜏) ,

𝑢

󸀠

(𝜏) = 𝑏

1
𝑢 (0) + 𝑏

2
𝑢 (𝜏) ,

V󸀠 (0) = 𝑐
1
V (0) + 𝑐

2
V (𝜏) ,

V󸀠 (𝜏) = 𝑑
1
V (0) + 𝑑

2
V (𝜏) ,

(4)

where 𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, and 𝑑

𝑖
are some real constants.

We develop new operational matrices based on Jacobi
polynomials and use these operational matrices to develop
new formulation for finding approximate solutions for the
problems. The technique basically lies in the domain of
spectral methods. Spectral methods are widely used for solu-
tions to differential equations, functions approximations, and
variational problems.Thesemethods demand approximation
of solutions for a problem by truncated series of smooth
global functions and provide very accurate approximations
for a smooth solution with relatively few degrees of freedom.
The main reason behind this accuracy is the behavior of
spectral coefficients 𝑎

𝑛
, which tend to zero faster than any

algebraic power of their index 𝑛.
Among others, some of the well known mathematicians

who successfully applied spectralmethod areDehghan [4–9],
Bhrawy [10, 11], Doha et al. [12], and Saadatmandi [7, 13, 14].
In these papers the authors solved many scientific problems
using spectral methods. Also Dehghan and Shakeri [8] used a
seminumerical technique for solving the multipoint bound-
ary value problems. In [4, 6] an efficient way is developed for

the construction of operational matrices. In [5] the authors
used operational matrices of Bernstein polynomials to solve
nonlinear age-structured model. We are motivated by the
work of Bhrawy and Al-Shomrani [11], who solved fractional
order differential equations (both linear and nonlinear) with
𝑚-point boundary conditions (local) via shifted Legendre
polynomials and collocation technique.

To solve the nonlinear coupled system of boundary value
problemwe implement operationalmatrixmethod combined
with quasilinearization method. Quasilinearization method
was first introduced by Bellman and Kalaba [15] to solve
nonlinear ordinary or partial differential equations as a
generalization of the Newton-Raphson method. The origin
of this method lies in the theory of dynamic programming.
In this method, the nonlinear equations are expressed as
a sequence of linear equations and these equations are
solved recursively. The main advantage of this method is that
it converges monotonically and quadratically to the exact
solution to the original equations [16]. Also some other
interesting works in which qasilinearization method is used
for scientific problems are available in [17–19].

In our previous work, we have constructed some efficient
methods for the numerical simulations of couple systems of
linear fractional differential equations and fractional order
partial differential equations [20–22]. Local and nonlocal
boundary value problems can be found in [23–25]. For the
readers who are new to the field, we recommend studying our
previous work in order to get a better understanding.

2. Preliminaries

In this section, we recall some basic definitions and known
results from fractional calculus. More details can be found in
[1].

Definition 1. Given an interval [𝑎, 𝑏] ⊂ R, the Riemann-
Liouville fractional order integral of order 𝛼 ∈ R

+
of a

function 𝜙 ∈ (𝐿1[𝑎, 𝑏],R) is defined by

𝑎
I

𝛼

𝑡
𝜙 (𝑡) =

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝑠)

𝛼−1

𝜙 (𝑠) 𝑑𝑠, (5)

provided the integral on right hand side exists.

Definition 2. For a given function 𝜙(𝑡) ∈ 𝐶𝑛[𝑎, 𝑏], the Caputo
fractional order derivative of order 𝛼 is defined as

𝐷

𝛼

𝜙 (𝑡) =

1

Γ (𝑛 − 𝛼)

∫

𝑡

𝑎

𝜙

(𝑛)

(𝑠)

(𝑡 − 𝑠)

𝛼+1−𝑛
𝑑𝑠,

𝑛 − 1 ≤ 𝛼 < 𝑛, 𝑛 ∈ 𝑁,

(6)

provided the right side is pointwise defined on (𝑎,∞), where
𝑛 = [𝛼] + 1 in case 𝛼 is not an integer and 𝑛 = 𝛼 in case 𝛼 is
an integer.

Hence, it follows that 𝐼𝛼𝑡𝑘 = (Γ(1 + 𝑘)/Γ(1 + 𝑘 +

𝛼))𝑡

𝑘+𝛼 for 𝛼 > 0, 𝑘 ≥ 0,𝐷𝛼

𝐶 = 0, for a constant 𝐶, and

𝐷

𝛼

𝑡

𝑘

=

Γ (1 + 𝑘)

Γ (1 + 𝑘 − 𝛼)

𝑡

𝑘−𝛼

, for 𝑘 ≥ [𝛼] . (7)
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2.1.The Shifted Jacobi Polynomials. Thewell known two para-
metric Jacobi polynomials defined on [0, 𝜏], with parameters
𝛼 and 𝛽, are given by the following relation:

𝑃

(𝛼,𝛽)

𝜂,𝑖
(𝑡) =

𝑖

∑

𝑘=0

℧

(𝛼,𝛽)

(𝑖,𝑘)
𝑡

𝑘

, 𝑖 = 0, 1, 2, 3, . . . , (8)

where

℧

(𝛼,𝛽)

(𝑖,𝑘)
=

(−1)

𝑖−𝑘

Γ (𝑖 + 𝛽 + 1) Γ (𝑖 + 𝑘 + 𝛼 + 𝛽 + 1)

Γ (𝑘 + 𝛽 + 1) Γ (𝑖 + 𝛼 + 𝛽 + 1) (𝑖 − 𝑘)!𝑘!𝜏

𝑘
. (9)

The Jacobi polynomials are orthogonal and the orthogonality
condition is

∫

𝜏

0

𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑗
(𝑡) 𝑤

(𝛼,𝛽)

𝜏
(𝑡) 𝑑𝑡 = 𝑅

(𝛼,𝛽)

𝜏,𝑗
𝛿

𝑖,𝑗
, (10)

where𝑤(𝛼,𝛽)

𝜏
(𝑡) = (𝜏−𝑡)

𝛼

𝑡

𝛽 is the weight function and𝑅(𝛼,𝛽)
𝜏,𝑗

=

𝜏

𝛼+𝛽+1

Γ(𝑗+𝛼+1)Γ(𝑗+𝛽+1)/(2𝑗+𝛼+𝛽+1)Γ(𝑗+1)Γ(𝑗+𝛼+𝛽+1)

is known as normalization constant.
Any squared integrable function V(𝑡) on [0, 𝜏] can be

approximated by shifted Jacobi polynomials as follows: V(𝑡) =
∑

∞

𝑗=0
𝑐

𝑗
𝑃

(𝛼,𝛽)

𝜂,𝑗
(𝑡), where the coefficient 𝑐

𝑗
can easily be calcu-

lated using (10). In practice we are interested in the truncated
series, which can also be written in vector form as

V (𝑡) = H𝑇

𝑀
Ψ
𝑀
(𝑡) , (11)

where𝑀 = 𝑚 + 1,H𝑇

𝑀
is the coefficient vector, andΨ

𝑀
(𝑡) is

𝑀 terms function vector.
One important property of shifted Jacobi polynomials

which will be frequently used in our analysis is given as

max
𝑥∈[0,𝜏]

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑥)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

̂

𝐶 (𝑖, 𝜖) , (12)

where ̂𝐶(𝑖, 𝜖) = Γ(𝑖+𝜖+1)/Γ(𝑖+1)Γ(𝜖+1) and 𝜖 = max(𝛼, 𝛽).

Lemma 3. The definite integral of the product of weight
function with three Jacobi polynomials over the domain [0, 𝜏]
is constant, defined as ϝ(𝑖,𝑗,𝑘)

(𝑙,𝑚,𝑛)
, defined by

∫

𝜏

0

𝑤

(𝛼,𝛽)

𝜏
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑗
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑘
(𝑡) 𝑑𝑡 = ϝ

(𝑖,𝑗,𝑘)

(𝑙,𝑚,𝑛)
, (13)

where

ϝ

(𝑖,𝑗,𝑘)

(𝑙,𝑚,𝑛)
=

𝑖

∑

𝑙=0

𝑗

∑

𝑚=0

𝑘

∑

𝑛=0

℧

(𝛼,𝛽)

(𝑖,𝑙)
℧

(𝛼,𝛽)

(𝑗,𝑚)
℧

(𝛼,𝛽)

(𝑘,𝑛)
Υ

(𝑙,𝑚,𝑛)
,

Υ

(𝑙,𝑚,𝑛)

=

Γ (𝑙 + 𝑚 + 𝑛 + 𝛽 + 1) Γ (𝛼 + 1) 𝜏

(𝑙+𝑚+𝑛+𝛼+𝛽+1)

Γ (𝑙 + 𝑚 + 𝑛 + 𝛼 + 𝛽 + 1)

.

(14)

Proof. In view of (8), we obtain

∫

𝜏

0

𝑤

(𝛼,𝛽)

𝜏
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑗
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑘
(𝑡) 𝑑𝑡

=

𝑖

∑

𝑙=0

℧

(𝛼,𝛽)

(𝑖,𝑙)

𝑗

∑

𝑚=0

℧

(𝛼,𝛽)

(𝑗,𝑚)

𝑘

∑

𝑛=0

℧

(𝛼,𝛽)

(𝑘,𝑛)
∫

𝜏

0

𝑡

(𝑙+𝑚+𝑛+𝛽)

(𝜏 − 𝑡)

𝛼

𝑑𝑡.

