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This paper is concerned with periods of Biperiodic Fibonacci and Biperiodic Lucas sequences taken as modulo prime and prime
power. By using Fermat’s little theorem, quadratic reciprocity, many results are obtained.

1. Introduction

Fibonacci sequence and Lucas sequence are well-known
sequences among integer sequences. The Fibonacci numbers
satisfy the recurrence relation 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 with the
initial conditions 𝐹0 = 0 and 𝐹1 = 1. Binet’s Formula for the
Fibonacci sequence is

𝐹𝑛 = 𝛼𝑛 − 𝛽𝑛𝛼 − 𝛽 , (1)

where 𝛼 = (1 + √5)/2 and 𝛽 = (1 − √5)/2 are roots of
the characteristic equation 𝑥2 − 𝑥 − 1 = 0. The positive
root 𝛼 is known as “golden ratio.” Fibonacci numbers and
their generalizations have many interesting properties and
applications to almost every field of science and art [1–3]. In
particular, Edson and Yayenie [4] introduced the Biperiodic
Fibonacci sequence as follows:

𝑞0 = 0,
𝑞1 = 1,
𝑞𝑛 = {{{

𝑎𝑞𝑛−1 + 𝑞𝑛−2, if 𝑛 is even

𝑏𝑞𝑛−1 + 𝑞𝑛−2, if 𝑛 is odd
for 𝑛 ≥ 2,

(2)

where 𝑎 and 𝑏 are two nonzero real numbers. We take 𝑎 and𝑏 as integers. If we take 𝑎 = 𝑏 = 1, we get the Fibonacci
sequence {0, 1, 1, 2, 3, 5, 8, . . .}.

If we take 𝑎 = 𝑏 = 2, we get the Pell sequence{0, 1, 2, 5, 12, 29, 70, . . .}. Similarly, if we take 𝑎 = 𝑏 = 𝑘, we
get the 𝑘–Fibonacci sequence [5–8]. Binet’s Formula for the
Biperiodic Fibonacci sequence is given as

𝑞𝑚 = ( 𝑎1−𝜉(𝑚)
(𝑎𝑏)⌊𝑚/2⌋)

𝛼𝑚 − 𝛽𝑚𝛼 − 𝛽
= 1𝑎⌊(𝑚−1)/2⌋𝑏⌊(𝑚+1)/2⌋

𝛼𝑚 − 𝛽𝑚𝛼 − 𝛽 ,
(3)

where 𝛼, 𝛽 = (𝑎𝑏 ± √𝑎2𝑏2 + 4𝑎𝑏)/2 are the roots of the
characteristic equation 𝑥2 − 𝑎𝑏𝑥 − 𝑎𝑏 = 0 and 𝜉(𝑚) =𝑚 − 2⌊𝑚/2⌋.Moreover,

(𝛼𝛽) = −𝑎𝑏,
(𝛼 + 𝛽) = 𝑎𝑏. (4)

This sequence and its properties can be found in [1, 4].
Another well-known sequence is the Lucas sequence

which satisfies the same recurrence relation as the Fibonacci
sequence 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 with the initial conditions 𝐿0 = 2
and 𝐿1 = 1. Binet’s Formula for the Lucas sequence is

𝐿𝑛 = 𝛼𝑛 + 𝛽𝑛, (5)
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where 𝛼 and 𝛽 are defined in (1). Bilgici defined generaliza-
tion of Lucas sequence similar to the Biperiodic Fibonacci
sequence as follows:

𝑙0 = 2,
𝑙1 = 𝑎,
𝑙𝑛 = {{{

𝑏𝑙𝑛−1 + 𝑙𝑛−2, if 𝑛 is even

𝑎𝑙𝑛−1 + 𝑙𝑛−2, if 𝑛 is odd
for 𝑛 ≥ 2,

(6)

where 𝑎 and 𝑏 are two nonzero real numbers. We take 𝑎
and 𝑏 as integers. This sequence and other generalizations of
Lucas sequence with their properties can be found in [9, 10].
If we take 𝑎 = 𝑏 = 1, we get the Lucas sequence {2, 1, 3, 4,7, 11, 18, . . .}. Also, if we take 𝑎 = 𝑏 = 𝑘, we get the 𝑘–Lucas
sequence [11].

