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We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By
the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable
linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally
asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systemswith
time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.

1. Introduction

In recent years, the stochastic nonlinear system has received
much attention and has enjoyed a good development, which
has been widely applied in many fields such as engineering
and finance [1]. Particularly, owing to the reason that a
system by the output feedback is more flexible to respond to
the information of control systems, the stochastic nonlinear
system via the output feedback control has been more widely
studied. Marino and Tomei [2] and Battilotti [3] designed
linear observer to study the output feedback control for
nonlinear systems. As a result, a large number of researchers
have been focused on the stability analysis of stochastic
nonlinear systems and the design of controller.

Since the backstepping method has been introduced in
the nonlinear system, the theory of stochastic nonlinear
systems has achieved a remarkable development. According
to the different Lyapunov function, there are twoways to solve
the problem. One is that Pan and Basar [4–6] considered
a quadratic Lyapunov function. By using the backstepping
method to design the controller, they discussed the risk-
sensitive optimal control problem.The other is that Deng and

Krstić [7–10] used a quartic Lyapunov function to guarantee
that the closed-loop system is globally asymptotically stable
in probability. Based on their works, Liu et al. [11–13]
employed the quartic Lyapunov function to design the output
feedback control for stochastic nonlinear systems. M.-L. Liu
and Y.-G. Liu [14] and Chen et al. [15] used such Lyapunov
function to study the state feedback stability for stochastic
nonlinear systems with time-varying delays. In [16], Du et
al. discussed the global output feedback stability for a class
of uncertain upper-triangular systems with the input delay.
Finite-time stability for stochastic nonlinear systems in strict-
feedback form was considered in [17]. More results can be
found in [18–20].

In this paper, we are concerned with the globally asymp-
totic stability of stochastic nonlinear system with time-
varying delays. We extend the results of the deterministic
nonlinear systems in [21] to the stochastic nonlinear systems
with time-varying delays by output feedback control and
design a Lyapunov-Krasovskii functional to prove the glob-
ally asymptotic stability of the closed-system via the linear
observer. It is obvious that the form of the linear controller
is simpler than that used in [9]. And compared with the
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𝐶
1 output feedback controller obtained by the homogeneous

observers in [20], the controller designed by the linear
observers in this paper is smooth.

The rest of this paper is organized as follows. In Section 2,
we present some definitions and establish a new inequality,
which plays an important role in the proof of ourmain results.
In Section 3, we construct a Lyapunov-Krasovskii functional
and design a linear output feedback control to prove the
globally asymptotic stability based on the linear observers.
In Section 4, we use an example to illustrate our theoretical
results. Finally, we conclude this paper with some general
remarks.

2. Preliminaries

In this section, we will give the following notations, defi-
nitions, and some preliminary lemmas. R

+
denotes the set

of all nonnegative real numbers; R𝑛 denotes the real 𝑛-
dimensional space; Trace{𝑋} denotes the trace for square
matrix 𝑋; |𝑋| denotes the Euclidean norm of a vector 𝑋.
C([−𝑑, 0];R𝑛) denotes the space of continuous R𝑛-valued
functions on [−𝑑, 0] endowed with the norm ‖ ⋅ ‖ defined
by ‖𝑓‖ = sup

𝑥∈[−𝑑,0]
|𝑓(𝑥)| for 𝑓 ∈ C([−𝑑, 0];R𝑛);

C𝑏F0([−𝑑, 0];R
𝑛
) denotes the family of all F

0
-measurable

boundedC([−𝑑, 0];R𝑛)-valued random variables 𝜉 = {𝜉(𝜃) :

−𝑑 ≤ 𝜃 ≤ 0}. C𝑖 denotes the set of all functions with
continuous 𝑖th partial derivatives; C2,1(R𝑛 × [−𝑑,∞];R+)

denotes the family of all nonnegative functions 𝑉(𝑥, 𝑡) on
R𝑛 × [−𝑑,∞)which areC2 in 𝑥 andC1 in 𝑡;C2,1 denotes the
family of all functions which areC2 in the first argument and
C1 in the second argument.Kdenotes the set of all functions:
R
+