(15)

Using convolution theorem of Laplace transform, we have

∫

𝜏

0

𝑡

(𝑙+𝑚+𝑛+𝛽)

(𝜏 − 𝑡)

𝛼

𝑑𝑡

=

Γ (𝑙 + 𝑚 + 𝑛 + 𝛽 + 1) Γ (𝛼 + 1) 𝜏

(𝑙+𝑚+𝑛+𝛼+𝛽+1)

Γ (𝑙 + 𝑚 + 𝑛 + 𝛼 + 𝛽 + 1)

= Υ

(𝑙,𝑚,𝑛)
.

(16)

Using the value of Υ
(𝑙,𝑚,𝑛)

in (15), we obtain

∫

𝜏

0

𝑤

(𝛼,𝛽)

𝜏
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑗
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑘
(𝑡) 𝑑𝑡 = ϝ

(𝑖,𝑗,𝑘)

(𝑙,𝑚,𝑛)
. (17)

3. Operational Matrices

In this section we first recall some previous results and then
derive some new operational matrices. The following results
are known [22].

Lemma 4. LetΨ
𝑀
(𝑡) be the function vector as defined in (11);

then the 𝛾-order integration of Ψ
𝑀
(𝑡) is given by 𝐼𝛾Ψ

𝑀
(𝑡) =

H𝜏,𝛾

𝑀×𝑀
Ψ
𝑀
(𝑡), where H𝜏,𝛾

𝑀×𝑀
is the operational matrix of

integration of order 𝛾. The entries Θ
𝑖,𝑗,𝑘

of H𝜏,𝛾

𝑀×𝑀
are defined

as

Θ

𝑖,𝑗,𝑘
=

𝑖

∑

𝑘=0

Λ

𝑖,𝑘,𝛾
𝑆

𝑗
, (18)

where

Λ

𝑖,𝑘,𝛾
=

(−1)

𝑖−𝑘

Γ (𝑖 + 𝛽 + 1) Γ (𝑖 + 𝑘 + 𝛼 + 𝛽 + 1) Γ (1 + 𝑘)

Γ (𝑘 + 𝛽 + 1) Γ (𝑖 + 𝛼 + 𝛽 + 1) (𝑖 − 𝑘)!𝑘!Γ (1 + 𝑘 + 𝛾) 𝜏

𝑘
,

𝑆

𝑗
=

𝑗

∑

𝑙=0

(−1)

𝑗−𝑙

(2𝑗 + 𝛼 + 𝛽 + 1) Γ (𝑗 + 1) Γ (𝑗 + 𝑙 + 𝛼 + 𝛽 + 1) Γ (𝑘 + 𝛾 + 𝑙 + 𝛽 + 1) Γ (𝛼 + 1) 𝜏

𝛾

Γ (𝑗 + 𝛼 + 1) Γ (𝑙 + 𝛽 + 1) (𝑗 − 𝑙)!𝑙!Γ (𝑘 + 𝛾 + 𝑙 + 𝛽 + 𝛼 + 2)

.

(19)
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Proof. The detailed proof of this lemma is available in [22].

Lemma 5. LetΨ
𝑀
(𝑡) be the function vector as defined in (11);

then the 𝛾-order derivative of Ψ
𝑀
(𝑡) is given by 𝐷𝛾

Ψ
𝑀
(𝑡) =

G𝜏,𝛾

𝑀×𝑀
Ψ
𝑀
(𝑡), where G𝜏,𝛾

𝑀×𝑀
is the operational matrix of frac-

tional differentiation of order 𝛾. The entriesΦ
𝑖,𝑗,𝑘

of G𝜏,𝛾

𝑀×𝑀
are

defined as

Φ

𝑖,𝑗,𝑘
=

𝑖

∑

𝑘=⌈𝛾⌉

Λ

𝑖,𝑘,𝛾
𝑆

𝑗
, (20)

where

Λ

𝑖,𝑘,𝛾
=

(−1)

𝑖−𝑘

Γ (𝑖 + 𝛽 + 1) Γ (𝑖 + 𝑘 + 𝛼 + 𝛽 + 1) Γ (1 + 𝑘)

Γ (𝑘 + 𝛽 + 1) Γ (𝑖 + 𝛼 + 𝛽 + 1) (𝑖 − 𝑘)!𝑘!Γ (1 + 𝑘 − 𝛾) 𝜏

𝑘
,

𝑆

𝑗
=

𝑗

∑

𝑙=0

(−1)

𝑗−𝑙

(2𝑗 + 𝛼 + 𝛽 + 1) Γ (𝑗 + 1) Γ (𝑗 + 𝑙 + 𝛼 + 𝛽 + 1) Γ (𝑘 + 𝛾 + 𝑙 + 𝛽 + 1) Γ (𝛼 + 1) 𝜏

𝛾

Γ (𝑗 + 𝛼 + 1) Γ (𝑙 + 𝛽 + 1) (𝑗 − 𝑙)!𝑙!Γ (𝑘 + 𝛾 + 𝑙 + 𝛽 + 𝛼 − 2)

.

(21)

Proof. The detailed proof of this lemma is available in [22].

In [22], these operational matrices are used for solutions
to coupled systems of initial value problems for fractional
order differential equations. These matrices do not have the
ability to handle𝑚-point nonlocal boundary value problems.
Hence the need to develop new operational matrices which
have the ability to handle boundary conditions as well as
initial conditions has been of great importance. The new
operationalmatrices include the operationalmatrices studied
in [22] as a factor and have ability to solve fractional order
boundary value problems.

Lemma 6. Let 𝑢(𝑡) and 𝜙
𝑛
(𝑡) be any functions defined on

[0, 𝜏]. Then

𝜙

𝑛
(𝑡) 𝐷

𝜎

𝑢 (𝑡) =W𝑇

𝑀
𝐾

𝜎

𝜙
𝑛

Ψ
𝑀
(𝑡) , (22)

whereW𝑇

𝑀
is the Jacobi coefficients vector of 𝑢(𝑡) defined by (11)

and

𝐾

𝜎

𝜙
𝑛

= G𝜏,𝜎

𝑀×𝑀
J𝜏,𝜙𝑛
𝑀×𝑀

. (23)

The matrix G𝜏,𝜎

𝑀×𝑀
is the operational matrix of derivative as

defined in Lemma 5 and

J𝜂,𝜙𝑛
𝑀×𝑀

= [Θ

𝑟+1,𝑠+1
] , 𝑟 = 0, 1, . . . , 𝑚, 𝑠 = 0, 1, . . . , 𝑚.

(24)

The entries are defined by the relation

Θ

𝑟,𝑠
=

1

𝑅

(𝛼,𝛽)

𝜏,𝑠

𝑚

∑

𝑖=0

𝑐

𝑖
ϝ

(𝑖,𝑟,𝑠)

(𝑙,𝑚,𝑛)
, (25)

where 𝑐
𝑖
are the Jacobi coefficients of 𝜙

𝑛
(𝑡) and ϝ(𝑖,𝑟,𝑠)

(𝑙,𝑚,𝑛)
is as

defined in Lemma 3.

Proof. Using (11) and Lemma 5, we obtain

𝜙

𝑛
(𝑡) 𝐷

𝜎

𝑢 (𝑡) = 𝜙

𝑛
(𝑡)𝑊

𝑇

𝑀
𝐺

𝜏,𝜎

𝑀×𝑀
Ψ

𝑀
(𝑡) , (26)

where 𝑢(𝑡) = 𝑊

𝑇

𝑀
Ψ

𝑀
(𝑡). With rearranging, the above

equation can be written as

𝜙

𝑛
(𝑡) 𝐷

𝜎

𝑌 (𝑡) = 𝑊

𝑇

𝑀
𝐺

𝜏,𝜎

𝑀×𝑀

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Ψ

𝑀
(𝑡),

(27)

where

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Ψ

𝑀
(𝑡) = [𝜙

𝑛
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,0
(𝑡) 𝜙

𝑛
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,1
(𝑡) ⋅ ⋅ ⋅ 𝜙

𝑛
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑟
(𝑡) ⋅ ⋅ ⋅ 𝜙

𝑛
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑚
(𝑡)
]

𝑇

.
(28)

Approximating 𝜙
𝑛
(𝑡) with Jacobi polynomials, we have

𝜙

𝑛
(𝑡) =

𝑚

∑

𝑖=0

𝐶

𝑖
𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡) . (29)

Hence (28) takes the form
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Ψ

𝑀
(𝑡) = [ℵ

0
(𝑡) ℵ

1
(𝑡) ⋅ ⋅ ⋅ ℵ

𝑟
(𝑡) ⋅ ⋅ ⋅ ℵ

𝑚
(𝑡)]

𝑇

,
(30)

where

ℵ

𝑟
(𝑡) =

𝑚

∑

𝑖=0

𝐶

𝑖
𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑟
(𝑡) , 𝑟 = 0, 1, . . . , 𝑚. (31)

Now approximating ℵ
𝑟
(𝑡) with Jacobi polynomials, we have

ℵ

𝑟
(𝑡) =

𝑚

∑

𝑠=0

𝑑

𝑟

𝑠
𝑃

(𝛼,𝛽)

𝜏,𝑠
(𝑡) , (32)

where

𝑑

𝑟

𝑠
=

1

𝑅

(𝛼,𝛽)

𝜏,𝑠

∫

𝜏

0

ℵ

𝑟
(𝑡)𝑊

(𝛼,𝛽)

𝜏
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑠
(𝑡) 𝑑𝑡. (33)

Using (31) in (33) we obtain

𝑑

𝑟

𝑠
=

1

𝑅

(𝛼,𝛽)

𝜏,𝑠

𝑚

∑

𝑖=0

𝑐

𝑖
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⋅ ∫

𝜏

0

𝑊

(𝛼,𝛽)

𝜏
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑟
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑠
(𝑡) 𝑑𝑡,

(34)

which in view of Lemma 3 takes the form

𝑑

𝑟

𝑠
=

1

𝑅

(𝛼,𝛽)

𝜏,𝑠

𝑚

∑

𝑖=0

𝑐

𝑖
ϝ

(𝑖,𝑟,𝑠)

(𝑙,𝑚,𝑛)
= Θ

𝑟,𝑠
. (35)

Repeating the procedure for 𝑟 = 0, 1, . . . , 𝑚 and 𝑠 =

0, 1, . . . , 𝑚, we obtain
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Ψ
𝑀
(𝑡) = J𝜂,𝜙𝑛

𝑀×𝑀
Ψ
𝑀
(𝑡) .