𝑙𝑛 = ( 𝑎𝜉(𝑛)
(𝑎𝑏)⌊(𝑛+1)/2⌋)𝛼𝑛 + 𝛽𝑛

= 1𝑎⌊𝑛/2⌋𝑏⌊(𝑛+1)/2⌋ (𝛼𝑛 + 𝛽𝑛) ,
(7)

where 𝛼, 𝛽, and 𝜉 are defined in (3).
On the other hand several researchers have made signif-

icant studies about the period of the recurrence sequences
[2].Wall [12] defined the period-length of the recurring series
obtained by reducing a Fibonacci series by a modulus 𝑚. As
an example, the Fibonacci sequence mod3 is

0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, . . . (8)

and has period 8. Vinson [3] and Robinson [13] both
extended Wall’s study. Moreover, they studied the Fibonacci
sequence for prime moduli and showed that for primes𝑝 ≡ 1, 4 (mod5) the period-length of the Fibonacci sequence
mod𝑝 divides 𝑝 − 1, while for primes 𝑝 ≡ 2, 3 (mod5) the
period-length of the Fibonacci sequence mod 𝑝divides 2(𝑝+1).

Gupta et al. [14] give alternative proofs of this results
that also use the Fibonacci matrix. They place the roots of
its characteristic polynomial in an appropriate splitting fields.
Renault [15] examined the behaviour of the (𝑎, 𝑏)-Fibonacci
sequence under a modulus.

Lucas studied the (𝑎, 𝑏)-Fibonacci sequence extensively.
He assigned Δ = 𝑎2 + 4𝑏 and deduced that if Δ is
quadratic residue (that is, a nonzero perfect square) mod𝑝, then 𝛼(𝑝) | 𝑝 − 1. If Δ is quadratic nonresidue then𝛼(𝑝) | 𝑝 + 1. Also, Rogers and Campbell studied the period
of the Fibonacci sequence mod𝑗 [16]. They investigated the
Fibonacci sequence modulo 𝑝 prime and then generalized to
prime powers.

2. Period of Biperiodic Fibonacci Sequence

In this section, we investigate the Biperiodic Fibonacci
sequence modulo 𝑝 prime and then generalize to prime
powers.

Definition 1. Theperiod of the Biperiodic Fibonacci sequence
modulo a positive integer 𝑗 is the smallest positive integer 𝑚
such that

𝑞𝑚 ≡ 0 (mod𝑗) ,
𝑞𝑚+1 ≡ 1 (mod𝑗) . (9)

By the definition above, the only members that can possibly
come back to the starting point are multiples of 𝑚.This can
be summed up in the statement that if 𝑚 is the period of𝑞𝑛 (mod𝑗), then,

𝑞𝑘 ≡ 0 (mod𝑗)
𝑞𝑘+1 ≡ 1 (mod𝑗)

⇕
𝑚 | 𝑘,

for any 𝑘 ∈ 𝑍.

(10)

Theorem 2. Let 𝑝 be a prime and let 𝑛 be a positive integer. If
𝑎 ≡ 1 (mod𝑝) (11)

then,

𝑎𝑝𝑛 ≡ 1 (mod𝑝𝑛+1) . (12)

We remark that the proof of the Theorem 2 can be seen in
[16].

Theorem 3. Let 𝑝 be a prime, let 𝑘 be a positive integer, and let𝛼 and 𝛽 be the fundamental roots of the Biperiodic Fibonacci
sequence. If𝑚 is the period of 𝑞𝑛 (mod𝑝),

𝛼𝑚𝑝𝑘−1 ≡ 𝛽𝑚𝑝𝑘−1 ≡ 1 (mod𝑝𝑘) . (13)

Proof. For 𝑎 ̸= 0 and 𝑝 is a prime integer, we have

𝑞𝑚 = ((𝑎
1−𝜉(𝑚))

(𝑎𝑏)⌊𝑚/2⌋)
𝛼𝑚 − 𝛽𝑚𝛼 − 𝛽 ≡ 0 (mod𝑝) , (14)

and then

𝛼𝑚 ≡ 𝛽𝑚 (mod𝑝) . (15)

Also we obtain
𝑞𝑚 ≡ 𝑞𝑚+1 − 𝑞1 (mod𝑝)
≡ ( 𝑎1−𝜉(𝑚+1)

(𝑎𝑏)⌊(𝑚+1)/2⌋)
𝛼𝑚+1 − 𝛽𝑚+1𝛼 − 𝛽 − 𝛼 − 𝛽𝛼 − 𝛽

(mod𝑝)
≡ 0 (mod𝑝) .