(36)

Using (36) in (27), we get

𝜙

𝑛
(𝑡) 𝐷

𝜎

𝑢 (𝑡) =W𝑇

𝑀
G𝜏,𝜎

𝑀×𝑀
J𝜏,𝜙𝑛
𝑀×𝑀
Ψ
𝑀
(𝑡)

=W𝑇

𝑀
K𝜎

𝜙
𝑛

Ψ
𝑀
(𝑡) .

(37)

Lemma 7. For 𝜙𝑐
𝑛
= 𝑐𝑡

𝑛, where 𝑐 and 𝑛 are real constants,
𝑢(𝑡) =W𝑇

𝑀
Ψ
𝑀
(𝑡), and, for 0 < 𝜂 ≤ 𝜏, the following holds:

𝜙

𝑐

𝑛 0
𝐼

𝜎

𝜂
𝑢 (𝑡) =W𝑇

𝑀
Q(𝜎,𝜙

𝑐

𝑛
,𝜂)

𝑀×𝑀
Ψ
𝑀
(𝑡) ,

(38)

whereQ(𝜎,𝜙
𝑐

𝑛
,𝜂)

𝑀×𝑀
is𝑀×𝑀 operational matrix and is defined by

Q(𝜎,𝜙
𝑐

𝑛
,𝜂)

= [𝑑

𝑖+1,𝑗+1
] ,

𝑖 = 0, 1, . . . , 𝑚, 𝑗 = 0, 1, . . . , 𝑚.

(39)

And the entries 𝑑
(𝑖,𝑗)

are defined by the relation

𝑑

(𝑖,𝑗)
=

𝑖

∑

𝑘=0

℧

(𝛼,𝛽)

(𝑖,𝑘)

𝑗

∑

𝑙=0

℧

(𝛼,𝛽)

(𝑗,𝑙)

⋅

𝑐Γ (1 + 𝑘) Γ (𝑙 + 𝛽 + 𝑛 + 1) Γ (𝛼 + 1)

𝑅

(𝛼,𝛽)

𝜂,𝑗
Γ (1 + 𝑘 + 𝜎) Γ (𝑙 + 𝛽 + 𝑛 + 𝛼 + 1)

⋅ 𝜏

(𝑙+𝛽+𝑛+𝛼+1)

(𝜂

𝑘+𝜎

) .

(40)

Proof. Using the definition of fractional integral (5), on

𝑢 (𝑡) =

𝑚

∑

𝑖=0

𝑐

𝑖
𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡) , (41)

we obtain

0
𝐼

𝜎

𝜂
𝑢 (𝑡) =

𝑚

∑

𝑖=0

𝑐

𝑖 0
𝐼

𝜎

𝜂
𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡) , (42)

which in view of the definition of Jacobi polynomials yields

0
𝐼

𝜎

𝜂
𝑢 (𝑡) =

𝑚

∑

𝑖=0

𝑐

𝑖

𝑖

∑

𝑘=0

℧

(𝛼,𝛽)

(𝑖,𝑘) 0
𝐼

𝜎

𝜂
𝑡

𝑘

. (43)

Evaluating the integral and after simplification, we obtain

0
𝐼

𝜎

𝜂
𝑢 (𝑡) =

𝑚

∑

𝑖=0

𝑐

𝑖
(

𝑖

∑

𝑘=0

℧

(𝛼,𝛽)

(𝑖,𝑘)

Γ (1 + 𝑘) (𝜂

𝑘+𝜎

)

Γ (1 + 𝑘 + 𝜎)

) . (44)

For simplicity, use the following notation:

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

℧

(𝛼,𝛽,𝜂,𝜎)

(𝑖,𝑘)
=

𝑖

∑

𝑘=0

℧

(𝛼,𝛽)

(𝑖,𝑘)

Γ (1 + 𝑘) (𝜂

𝑘+𝜎

)

Γ (1 + 𝑘 + 𝜎)

. (45)

From (44) and (45), it follows that

𝜙

𝑐

𝑛 0
𝐼

𝜎

𝜂
𝑢 (𝑡) =

𝑚

∑

𝑖=0

𝑐

𝑖

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

℧

(𝛼,𝛽,𝜂,𝜎)

(𝑖,𝑘)
𝑐𝑡

𝑛

. (46)

We may also write

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

℧

(𝛼,𝛽,𝜂,𝜎)

(𝑖,𝑘)
𝑐𝑡

𝑛

=

𝑚

∑

𝑗=0

𝑑

(𝑖,𝑗)
𝑃

(𝛼,𝛽)

𝜏,𝑗
(𝑡) , (47)

where 𝑑
(𝑖,𝑗)

are given by

𝑑

(𝑖,𝑗)
=

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

℧

(𝛼,𝛽,𝜂,𝜎)

(𝑖,𝑘)

𝑅

(𝛼,𝛽)

𝜏,𝑗

∫

𝜏

0

𝑐𝑡

𝑛

𝑤

𝛼,𝛽

𝜏
(𝑡) 𝑃

(𝛼,𝛽)

𝜏,𝑗
(𝑡) 𝑑𝑡.

(48)

After simplification, we have

𝑑

(𝑖,𝑗)
=

𝑐

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

℧

(𝛼,𝛽,𝜂,𝜎)

(𝑖,𝑘)

𝑅

(𝛼,𝛽)

𝜏,𝑗

𝑗

∑

𝑙=0

℧

(𝛼,𝛽)

(𝑗,𝑙)
∫

𝜏

0

𝑡

(𝑙+𝛽+𝑛)

(𝜏 − 𝑡)

𝛼

𝑑𝑡,

=

𝑐

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

℧

(𝛼,𝛽,𝜂,𝜎)

(𝑖,𝑘)

𝑅

(𝛼,𝛽)

𝜂,𝑗

𝑗

∑

𝑙=0

℧

(𝛼,𝛽)

(𝑗,𝑙)

Γ (𝑙 + 𝛽 + 𝑛 + 1) Γ (𝛼 + 1)

Γ (𝑙 + 𝛽 + 𝑛 + 𝛼 + 1)

⋅ 𝜏

(𝑙+𝛽+𝑛+𝛼+1)

.

(49)

Now using relation (45) we can write

𝑑

(𝑖,𝑗)
=

𝑖

∑

𝑘=0

℧

(𝛼,𝛽)

(𝑖,𝑘)

𝑗

∑

𝑙=0

℧

(𝛼,𝛽)

(𝑗,𝑙)

⋅

𝑐Γ (1 + 𝑘) Γ (𝑙 + 𝛽 + 𝑛 + 1) Γ (𝛼 + 1)

𝑅

(𝛼,𝛽)

𝜏,𝑗
Γ (1 + 𝑘 + 𝜎) Γ (𝑙 + 𝛽 + 𝑛 + 𝛼 + 1)

⋅ 𝜏

(𝑙+𝛽+𝑛+𝛼+1)

(𝜂

𝑘+𝜎

) .

(50)

Using (50) in (46), we obtain

𝜙

𝑐

𝑛 0
𝐼

𝜎

𝜂
𝑌 (𝑡) =

𝑚

∑

𝑖=0

𝑚

∑

𝑗=0

𝐶

𝑖
𝑑

(𝑖,𝑗)
𝑃

(𝛼,𝛽)

𝜏,𝑗
(𝑡) , (51)

which can be written in matrix form as

𝜙

𝑐

𝑛 0
𝐼

𝜎

𝜂
𝑌 (𝑡) = 𝐾

𝑇

𝑀
𝑄

(𝜎,𝜙
𝑐

𝑛
,𝜂)

𝑀×𝑀
Ψ

𝑀
(𝑡) ,

(52)

where the entries of the matrix𝑄(𝜎,𝜙
𝑐

𝑛
,𝜂)

𝑀×𝑀
are as defined in (50).
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4. Application of the Operational Matrices

In this section we apply the new operational matrices to solve
coupled system of nonlinear fractional differential equations.
The following lemmas are of basic importance in our further
investigation.

Lemma 8. If𝐷𝜎

𝑢(𝑡) =W𝑇

𝑀
Ψ
𝑀
(𝑡), where 1 < 𝜎 ≤ 2, and

𝑢 (0) = 𝑢

0
,

𝑢 (𝜏) =

𝑚−2

∑

𝑖=1

𝜁

𝑖
𝑢 (𝜉

𝑖
) ,

(53)

where 𝜁
𝑖
and 𝜉

𝑖
are as defined in (2), and if ∑𝑚−2

𝑖=0
𝜁

𝑖
𝜉

𝑖
− 𝜏 ̸= 0,

then 𝑢(𝑡) can be written as

𝑢 (𝑡) =W𝑇

𝑀
V1Ψ𝑀 (𝑡) , (54)

and the matrix V1 is defined as

V1 = (H
𝜏,𝜎

𝑀×𝑀
+Q(𝜎,𝜙

𝜌

1
,𝜏)

𝑀×𝑀
−

𝑚−2

∑

𝑖=1

Q(𝜎,𝜙
󰜚𝑖

1
,𝜉
𝑖
)

𝑀×𝑀
+ F1

𝑇

𝑀
) , (55)

where 𝜌 = 𝜏/(∑

𝑚−2

𝑖=0
𝜁

𝑖
𝜉

𝑖
− 𝜏), 󰜚

𝑖
= 𝜉

𝑖
/(∑

𝑚−2

𝑖=0
𝜁

𝑖
𝜉

𝑖
− 𝜏), and

F1𝑇𝑀Ψ𝑀(𝑡) = 𝑢0 + (𝑡/(∑
𝑚−2

𝑖=0
𝜁

𝑖
𝜉

𝑖
− 𝜏))(−∑

𝑚−2

𝑖=1
𝜁

𝑖
𝑢

0
+ 𝑢

0
).

Proof. Consider

𝐷

𝜎

𝑢 (𝑡) =W𝑇

𝑀
Ψ
𝑀
(𝑡) . (56)

Application of fractional integration of order 𝜎 implies that

𝑢 (𝑡) =W𝑇

𝑀
H𝜏,𝜎

𝑀×𝑀
Ψ
𝑀
(𝑡) + 𝑐

0
+ 𝑐

1
𝑡, (57)

where 𝑐
0
and 𝑐

1
are constants of integration. Using the initial

condition 𝑢(0) = 𝑢

0
implies that 𝑐

0
= 𝑢

0
. Application of

nonlocal boundary condition implies that
𝑚−2

∑

𝑖=1

𝜁

𝑖
𝑢 (𝜉

𝑖
) =W𝑇

𝑀

𝑚−2

∑

𝑖=1

𝜁

𝑖
H𝜏,𝜎

𝑀×𝑀
Ψ
𝑀
(𝜉

𝑖
) +

𝑚−2

∑

𝑖=1

𝜁

𝑖
𝑢

0

+ 𝑐

1

𝑚−2

∑

𝑖=1

𝜁

𝑖
𝜉

𝑖
,

𝑢 (𝜏) =W𝑇

𝑀
H𝜏,𝜎

𝑀×𝑀
Ψ
𝑀
(𝜏) + 𝑢

0
+ 𝑐

1
𝜏.

(58)

Equating the above two equations we get

𝑐

1
=

1

∑

𝑚−2

𝑖=0
𝜁

𝑖
𝜉

𝑖
− 𝜏

(W𝑇

𝑀
H𝜏,𝜎

𝑀×𝑀
Ψ
𝑀
(𝜏)

−W𝑇

𝑀

𝑚−2

∑

𝑖=1

𝜁

𝑖
H𝜏,𝜎

𝑀×𝑀
Ψ
𝑀
(𝜉

𝑖
) −

𝑚−2

∑

𝑖=1

𝜁

𝑖
𝑢

0
+ 𝑢

0
) .

(59)

Using the value of 𝑐
1
in (57) and making use of Lemma 6 we

get the following estimates:

𝑢 (𝑡) =W𝑇

𝑀
H𝜏,𝜎

𝑀×𝑀
Ψ
𝑀
(𝑡) +W𝑇

𝑀
Q(𝜎,𝜙

𝜌

1
,𝜏)

𝑀×𝑀
Ψ
𝑀
(𝑡)

−W𝑇

𝑀

𝑚−2

∑

𝑖=1

Q(𝜎,𝜙
󰜚𝑖

1
,𝜉
𝑖
)

𝑀×𝑀
Ψ
𝑀
(𝑡) + F1

𝑇

𝑀
Ψ
𝑀
(𝑡) ,

(60)

where 𝜌 = 1/(∑𝑚−2

𝑖=0
𝜁

𝑖
𝜉

𝑖
− 𝜏), 󰜚

𝑖
= 𝜉

𝑖
/(∑

𝑚−2

𝑖=0
𝜁

𝑖
𝜉

𝑖
− 𝜏), and

F1
𝑇

𝑀
Ψ
𝑀
(𝑡) = 𝑢

0
+

𝑡

∑

𝑚−2

𝑖=0
𝜁

𝑖
𝜉

𝑖
− 𝜏

(−

𝑚−2

∑

𝑖=1

𝜁

𝑖
𝑢

0
+ 𝑢

0
) . (61)

After simplification we get

𝑢 (𝑡)

=W𝑇

𝑀
(H𝜏,𝜎

𝑀×𝑀
+Q(𝜎,𝜙

𝜌

1
,𝜏)

𝑀×𝑀
−

𝑚−2

∑

𝑖=1

Q(𝜎,𝜙
󰜚𝑖

1
,𝜉
𝑖
)

𝑀×𝑀
+ F1

𝑇

𝑀
)

⋅Ψ
𝑀
(𝑡) ,

(62)

which completes the proof.

Lemma 9. If𝐷𝜎

𝑢(𝑡) =W𝑇

𝑀
Ψ
𝑀
(𝑡), where 1 < 𝜎 ≤ 2 and

𝑢

󸀠

(0) = 𝑎

1
𝑢 (0) + 𝑎

2
𝑢 (𝜏) ,

𝑢

󸀠

(𝜏) = 𝑏

1
𝑢 (0) + 𝑏

2
𝑢 (𝜏) ,

(63)

then

𝑢 (𝑡) =W𝑇

𝑀
V2Ψ𝑀 (𝑡) , (64)

where the matrix V2 is defined as

V2 = (H
𝜏,𝜎

𝑀×𝑀
+Q(𝜎,𝜙

𝑑1

0
,𝜏)

𝑀×𝑀
+Q(𝜎−1,𝜙

𝑑2

0
,𝜏)

𝑀×𝑀
+Q(𝜎,𝜙

𝑑3

1
,𝜏)

𝑀×𝑀

+Q(𝜎−1,𝜙
𝑑4

1
,𝜏)

𝑀×𝑀
) ,

(65)

where𝑑
1
= (𝜆

1
𝜆

3
(1−𝑎

2
𝜏)−𝑎

2
𝜆

2
)/𝜆

2
𝜆

3
,𝑑

2
= −𝜆

3
(1−𝑎

2
𝜏)/𝜆

2
,

𝑑

3
= 𝜆

1
/𝜆

2
, and 𝑑

4
= −𝜆

3
/𝜆

2
.Here one assumes that 𝜆

2
, 𝜆

3
̸=

0 and are defined as 𝜆
1
= (𝑏

1
+ 𝑏

2
)𝑎

2
− (𝑎

1
+ 𝑎

2
)𝑏

2
, 𝜆

2
= (𝑏

1
+

𝑏

2
)(1 − 𝑎

2
𝜏) − (𝑎

1
+ 𝑎

2
)(1 − 𝑏

2
𝜏), and 𝜆

3
= (𝑎

1
+ 𝑎

2
).

Proof. Consider

𝐷

𝜎

𝑢 (𝑡) =W𝑇

𝑀
Ψ
𝑀
(𝑡) , (66)

which implies that

𝑢 (𝑡) =W𝑇

𝑀
H𝜏,𝜎

𝑀×𝑀
Ψ
𝑀
(𝑡) + 𝑐

0
+ 𝑐

1
𝑡. (67)

From the above equation we can also write

𝑢

󸀠

(𝑡) =W𝑇

𝑀
H𝜏,𝜎−1

𝑀×𝑀
Ψ
𝑀
(𝑡) + 𝑐

1
. (68)

Now using 𝑢󸀠(0) = 𝑎
1
𝑢(0)+𝑎

2
𝑢(𝜏) and 𝑢󸀠(𝜏) = 𝑏

1
𝑢(0)+𝑏

2
𝑢(𝜏)

we get

(1 − 𝑎

2
𝜏) 𝑐

1
− (𝑎

1
+ 𝑎

2
) 𝑐

0
= 𝑎

2
W𝑇

𝑀
H𝜏,𝜎

𝑀×𝑀
Ψ
𝑀
(𝜏) .

(1 − 𝑏

2
𝜏) 𝑐

1
− (𝑏

1
+ 𝑏

2
) 𝑐

0

= 𝑏

2
W𝑇

𝑀
H𝜏,𝜎

𝑀×𝑀
Ψ
𝑀
(𝜏) −W𝑇

𝑀
H𝜏,𝜎−1

𝑀×𝑀
Ψ
𝑀
(𝜏) ,

(69)
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which can be easily solved for 𝑐
0
and 𝑐

1
, and we can write

𝑐

1
=

𝜆

1

𝜆

2

W𝑇

𝑀
H𝜏,𝜎

𝑀×𝑀
Ψ
𝑀
(𝜏) −

𝜆

3

𝜆

2

W𝑇

𝑀
H𝜏,𝜎−1

𝑀×𝑀
Ψ
𝑀
(𝜏) ,

𝑐

0
=

𝜆

1
𝜆

3
(1 − 𝑎

2
𝜏) − 𝑎

2
𝜆

2

𝜆

2
𝜆

3

W𝑇

𝑀
H𝜏,𝜎

𝑀×𝑀
Ψ
𝑀
(𝜏)

−

𝜆

3
(1 − 𝑎

2
𝜏)

𝜆

2

W𝑇

𝑀
H𝜏,𝜎−1

𝑀×𝑀
Ψ
𝑀
(𝜏) ,

(70)

where 𝜆
1
= (𝑏

1
+ 𝑏

2
)𝑎

2
− (𝑎

1
+ 𝑎

2
)𝑏

2
, 𝜆

2
= (𝑏

1
+ 𝑏

2
)(1 − 𝑎

2
𝜏) −

(𝑎

1
+ 𝑎

2
)(1 − 𝑏

2
𝜏), and 𝜆

3
= (𝑎

1
+ 𝑎

2
).