(16)

If𝑚 is even, then

𝑞𝑚 ≡ ( 1
(𝑎𝑏)𝑚/2)

𝛼 (𝛼𝑚 − 1) − 𝛽 (𝛽𝑚 − 1)
𝛼 − 𝛽

(mod𝑝) .
(17)
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From 𝛼𝑚 ≡ 𝛽𝑚 (mod𝑝), we get
𝑞𝑚 ≡ ( 1

(𝑎𝑏)𝑚/2) (𝛼𝑚 − 1) ≡ 0 (mod𝑝) . (18)

Thus, 𝛼𝑚 ≡ 𝛽𝑚 ≡ 1 (mod𝑝). FromTheorem 2,

𝛼𝑚𝑝𝑘−1 ≡ 𝛽𝑚𝑝𝑘−1 ≡ 1 (mod𝑝𝑘) . (19)

If𝑚 is odd,

𝑞𝑚 ≡ ( 𝑎
(𝑎𝑏)(𝑚+1)/2)(

𝛼𝑚+1 − 𝛽𝑚+1𝛼 − 𝛽 − 𝛼 − 𝛽𝛼 − 𝛽)
(mod𝑝) .

(20)

For 𝛼𝑚 ≡ 𝛽𝑚 (mod𝑝) and 𝑎/(𝑎𝑏)(𝑚+1)/2 ̸= 0,
𝑞𝑚 ≡ ( 𝑎

(𝑎𝑏)(𝑚+1)/2) (𝛼𝑚 − 1) ≡ 0 (mod𝑝) . (21)

Therefore, 𝛼𝑚 ≡ 𝛽𝑚 ≡ 1 (mod𝑝). FromTheorem 2,

𝛼𝑚𝑝𝑘−1 ≡ 𝛽𝑚𝑝𝑘−1 ≡ 1 (mod𝑝) . (22)

Theorem 4. Let 𝑝 be an odd prime, let 𝑚 denote the period
of 𝑞𝑛 (mod𝑝), and let  = 𝑎2𝑏2 + 4𝑎𝑏 be a nonzero quadratic
residue mod𝑝; then𝑚 | 𝑝 − 1.
Proof. As is known from Fermat’s little theorem,

𝛼𝑝−1 ≡ 1 (mod𝑝) ,
𝛽𝑝−1 ≡ 1 (mod𝑝) . (23)

Thus, we have

𝑞𝑝−1 ≡ ( 1𝑎⌊(𝑝−2)/2⌋𝑏⌊(𝑝−1)/2⌋ )
𝛼𝑝−1 − 𝛽𝑝−1𝛼 − 𝛽 ≡ 0

(mod𝑝) ,
𝑞𝑝 = ( 1𝑎⌊(𝑝−1)/2⌋𝑏⌊𝑝/2⌋ )

𝛼𝑝 − 𝛽𝑝𝛼 − 𝛽
≡ ( 1

(𝑎𝑏)(𝑝−1)/2)
𝛼 − 𝛽𝛼 − 𝛽 ≡ 1

(𝑎𝑏)(𝑝−1)/2
(mod𝑝) .

(24)

From 𝑎𝑏 = −𝛼𝛽, we have
(𝑎𝑏)(𝑝−1)/2 = ((−𝛼𝛽)𝑝−1)1/2 ≡ 1 (mod𝑝) , (25)

and then

𝑞𝑝 ≡ 1 (mod𝑝) . (26)

So that
𝑞𝑝−1 ≡ 0 (mod𝑝) ,
𝑞𝑝 ≡ 1 (mod𝑝) . (27)

Therefore, (10) implies that𝑚 | 𝑝 − 1.