Now using the value of 𝑐
0
and 𝑐

1
in (67) we get the

following estimates:

𝑢 (𝑡) =W𝑇

𝑀
H𝜏,𝜎

𝑀×𝑀
Ψ
𝑀
(𝑡) + 𝑑

1
W𝑇

𝑀
H𝜏,𝜎

𝑀×𝑀
Ψ
𝑀
(𝜏)

+ 𝑑

2
W𝑇

𝑀
H𝜏,𝜎−1

𝑀×𝑀
Ψ
𝑀
(𝜏)

+ 𝑑

3
𝑡W𝑇

𝑀
H𝜏,𝜎

𝑀×𝑀
Ψ
𝑀
(𝜏)

+ 𝑑

4
𝑡W𝑇

𝑀
H𝜏,𝜎−1

𝑀×𝑀
Ψ
𝑀
(𝜏) ,

(71)

where𝑑
1
= (𝜆

1
𝜆

3
(1−𝑎

2
𝜏)−𝑎

2
𝜆

2
)/𝜆

2
𝜆

3
,𝑑

2
= −𝜆

3
(1−𝑎

2
𝜏)/𝜆

2
,

𝑑

3
= 𝜆

1
/𝜆

2
, and 𝑑

4
= −𝜆

3
/𝜆

2
.

In view of Lemma 6 we can write the above relation as

𝑢 (𝑡) =W𝑇

𝑀
H𝜏,𝜎

𝑀×𝑀
Ψ
𝑀
(𝑡) +W𝑇

𝑀
Q(𝜎,𝜙

𝑑1

0
,𝜏)

𝑀×𝑀
Ψ
𝑀
(𝑡)

+W𝑇

𝑀
Q(𝜎−1,𝜙

𝑑2

0
,𝜏)

𝑀×𝑀
Ψ
𝑀
(𝑡)

+W𝑇

𝑀
Q(𝜎,𝜙

𝑑3

1
,𝜏)

𝑀×𝑀
Ψ
𝑀
(𝑡)

+W𝑇

𝑀
Q(𝜎−1,𝜙

𝑑4

1
,𝜏)

𝑀×𝑀
Ψ
𝑀
(𝑡) ,

(72)

which can be written as

𝑢 (𝑡) =W𝑇

𝑀
(H𝜏,𝜎

𝑀×𝑀
+Q(𝜎,𝜙

𝑑1

0
,𝜏)

𝑀×𝑀
+Q(𝜎−1,𝜙

𝑑2

0
,𝜏)

𝑀×𝑀

+Q(𝜎,𝜙
𝑑3

1
,𝜏)

𝑀×𝑀
+Q(𝜎−1,𝜙

𝑑4

1
,𝜏)

𝑀×𝑀
)Ψ

𝑀
(𝑡) ,

(73)

which completes proof of the lemma.

4.1. Couple System of FDEs with Variable Coefficients. Con-
sider the following coupled system of FDEs:

𝑢

(𝜎
1
)

(𝑡) = 𝜒

11
(𝑡) 𝑢 (𝑡) + 𝜒

12
(𝑡) 𝑢

𝛾

1
(𝑡) + 𝜒

13
(𝑡) V (𝑡)

+ 𝜒

14
(𝑡) V𝛾

1
(𝑡) + 𝑓 (𝑡) ,

V(𝜎1) (𝑡) = 𝜒
21
(𝑡) 𝑢 (𝑡) + 𝜒

22
(𝑡) 𝑢

𝛾

1
(𝑡) + 𝜒

23
(𝑡) V (𝑡)

+ 𝜒

24
(𝑡) V𝛾

1
(𝑡) + 𝑔 (𝑡) ,

(74)

subject to one of the above discussed boundary conditions
((2) or (4)). Assume that 𝑢(𝜎1)(𝑡) = X𝑇

𝑀
Ψ
𝑀
(𝑡) and V(𝜎1)(𝑡) =

Y𝑇

𝑀
Ψ
𝑀
(𝑡). Then in view of Lemma 8 or Lemma 9 (depends

on the given set of boundary conditions) we can write

𝑢 (𝑡) = X𝑇

𝑀
V𝑢

𝑖
Ψ
𝑀
(𝑡) ,

V (𝑡) = Y𝑇

𝑀
VV
𝑖
Ψ
𝑀
(𝑡) .

(75)

Note that the subscript 𝑖 is used to distinguish between dif-
ferent types of boundary condition. If we are given nonlocal
boundary conditions we will use 𝑖 = 1 and if we are givenmix
derivative boundary condition we will use 𝑖 = 2. Superscripts
𝑢 and V are used to distinguish between conditions for 𝑢(𝑡)
and V(𝑡), respectively. Now in view of Lemma 6, we can write
(74) as

X𝑇

𝑀
Ψ
𝑀
(𝑡) = X𝑇

𝑀
V𝑢

𝑖
K0

𝜒
11

Ψ
𝑀
(𝑡) + X𝑇

𝑀
V𝑢

𝑖
K𝛾
1

𝜒
12

Ψ
𝑀
(𝑡)

+ Y𝑇

𝑀
VV
𝑖
K0

𝜒
13

Ψ
𝑀
(𝑡)

+ Y𝑇

𝑀
VV
𝑖
K𝛾
1

𝜒
14

Ψ
𝑀
(𝑡) + F𝑇

𝑀
Ψ
𝑀
(𝑡) ,

Y𝑇

𝑀
Ψ
𝑀
(𝑡) = X𝑇

𝑀
V𝑢

𝑖
K0

𝜒
21

Ψ
𝑀
(𝑡) + X𝑇

𝑀
V𝑢

𝑖
K𝛾
1

𝜒
22

Ψ
𝑀
(𝑡)

+ Y𝑇

𝑀
VV
𝑖
K0

𝜒
23

Ψ
𝑀
(𝑡)

+ Y𝑇

𝑀
VV
𝑖
K𝛾
1

𝜒
24

Ψ
𝑀
(𝑡) + G𝑇

𝑀
Ψ
𝑀
(𝑡) .

(76)

which can be converted into easily solvable matrix equation
(by following the same step as in [22] from (51) to (69)). The
generalized form of the resulting matrix equation is given as

𝐴𝑋 + 𝑋𝐵 = 𝐶, (77)

where 𝐴, 𝐵, and 𝐶 are of compatible size. The vector𝑋 is the
unknown solution to be determined. The solution method
of such type of equations is explained in [26] and a detailed
algorithm is presented. 𝑀𝑎𝑡𝐿𝑎𝑏 command 𝑑𝑙𝑦𝑎𝑝 uses the
same algorithm presented in [26] for solution to such type
of matrix equations.

4.2. Convergence Analysis. ConsiderΩ𝑢

𝑖,𝑗
andΩV

𝑖,𝑗
as entries of

V𝑢

𝑖
, and VV

𝑖
, respectively. Also assume that Λ𝜒11 ,𝛾1

𝑖,𝑗
are entries

of K𝛾
1

𝜒
24

. Now we can write

𝑢

(𝜎
1
)

(𝑡) =

∞

∑

𝑖=0

𝑢

𝑖
𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡)

= X𝑇

𝑀
Ψ
𝑀
(𝑡) +

∞

∑

𝑖=𝑚+1

𝑢

𝑖
𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡) ,

V(𝜎2) (𝑡) =
∞

∑

𝑖=0

V
𝑖
𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡)

= Y𝑇

𝑀
Ψ
𝑀
(𝑡) +

∞

∑

𝑖=𝑚+1

V
𝑖
𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡) .

(78)
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Using the above estimates and using the same procedure we
can write

X𝑇

𝑀
Ψ
𝑀
(𝑡) − X𝑇

𝑀
V𝑢

𝑖
K0

𝜒
11

Ψ
𝑀
(𝑡) − X𝑇

𝑀
V𝑢

𝑖
K𝛾
1

𝜒
12

Ψ
𝑀
(𝑡)

− Y𝑇

𝑀
VV
𝑖
K0

𝜒
13

Ψ
𝑀
(𝑡) − Y𝑇

𝑀
VV
𝑖
K𝛾
1

𝜒
14

Ψ
𝑀
(𝑡)

− F𝑇
𝑀
Ψ
𝑀
(𝑡) = 𝑅

𝑢
(𝑡) ,

Y𝑇

𝑀
Ψ
𝑀
(𝑡) − X𝑇

𝑀
V𝑢

𝑖
K0

𝜒
21

Ψ
𝑀
(𝑡) − X𝑇

𝑀
V𝑢

𝑖
K𝛾
1

𝜒
22

Ψ
𝑀
(𝑡)

− Y𝑇

𝑀
VV
𝑖
K0

𝜒
23

Ψ
𝑀
(𝑡) − Y𝑇

𝑀
VV
𝑖
K𝛾
1

𝜒
24

Ψ
𝑀
(𝑡)

− G𝑇

𝑀
Ψ
𝑀
(𝑡) = 𝑅V (𝑡) ,

(79)

where

𝑅

𝑢
(𝑡) =

∞

∑

𝑖=𝑚+1

𝑢

𝑖

𝑚

∑

ℎ=0

Ω

𝑢

𝑖,ℎ

𝑚

∑

𝑗=0

Λ

𝜒
11
,0

ℎ,𝑗
𝑃

(𝛼,𝛽)

𝜏,𝑗
(𝑡) +

∞

∑

𝑖=𝑚+1

𝑢

𝑖

⋅

𝑚

∑

ℎ=0

Ω

𝑢

𝑖,ℎ

𝑚

∑

𝑗=0

Λ

𝜒
12
,𝛾
1

ℎ,𝑗
𝑃

(𝛼,𝛽)

𝜏,𝑗
(𝑡)

∞

∑

𝑖=𝑚+1

V
𝑖

𝑚

∑

ℎ=0

Ω

V
𝑖,ℎ

⋅

𝑚

∑

𝑗=0

Λ

𝜒
13
,0

ℎ,𝑗
𝑃

(𝛼,𝛽)

𝜏,𝑗
(𝑡) +

∞

∑

𝑖=𝑚+1

V
𝑖

𝑚

∑

ℎ=0

Ω

V
𝑖,ℎ

⋅

𝑚

∑

𝑗=0

Λ

𝜒
14
,𝛾
1

ℎ,𝑗
𝑃

(𝛼,𝛽)

𝜏,𝑗
(𝑡) +

∞

∑

𝑖=𝑚+1

𝑓

𝑖
𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡)

−

∞

∑

𝑖=𝑚+1

𝑢

𝑖
𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡) ,

𝑅V (𝑡) =

∞

∑

𝑖=𝑚+1

𝑢

𝑖

𝑚

∑

ℎ=0

Ω

𝑢

𝑖,ℎ

𝑚

∑

𝑗=0

Λ

𝜒
21
,0

ℎ,𝑗
𝑃

(𝛼,𝛽)

𝜏,𝑗
(𝑡) +

∞

∑

𝑖=𝑚+1

𝑢

𝑖

⋅

𝑚

∑

ℎ=0

Ω

𝑢

𝑖,ℎ

𝑚

∑

𝑗=0

Λ

𝜒
22
,𝛾
1

ℎ,𝑗
𝑃

(𝛼,𝛽)

𝜏,𝑗
(𝑡)

∞

∑

𝑖=𝑚+1

V
𝑖

𝑚

∑

ℎ=0

Ω

V
𝑖,ℎ

⋅

𝑚

∑

𝑗=0

Λ

𝜒
23
,0

ℎ,𝑗
𝑃

(𝛼,𝛽)

𝜏,𝑗
(𝑡) +

∞

∑

𝑖=𝑚+1

V
𝑖

𝑚

∑

ℎ=0

Ω

V
𝑖,ℎ

⋅

𝑚

∑

𝑗=0

Λ

𝜒
24
,𝛾
1

ℎ,𝑗
𝑃

(𝛼,𝛽)

𝜏,𝑗
(𝑡) +

∞

∑

𝑖=𝑚+1

𝑔

𝑖
𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡)

−

∞

∑

𝑖=𝑚+1

𝑢

𝑖
𝑃

(𝛼,𝛽)

𝜏,𝑖
(𝑡) ,

(80)

where𝑓
𝑖
and 𝑔

𝑖
are the approximation coefficients of𝑓(𝑡) and

𝑔(𝑡), respectively. In view of maximum norm and (12) we can
write

󵄩

󵄩

󵄩

󵄩

𝑅

𝑢
(𝑡)

󵄩

󵄩

󵄩

󵄩

≤

∞

∑

𝑖=𝑚+1

󵄨

󵄨

󵄨

󵄨

𝑢

𝑖

󵄨

󵄨

󵄨

󵄨

𝑚

∑

ℎ=0

𝑚

∑

𝑗=0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

Ω

𝑢

𝑖,ℎ
Λ

𝜒
11
,0

ℎ,𝑗

̂

𝐶 (𝑗, 𝜖)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+

∞

∑

𝑖=𝑚+1

󵄨

󵄨

󵄨

󵄨

𝑢

𝑖

󵄨

󵄨

󵄨

󵄨

𝑚

∑

ℎ=0

𝑚

∑

𝑗=0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

Ω

𝑢

𝑖,ℎ
Λ

𝜒
12
,𝛾
1

ℎ,𝑗

̂

𝐶 (𝑗, 𝜖)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∞

∑

𝑖=𝑚+1

󵄨

󵄨

󵄨

󵄨

V
𝑖

󵄨

󵄨

󵄨

󵄨

⋅

𝑚

∑

ℎ=0

𝑚

∑

𝑗=0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

Ω

V
𝑖,ℎ
Λ

𝜒
13
,0

ℎ,𝑗

̂

𝐶 (𝑗, 𝜖)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+

∞

∑

𝑖=𝑚+1

󵄨

󵄨

󵄨

󵄨

V
𝑖

󵄨

󵄨

󵄨

󵄨

⋅

𝑚

∑

ℎ=0

𝑚

∑

𝑗=0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

Ω

V
𝑖,ℎ
Λ

𝜒
14
,𝛾
1

ℎ,𝑗

̂

𝐶 (𝑗, 𝜖)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+

∞

∑

𝑖=𝑚+1

󵄨

󵄨

󵄨

󵄨

𝑓

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

̂

𝐶 (𝑖, 𝜖)

󵄨

󵄨

󵄨

󵄨

󵄨

−

∞

∑

𝑖=𝑚+1

󵄨

󵄨

󵄨

󵄨

𝑢

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

̂

𝐶 (𝑖, 𝜖)

󵄨

󵄨

󵄨

󵄨

󵄨

,

󵄩

󵄩

󵄩

󵄩

𝑅V (𝑡)
󵄩

󵄩

󵄩

󵄩

=

∞

∑

𝑖=𝑚+1

󵄨

󵄨

󵄨

󵄨

𝑢

𝑖

󵄨

󵄨

󵄨

󵄨

𝑚

∑

ℎ=0

𝑚

∑

𝑗=0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

Ω

𝑢

𝑖,ℎ
Λ

𝜒
21
,0

ℎ,𝑗

̂

𝐶 (𝑗, 𝜖)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+

∞

∑

𝑖=𝑚+1

󵄨

󵄨

󵄨

󵄨

𝑢

𝑖

󵄨

󵄨

󵄨

󵄨

𝑚

∑

ℎ=0

𝑚

∑

𝑗=0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

Ω

𝑢

𝑖,ℎ
Λ

𝜒
22
,𝛾
1

ℎ,𝑗

̂

𝐶 (𝑗, 𝜖)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∞

∑

𝑖=𝑚+1

󵄨

󵄨

󵄨

󵄨

V
𝑖

󵄨

󵄨

󵄨

󵄨

⋅

𝑚

∑

ℎ=0

𝑚

∑

𝑗=0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

Ω

V
𝑖,ℎ
Λ

𝜒
23
,0

ℎ,𝑗

̂

𝐶 (𝑗, 𝜖)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+

∞

∑

𝑖=𝑚+1

󵄨

󵄨

󵄨

󵄨

V
𝑖

󵄨

󵄨

󵄨

󵄨

⋅

𝑚

∑

ℎ=0

𝑚

∑

𝑗=0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

Ω

V
𝑖,ℎ
Λ

𝜒
24
,𝛾
1

ℎ,𝑗

̂

𝐶 (𝑗, 𝜖)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+

∞

∑

𝑖=𝑚+1

󵄨

󵄨

󵄨

󵄨

𝑔

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

̂

𝐶 (𝑖, 𝜖)

󵄨

󵄨

󵄨

󵄨

󵄨

−

∞

∑

𝑖=𝑚+1

󵄨

󵄨

󵄨

󵄨

𝑢

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

̂

𝐶 (𝑖, 𝜖)

󵄨

󵄨

󵄨

󵄨

󵄨

.

(81)

In view of Lemma 2.1 of [22] the expansion coefficients 𝑢
𝑖
and

V
𝑖
decay faster than any of the algebraic order of index 𝑖. We

can write 𝑢
𝑖
, V

𝑖
, 𝑓

𝑖
, and 𝑔

𝑖
approach to zero as 𝑖 → ∞ and as

a result we conclude that
󵄩

󵄩

󵄩

󵄩

𝑅

𝑢
(𝑡)

󵄩

󵄩

󵄩

󵄩

󳨀→ 0 as 𝑚 󳨀→ ∞,

󵄩

󵄩

󵄩

󵄩

𝑅V (𝑡)
󵄩

󵄩

󵄩

󵄩

󳨀→ 0 as 𝑚 󳨀→ ∞.

(82)

We see that the convergence of the scheme depends on the
decay of expansion coefficients, and the decay of expansion
coefficients depends solely on the smoothness of solution
for the problem. Therefore if the solution for the problem
is smooth we get high accuracy at small scale level, and the
accuracy will increase if we increase the scale level.