Lemma5. If is a quadratic nonresiduemod𝑝, then (√)𝑝 =−√.
Lemma 6. Let 𝛼 and 𝛽 be the two roots of 𝑥2−𝑎𝑏𝑥−𝑎𝑏 = 0 in𝐹 = 𝐹𝑝2 . is a quadratic nonresiduemod𝑝; then 𝛽𝑝+1 = 𝛼𝑝+1.
Theorem 7. Let 𝑝 be an odd prime, let𝑚 denote the period of𝑞𝑛 (mod𝑝), and let  be a quadratic nonresidue mod𝑝; then𝑚 | 2𝑝 + 2.
Proof. From the Binomial theorem, we get (𝛼 − 𝛽)𝑝 ≡ 𝛼𝑝 −𝛽𝑝 (mod𝑝). It follows that

𝑞𝑝 = ( 1𝑎⌊(𝑝−1)/2⌋𝑏⌊𝑝/2⌋ )
𝛼𝑝 − 𝛽𝑝𝛼 − 𝛽

= ( 1
(𝑎𝑏)(𝑝−1)/2)

𝛼𝑝 − 𝛽𝑝𝛼 − 𝛽
≡ ( 1

(𝑎𝑏)(𝑝−1)/2)
(𝛼 − 𝛽)𝑝
𝛼 − 𝛽 (mod𝑝)

≡ ( 1
(𝑎𝑏)(𝑝−1)/2)

(√)𝑝
√ (mod𝑝)

≡ ( 1
(𝑎𝑏)(𝑝−1)/2)

−√√ (mod𝑝)
≡ −1 (mod𝑝) ,

𝑞𝑝+1 = ( 1𝑎⌊𝑝/2⌋𝑏⌊(𝑝+1)/2⌋ )
𝛼𝑝+1 − 𝛽𝑝+1𝛼 − 𝛽

= ( 1𝑎(𝑝−1)/2𝑏(𝑝+1)/2 )
𝛼𝑝+1 − 𝛽𝑝+1𝛼 − 𝛽 .

(28)

From Lemma 6, we obtain

𝑞𝑝+1 ≡ 0 (mod𝑝) . (29)

Thus,𝑚 ∤ 𝑝 + 1. Also, we have

𝑞2𝑝+2 = ( 1𝑎⌊(2𝑝+1)/2⌋𝑏⌊(2𝑝+2)/2⌋ )
𝛼2𝑝+2 − 𝛽2𝑝+2𝛼 − 𝛽

= ( 1
(𝑎𝑏)𝑝)

(𝛼𝑝+1)2 − (𝛽𝑝+1)2
𝛼 − 𝛽 ≡ 0 (mod𝑝) ,

𝑞2𝑝+3 = ( 1𝑎⌊(2𝑝+2)/2⌋𝑏⌊(2𝑝+3)/2⌋ )
𝛼2𝑝+3 − 𝛽2𝑝+3𝛼 − 𝛽

= ( 1
(𝑎𝑏)𝑝+1)

(𝛼𝑝+1)2 𝛼 − (𝛽𝑝+1)2 𝛽
𝛼 − 𝛽



4 Discrete Dynamics in Nature and Society

= ( 1
(𝑎𝑏)𝑝+1 (𝛼𝑝+1)

2) 𝛼 − 𝛽𝛼 − 𝛽 ≡
(𝛼𝑝+1)2
(𝑎𝑏)𝑝+1

≡ (𝛼𝑝+1)2
(−𝛼𝛽)𝑝+1 ≡

𝛼𝑝+1𝛽𝑝+1 ≡ 1 (mod𝑝) .
(30)

Thus, from (10),𝑚 | 2𝑝 + 1.
Theorem 8. Let 𝑝 be a prime, let 𝑚 denote the period of𝑞𝑛 (mod𝑝), and let 𝑚 denote the period of 𝑞𝑛 (mod𝑝𝑘). If𝑚𝑝𝑘−1 is even then 𝑚 | 𝑚𝑝𝑘−1 and if 𝑚𝑝𝑘−1 is odd then𝑚 | 4𝑚𝑝𝑘−1.
Proof. We have shown that 𝛼𝑚𝑝𝑘−1 ≡ 𝛽𝑚𝑝𝑘−1 ≡ 1 (mod𝑝𝑘) in
Theorem 3. So that

𝑞𝑚𝑝𝑘−1 = ( 𝑎1−𝜉(𝑚𝑝𝑘−1)
(𝑎𝑏)⌊𝑚𝑝𝑘−1/2⌋)

𝛼𝑚𝑝𝑘−1 − 𝛽𝑚𝑝𝑘−1𝛼 − 𝛽 ≡ 0
(mod𝑝𝑘) ,

𝑞𝑚𝑝𝑘−1+1 = ( 𝑎1−𝜉(𝑚𝑝𝑘−1+1)
(𝑎𝑏)⌊(𝑚𝑝𝑘−1+1)/2⌋)

𝛼𝑚𝑝𝑘−1+1 − 𝛽𝑚𝑝𝑘−1+1𝛼 − 𝛽
≡ 𝑎1−𝜉(𝑚𝑝𝑘−1+1)
(𝑎𝑏)⌊(𝑚𝑝𝑘−1+1)/2⌋ (mod𝑝𝑘) .

(31)

If𝑚𝑝𝑘−1 is even, then
𝑞𝑚𝑝𝑘−1+1 ≡ 1

(𝑎𝑏)𝑚𝑝𝑘−1/2 (mod𝑝𝑘) . (32)

From 𝛼𝛽 = −𝑎𝑏 and by usingTheorem 3, it follows that

(𝑎𝑏)𝑚𝑝𝑘−1/2 = (−𝛼𝛽)𝑚𝑝𝑘−1/2 = ((−𝛼𝛽)𝑚𝑝𝑘−1)1/2 ≡ 1
(mod𝑝𝑘) .

(33)

Then,

𝑞𝑚𝑝𝑘−1+1 ≡ 1 (mod𝑝𝑘) . (34)

Thus, from (10),𝑚 | 𝑚𝑝𝑘−1.
If𝑚𝑝𝑘−1 is odd then

𝑞4𝑚𝑝𝑘−1 = ( 𝑎1−𝜉(4𝑚𝑝𝑘−1)
(𝑎𝑏)⌊4𝑚𝑝𝑘−1/2⌋)

𝛼4𝑚𝑝𝑘−1 − 𝛽4𝑚𝑝𝑘−1𝛼 − 𝛽 ≡ 0
(mod𝑝𝑘) ,

𝑞4𝑚𝑝𝑘−1+1
= ( 𝑎1−𝜉(4𝑚𝑝𝑘−1+1)

(𝑎𝑏)⌊(4𝑚𝑝𝑘−1+1)/2⌋)
𝛼4𝑚𝑝𝑘−1+1 − 𝛽4𝑚𝑝𝑘−1+1𝛼 − 𝛽

≡ 1
(𝑎𝑏)2𝑚𝑝𝑘−1 (mod𝑝𝑘) .

(35)

Since 𝛼𝛽 = −𝑎𝑏 and 𝛼𝑚𝑝𝑘−1 ≡ 𝛽𝑚𝑝𝑘−1 ≡ 1 (mod𝑝𝑘), then,
(𝑎𝑏)2𝑚𝑝𝑘−1 = (−𝛼𝛽)2𝑚𝑝𝑘−1 = ((−𝛼𝛽)𝑚𝑝𝑘−1)2 ≡ 1

(mod𝑝𝑘) ,
𝑞4𝑚𝑝𝑘−1+1 ≡ 1 (mod𝑝𝑘) .

(36)

Thus,𝑚 | 4𝑚𝑝𝑘−1.
3. Period of Biperiodic Lucas Sequence

In this section, we investigate the Biperiodic Lucas sequence
modulo 𝑝 a prime similar to Biperiodic Fibonacci sequence.