4.3. Nonlinear FDEs with 𝑚-Point Boundary Conditions. To
solve nonlinear FDEs we will implement operational matrix
method combined with qasilinearization method. Consider
the following nonlinear FDE:

𝑢

𝜎
1
= 𝑓 (𝑡, 𝑢

𝛾
1
, V𝛾1 , 𝑢, V) ,

V𝜎2 = 𝑔 (𝑡, 𝑢𝛾1 , V𝛾1 , 𝑢, V) .
(83)

In qasilinearization method the nonlinear differential
equation is converted into linear differential equation with
variable coefficients. The nonlinear part of the differential
equation is linearized about some function. In most cases the
initial function is selected according to the physical problem
under consideration, although in some cases it is selected as
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Table 1: Comparison of absolute error of Example 1 obtained with the proposed method and its comparison with Haar wavelets [28] and
RKM [29].

𝑀 = 8 (HW) [28] 𝑛 = 8 (RKM) [29] 𝑀 = 8 (PM) 𝑀 = 32 (HW) [28] 𝑀 = 25 (PM)
𝑡 = 0.1 6.97 × 10

−5

2.41 × 10

−5

4.192 × 10

−6

4.42 × 10

−7

6.05 × 10

−9

𝑡 = 0.2 4.59 × 10

−5

2.10 × 10

−5

2.13 × 10

−5

1.78 × 10

−7

3.15 × 10

−9

𝑡 = 0.3 4.59 × 10

−5

3.42 × 10

−6

1.47 × 10

−5

1.80 × 10

−7

1.04 × 10

−9

𝑡 = 0.4 1.33 × 10

−4

2.23 × 10

−5

4.45 × 10

−6

4.42 × 10

−7

4.04 × 10

−9

𝑡 = 0.5 1.37 × 10

−4

2.26 × 10

−5

2.28 × 10

−5

5.35 × 10

−7

6.10 × 10

−9

𝑡 = 0.6 1.13 × 10

−4

2.93 × 10

−5

9.55 × 10

−6

4.41 × 10

−7

7.98 × 10

−9

𝑡 = 0.7 5.80 × 10

−5

3.27 × 10

−5

1.09 × 10

−5

1.78 × 10

−7

1.80 × 10

−9

𝑡 = 0.8 6.68 × 10

−5

3.00 × 10

−5

1.36 × 10

−5

1.78 × 10

−7

8.82 × 10

−9

𝑡 = 0.9 6.27 × 10

−4

6.15 × 10

−5

1.50 × 10

−5

4.40 × 10

−7

1.34 × 10

−8

the solution for the linear part [27]. We will first solve the
linear part of (83):

𝑢

𝜎
1
= 𝐿

1
(𝑢, V, 𝑢𝛾

1
, V𝛾

1
) ,

V𝜎2 = 𝐿
2
(𝑢, V, 𝑢𝛾

1
, V𝛾

1
) ,

(84)

under given boundary conditions using the method devel-
oped in the previous section. 𝐿

1
and 𝐿

2
are the linear part

of 𝑓 and 𝑔, respectively. The solution for this problem will
be labeled as 𝑢

0
(𝑡) and V

0
(𝑡). The next step is to linearize the

nonlinear part of 𝑓 and 𝑔 about 𝑢
0
(𝑡) and V

0
(𝑡) using Taylor

series expansion. As a result the nonlinear differential equa-
tion will be converted into linear differential equation with
variable coefficients, which can be solved by the proposed.
The whole process can be seen as a recurrence relation as

𝑢

𝜎
1

𝑟+1
= 𝑓

𝑟
+

𝜕𝑓

𝑟

𝜕𝑢

(𝑢

𝑟+1
− 𝑢

𝑟
)

+

𝜕𝑓

𝑟

𝜕V
(V
𝑟+1

− V
𝑟
(𝑡))

𝜕𝑓

𝑟

𝜕𝑢

𝛾
1

(𝑢

𝛾
1

𝑟+1
− 𝑢

𝛾
1

𝑟
)

+

𝜕𝑓

𝑟

𝜕V𝛾1
(V𝛾1
𝑟+1

− V𝛾1
𝑟
) ,

V𝜎1
𝑟+1

= 𝑔

𝑟
+

𝜕𝑔

𝑟

𝜕𝑢

(𝑢

𝑟+1
− 𝑢

𝑟
)

+

𝜕𝑔

𝑟

𝜕V
(V
𝑟+1

− V
𝑟
(𝑡))

𝜕𝑔

𝑟

𝜕𝑢

𝛾
1

(𝑢

𝛾
1

𝑟+1
− 𝑢

𝛾
1

𝑟
)

+

𝜕𝑔

𝑟

𝜕V𝛾1
(V𝛾1
𝑟+1

− V𝛾1
𝑟
) ,

(85)

where 𝑓
𝑟
= 𝑓(𝑡, 𝑢

𝛾
1

𝑟
, V𝛾1

𝑟
, 𝑢

𝑟
, V

𝑟
) and 𝑔

𝑟
= 𝑔(𝑡, 𝑢

𝛾
1

𝑟
, V𝛾1

𝑟
, 𝑢

𝑟
, V

𝑟
).

The above equation is linear fractional differential equations
with variable coefficients and can be easily solved with the
method developed in the previous section.

5. Illustrative Examples

We show the applicability of the method by solving some
test problems. Where available we compare our results with
results obtained with other methods.

Example 1. Consider the following linear fractional order
three-point boundary value problem [28]:

𝐷

3/2

𝑋 (𝑡) +

𝑒

−3𝜋

√𝜋

𝑋 (𝑡) = 𝑔 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑋 (0) = 0,

𝑋 (1) =

−125

196

𝑋(

2

5

) ,

(86)

where the forcing term 𝑔(𝑡) is defined as

𝑔 (𝑡) =

𝑒

−3𝜋

√𝜋

(𝑡

2

(40𝑡

2

− 74𝑡 + 33)

+ 4𝑒

3𝜋
√
𝑡 (128𝑡

2

− 148𝑡 + 33)) .

(87)

The exact solution for this problem is 𝑋(𝑡) = 𝑡5 − 37𝑡3/20 +
33𝑡

2

/40.This problem is solved in [28] using Haar wavelets
(HW). In [29] this problem is solved using improved repro-
ducing kernelmethod (RKM).We compare the absolute error
obtained with the proposed method with the error obtained
with HW and RKM.The results are shown in Table 1.

Example 2. Consider the following fractional differential
equations having variable coefficients and five-point bound-
ary conditions [29, 30]:

𝐷

1.3

𝑋 (𝑡) + cos (𝑡) 𝐷𝑋 (𝑡) + 2𝑋 (𝑡) = 𝑓 (𝑡) ,

𝑡 ∈ [0, 1] ,

𝑋 (0) = 0,

𝑋(

1

8

) + 2𝑋(

1

2

) +

31

49

𝑋(

7

8

) = 𝑋 (1) ,

(88)

where 𝑓(𝑡) = 2𝑡

2

+ 2𝑡 cos(𝑡) + Γ(3)/Γ(1.7)𝑡0.7. The exact
solution for the problem is 𝑋(𝑡) = 𝑡

2

. We approximate
solution for this problem with the proposed method and
compare its absolute error with the error reported in [29,
30] (in these references reproducing kernel method and
improved reproducing kernel method are used to solve
this problem). We observe that the solution obtained with
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Table 2: Comparison of absolute error of Example 2 obtained with
the proposed method and its comparison with RKM [30] and
improved reproducing kernel method [29].

𝑀 = 10 (RKM) [30] 𝑀 = 10 (IRKM) [29] 𝑀 = 20 (PM)
𝑡 = 0.1 1.11 × 10

−7

3.09 × 10

−8

7.35 × 10

−8

𝑡 = 0.2 2.87 × 10

−7

1.69 × 10

−8

2.43 × 10

−9

𝑡 = 0.3 5.51 × 10

−7

3.55 × 10

−9

9.54 × 10

−9

𝑡 = 0.4 9.23 × 10

−7

1.89 × 10

−9

2.17 × 10

−10

𝑡 = 0.5 1.41 × 10

−6

2.94 × 10

−10

9.37 × 10

−11

𝑡 = 0.6 2.03 × 10

−6

8.47 × 10

−9

7.58 × 10

−11

𝑡 = 0.7 2.77 × 10

−6

2.97 × 10

−8

4.72 × 10

−11

𝑡 = 0.8 3.64 × 10

−6

3.94 × 10

−8

8.24 × 10

−12

𝑡 = 0.9 4.62 × 10

−6

5.23 × 10

−8

3.57 × 10

−10

the proposed method is in good agreement with the exact
solution. In Table 2 absolute error at different value of 𝑡 is
compared with the error reported in [29, 30].

Example 3. Consider the following nonlinear fractional dif-
ferential equations with 6-point nonlocal boundary value
problem:

𝐷

1.8

𝑋 (𝑡) + 𝑋

󸀠

(𝑡) + 𝑋 (𝑡) = (𝑋 (𝑡) + 𝑋

󸀠

(𝑡))

2

− 𝑋 (𝑡)𝑋

󸀠

(𝑡) + 𝑓 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑋 (0) = 1,

(

1

2

)𝑋(

1

2

) + (

2

3

)𝑋(

5

8

) + (

1

4

)𝑋(

3

4

)

− 0.646𝑋(

7

8

) = 𝑋 (1) ,

(89)

where the forcing term 𝑓(𝑡) is defined as

𝑓 (𝑡) = 20𝑡

4

− 4𝑡

2

− 2𝑡 + 11𝑡

5

+ 4𝑡

6

− 25𝑡

8

− 5𝑡

9

− 𝑡

10

+

2229536516744740625𝑡

16/5

144115188075855872

− 4.