Definition 9. The period of the Biperiodic Lucas sequence
modulo a positive integer 𝑗 is the smallest positive integer 𝑡
such that

𝑙𝑡 ≡ 2 (mod𝑗) ,
𝑙𝑡+1 ≡ 𝑎 (mod𝑗) . (37)

For the same reasons as the Biperiodic Fibonacci sequencewe
have that if 𝑡 is the period of 𝑙𝑛 (mod𝑗), then

𝑙𝑘 ≡ 0 (mod𝑗) ,
𝑙𝑘+1 ≡ 1 (mod𝑗)

⇕
𝑡 | 𝑘.

for any 𝑘 ∈ 𝑍,

(38)

Theorem 10. Let 𝑝 be an odd prime, let 𝑡 denote the period of𝑙𝑛 (mod𝑝), and let  be a nonzero quadratic residue mod𝑝;
then 𝑡 | 𝑝 − 1.
Proof. We use Fermat’s little theorem to get

𝛼𝑝−1 ≡ 1 (mod𝑝) ,
𝛽𝑝−1 ≡ 1 (mod𝑝) , (39)

so

𝑙𝑝−1 = ( 1𝑎⌊(𝑝−1)/2⌋𝑏⌊𝑝/2⌋ ) (𝛼𝑝−1 + 𝛽𝑝−1) ≡ 2
(𝑎𝑏)(𝑝−1)/2
(mod𝑝) .

(40)

We know (𝑎𝑏)(𝑝−1)/2 ≡ 1 (mod𝑝); thus
𝑙𝑝−1 ≡ 2 (mod𝑝) . (41)
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Also, we have

𝑙𝑝 = ( 1𝑎⌊𝑝/2⌋𝑏⌊(𝑝+1)/2⌋ ) (𝛼𝑝 + 𝛽𝑝)
≡ ( 1𝑎(𝑝−1)/2𝑏(𝑝+1)/2 ) (𝛼 + 𝛽) (mod𝑝)
≡ 𝑎𝑏
(𝑎𝑏)(𝑝−1)/2 ≡

𝑎𝑏𝑏 (mod𝑝)
≡ 𝑎 (mod𝑝) .

(42)

By using (10), we get 𝑡 | 𝑝 − 1.
Theorem 11. Let 𝑝 be an odd prime, let 𝑡 denote the period of𝑙𝑛 (mod𝑝), and let  be a quadratic nonresidue mod𝑝; then𝑡 | 2𝑝 + 2.
Proof. From Lemma 6 and (3), we get

𝑙2𝑝+2 = ( 1𝑎⌊(2𝑝+2)/2⌋𝑏⌊(2𝑝+3)/2⌋ ) (𝛼2𝑝+2 + 𝛽2𝑝+2)
≡ ( 1

(𝑎𝑏)𝑝+1)((𝛼𝑝+1)
2 + (𝛽𝑝+1)2) (mod𝑝)

≡ 2 (𝛽𝑝+1)
2

(𝑎𝑏)𝑝+1 (mod𝑝)

≡ 2 (𝛽𝑝+1)
2

𝛼𝑝+1𝛽𝑝+1 (mod𝑝)
≡ 2𝛽𝑝+1𝛼𝑝+1 (mod𝑝)
≡ 2 (mod𝑝) ,

𝑙2𝑝+3 = ( 1𝑎⌊(2𝑝+3)/2⌋𝑏⌊(2𝑝+4)/2⌋ ) (𝛼2𝑝+3 + 𝛽2𝑝+3)
= ( 1𝑎𝑝+1𝑏𝑝+2 ) (𝛼2𝑝+3 + 𝛽2𝑝+3)
= ( 1𝑎𝑝+1𝑏𝑝+2 ) ((𝛼𝑝+1)

2 𝛼 + (𝛽𝑝+1)2 𝛽)
= 1
(𝛼 + 𝛽) (𝛼𝑝+1)2 (𝑎𝑏)𝑝+1 𝑏

= 1
(𝑎𝑏) (𝛼𝑝+1)2 (𝑎𝑏)

𝑝+1 𝑏 = 1
𝑎 (𝛼𝑝+1)2𝛼𝑝+1𝛽𝑝+1

= 1𝑎𝛼𝑝+1𝛽𝑝+1 = 1𝑎 (mod𝑝) .

(43)

Thus, from (10),𝑚 | 2𝑝 + 2.
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