(90)

The exact and unique solution for the problem is 𝑋(𝑡) =

𝑡

5

− 2𝑡 + 1. We approximate the solution for this problem
with the proposed iterative method. This example is solved
using the parameters 𝛼 = 0, 𝛽 = 2, and𝑀 = 8.We observe
that the method provides good approximation to solution for
the problem. The approximate solution approaches the exact
solution as we make iteration. Absolute difference of exact
and approximate solution at different stages of iteration is
shown in Table 3. It can be easily seen that at fourth iteration
the absolute difference is less than 10−8.

Example 4. Consider the following nonlinear differential
equation with 6-point nonlocal boundary conditions:

𝐷

2

𝑋 (𝑡) + 𝑋

󸀠

(𝑡) + 𝑋 (𝑡)

= (𝑋

󸀠

(𝑡))

2

+ 𝑋 (𝑡)𝑋

󸀠

(𝑡) + 𝑓 (𝑡) , 𝑡 ∈ [0, 1] ,

Table 3: Absolute difference of exact and approximate solution of
Example 3 at different stages of the iteration.

1st iteration 2nd iteration 3rd iteration 4th iteration
𝑡 = 0.1 4.42 × 10

−2

1.87 × 10

−3

9.17 × 10

−6

1.65 × 10

−8

𝑡 = 0.2 4.18 × 10

−2

3.04 × 10

−3

1.12 × 10

−6

2.03 × 10

−8

𝑡 = 0.3 2.70 × 10

−2

3.56 × 10

−3

2.30 × 10

−6

1.80 × 10

−8

𝑡 = 0.4 1.42 × 10

−2

3.93 × 10

−3

2.92 × 10

−6

2.77 × 10

−8

𝑡 = 0.5 6.92 × 10

−3

4.09 × 10

−3

3.25 × 10

−6

2.70 × 10

−8

𝑡 = 0.6 3.83 × 10

−3

4.04 × 10

−3

3.33 × 10

−6

2.04 × 10

−8

𝑡 = 0.7 2.81 × 10

−3

3.96 × 10

−3

3.26 × 10

−6

2.52 × 10

−8

𝑡 = 0.8 2.76 × 10

−3

3.80 × 10

−3

3.15 × 10

−6

2.85 × 10

−8

𝑡 = 0.9 3.33 × 10

−3

3.57 × 10

−3

2.95 × 10

−6

1.94 × 10

−8

𝑡 = 1.0 4.58 × 10

−3

3.30 × 10

−3

2.71 × 10

−6

2.48 × 10

−8

Table 4: Absolute difference of exact and approximate solution of
Example 4 at different stages of the iteration.

1st iteration 2nd iteration 3rd iteration 4th iteration
𝑡 = 0.1 1.61 × 10

−5

5.27 × 10

−8

3.10 × 10

−15

1.24 × 10

−17

𝑡 = 0.2 2.80 × 10

−5

8.29 × 10

−8

4.88 × 10

−15

2.82 × 10

−17

𝑡 = 0.3 3.62 × 10

−5

9.93 × 10

−8

5.63 × 10

−15

2.23 × 10

−17

𝑡 = 0.4 4.13 × 10

−5

1.07 × 10

−7

2.16 × 10

−15

1.26 × 10

−16

𝑡 = 0.5 4.41 × 10

−5

1.11 × 10

−7

5.09 × 10

−15

1.12 × 10

−17

𝑡 = 0.6 4.52 × 10

−5

1.13 × 10

−7

6.21 × 10

−15

2.22 × 10

−17

𝑡 = 0.7 4.53 × 10

−5

1.13 × 10

−7

6.10 × 10

−15

2.22 × 10

−17

𝑡 = 0.8 4.48 × 10

−5

1.12 × 10

−7

5.88 × 10

−15

1.01 × 10

−17

𝑡 = 0.9 4.40 × 10

−5

1.10 × 10

−7

5.77 × 10

−15

4.42 × 10

−17

𝑡 = 1.0 4.28 × 10

−5

1.08 × 10

−7

5.44 × 10

−15

2.21 × 10

−17

𝑋 (0) = 0,

0.8𝑋(

1

2

) + 0.75𝑋(

5

8

) + 0.50𝑋(

3

4

) − 1.11𝑋(

7

8

)

= 𝑋 (1) .

(91)

The forcing term 𝑓(𝑡) is defined as

𝑓 (𝑡) = −

sin (𝑡/3)2

9

−

2 sin (𝑡/3) sin (𝑡/6)2

3

−

16 sin (𝑡/6)2

9

+

8

9

.

(92)

The exact solution for the problem is𝑋(𝑡) = cos(𝑡/3). We
carry out the same analysis as in the previous example. The
same conclusion is made; the solution converges rapidly to
the exact solution for the problem. In Table 4 absolute error
at different stages of iteration is given. For this example the
absolute error is less than 10−16 at fourth iteration. For this
example we set 𝛼 = 1, 𝛽 = 1, and𝑀 = 10.

Example 5. Consider the Lane-Emden equations [31]:

𝑢

(𝜎)

(𝑡) + 𝜙

1
(𝑡) 𝑢

󸀠

(𝑡) − 𝑐

11
𝑢

2

(𝑡) − 𝑐

12
𝑢 (𝑡) V (𝑡) = 0,

V(𝜎) (𝑡) + 𝜙
2
(𝑡) V󸀠 (𝑡) − 𝑐

21
𝑢

2

(𝑡) − 𝑐

22
𝑢 (𝑡) V (𝑡) = 0.

(93)
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Table 5: Maximal error of Example 5 obtained with the proposed
method and its comparison with error reported in [31].

MER𝑢

𝑛
[31] MERV

𝑛
[31] MER𝑢

𝑛
(PM) MERV

𝑛
(PM)

n = 2 0.86666 1.14667 1.12626 3.92536

n = 3 0.44282 0.57063 0.59223 2.63829

n = 4 0.23094 0.29382 0.01280 0.89223

n = 5 0.12671 0.15988 1.12 × 10

−3

7.29 × 10

−2

n = 6 0.07155 0.08982 9.36 × 10

−3

4.96 × 10

−2

n = 7 0.04160 0.05202 3.10 × 10

−3

9.41 × 10

−3

n = 8 0.02467 0.03077 8.72 × 10

−3

8.67 × 10

−3

n = 9 0.01490 0.01855 6.94 × 10

−3

6.62 × 10

−4

n = 10 0.00913 0.01134 1.76 × 10

−3

1.93 × 10

−4

n = 11 0.00566 0.00702 6.82 × 10

−4

3.97 × 10

−5

n = 12 0.00354 0.00439 7.32 × 10

−5

1.35 × 10

−5

n = 13 0.00224 0.00277 2.36 × 10

−5

6.78 × 10

−5

n = 14 0.00142 0.00176 7.91 × 10

−6

0.41 × 10

−6

n = 15 0.00091 0.00112 9.45 × 10

−7

8.93 × 10

−6

n = 16 0.00058 0.00072 7.34 × 10

−7

8.54 × 10

−6

Systems of Lane-Emden equations arise in the modeling of
several physical phenomena, such as pattern formation, pop-
ulation evolution, and chemical reactions.Theparameters 𝑐

11
,

𝑐

12
, 𝑐

21
, and 𝑐

22
can be considered from the actual chemical

reaction or dynamics under consideration. We solve this
problem with the proposed method subject to the following
type of boundary conditions:

𝑢

󸀠

(0) = 2𝑢 (0) − 𝑢 (1) ,

𝑢

󸀠

(1) = 𝑢 (0) + 2𝑢 (1) ,

V󸀠 (0) = −2V (0) + V (1) ,

V󸀠 (1) = V (0) − 2V (𝜏) .

(94)

In [31], Adomian decomposition method is employed to
get approximate solution to this problem. We compare our
results with the results reported in [31]. We observe that the
current method provides a very good approximation to the
solutions for the problem. We calculate the error remainder
term:

ER𝑢
𝑛
= 𝑢

(𝜎)

𝑛
(𝑡) + 𝜙

1
(𝑡) 𝑢

󸀠

𝑛
(𝑡) − 𝑐

11
𝑢

2

𝑛
(𝑡)

− 𝑐

12
𝑢

𝑛
(𝑡) V

𝑛
(𝑡) ,

ERV
𝑛
= V(𝜎)

𝑛
(𝑡) + 𝜙

2
(𝑡) V󸀠

𝑛
(𝑡) − 𝑐

21
𝑢

2

𝑛
(𝑡)

− 𝑐

22
𝑢

𝑛
(𝑡) V

𝑛
(𝑡) ,

(95)

where 𝑢
𝑛
and V

𝑛
are the approximate solution for the problem

at different stages of iteration 𝑛. We calculate the maximal
error remainder term:

MER𝑢
𝑛
= max

𝑡∈[0,1]

ER𝑢
𝑛
,

MERV
𝑛
= max

𝑡∈[0,1]

ERV
𝑛
.

(96)

The comparison of results of the proposed method with
Adomain decomposition is presented in Table 5.

6. Conclusion and Future Work

Form the above analysis and observation we conclude that
the method works very well and efficiently solve fractional
order linear and nonlinear differential equation and coupled
system under multipoint nonlocal boundary conditions and
mixed derivative boundary conditions. When the absolute
error is compared with reproducing kernel method and
Adomain decompositionmethodwe observe that themethod
yields very accurate solution. In this work shifted Jacobi
polynomials are used; it may also be possible that the reader
may get more accurate solution by using another class
of orthogonal polynomials like Bernstein polynomials or
Hermite polynomials and so forth. Our future work is related
to investigating the best choice of orthogonal polynomials.
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