→ R
+
, which are continuous and strictly increasing and

vanish at zero;K
∞
denotes the set of all functions which are

of class K and unbounded. KL is the set of all functions
𝛽(𝑠, 𝑡) : R

+
× R
+
→ R
+
, which are ofK for each fixed 𝑡 and

decrease to zero as 𝑡 → ∞ for each fixed 𝑠.
Consider the following stochastic time-varying delay

system:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡) , 𝑡)) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑡) 𝑑𝜔 (𝑡) , ∀𝑡 ≥ 0,

(1)

with initial date {𝑥(𝜃) : −𝑑 ≤ 𝜃 ≤ 0} = 𝜉 ∈ C𝑏F0([−𝑑, 0];R
𝑛
),

where 𝑑(𝑡) : R
+
→ [0, 𝑑] is a Borel measurable function and

𝜔(𝑡) is an 𝑟-dimensional standard Wiener process defined
on the complete probability space (Ω,F, {F

𝑡
}
𝑡≥0

, 𝑃) with Ω

being a sample space, F being a filtration, and 𝑃 being a
probability measure. 𝑓 : R𝑛 × R𝑛 × R

+
→ R𝑛, 𝑔 : R𝑛 × R𝑛 ×

R
+
→ R𝑛×𝑟 are assumed to be locally Lipschitz in (𝑥(𝑡), 𝑥(𝑡 −

𝑑(𝑡))) uniformly in 𝑡 and satisfy 𝑓(0, 0, 𝑡) ≡ 0, 𝑔(0, 0, 𝑡) ≡ 0.

Definition 1 (see [22]). For any given 𝑉(𝑥(𝑡), 𝑡) ∈ C2,1

associated with system (1), the differential operator L is
defined as

L𝑉 (𝑥 (𝑡) , 𝑡) =
𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑥𝑇
𝑓 +

1

2
Trace{𝑔

𝑇 𝜕
2
𝑉

𝜕𝑥2
𝑔} , (2)

where (1/2)Trace{𝑔𝑇(𝜕2𝑉/𝜕𝑥
2
)𝑔} is called as the Hessian

term ofL.

Definition 2 (see [11, 15]). For system (1), the equilibrium 𝑥 =

0 is said to be globally asymptotically stable in probability, if,
for any 𝜀 > 0, there exists a class ofK function 𝛾(⋅) such that

𝑃 {|𝑥 (𝑡)| < 𝛾 (
󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩)} ≥ 1 − 𝜀,

∀𝑡 ≥ 0, ∀𝜉 ∈ C
𝑏

F0
([−𝑑, 0] ;R

𝑛
) \ {0} ,

(3)

and for any 𝜉 ∈ C𝑏F0([−𝑑, 0];R
𝑛
), one has

𝑃{ lim
𝑡→∞

|𝑥 (𝑡)| = 0} = 1. (4)

Definition 3 (see [22]). For fixed coordinates (𝑥
1
, . . . , 𝑥

𝑛
) ∈

R𝑛 and real numbers 𝑟
𝑖
> 0, 𝑖 = 1, . . . , 𝑛.

(1) The dilation Δ
𝜖
(𝑥) is defined by Δ

𝜖
(𝑥) =

(𝜖
𝑟1𝑥
1
, . . . , 𝜖

𝑟𝑛𝑥
𝑛
) for any 𝜖 > 0; 𝑟

1
, . . . , 𝑟

𝑛
are called the

weights of the coordinates. For simplicity, we define dilation
weight Δ = (𝑟

1
, . . . , 𝑟

𝑛
).

(2) A function𝑉 ∈ C(R𝑛, 𝑅) is said to be homogeneous of
degree 𝜏 if there is a real number 𝜏 ∈ 𝑅 such that 𝑉(Δ

𝜖
(𝑥)) =

𝜖
𝜏
𝑉(𝑥
1
, . . . , 𝑥

𝑛
) for any 𝑥 ∈ R𝑛 \ {0}, 𝜖 > 0.

(3) A vector field ℎ ∈ C(R𝑛,R𝑛) is said to be homoge-
neous of degree 𝜏 if there is a real number 𝜏 ∈ 𝑅 such that
ℎ
𝑖
(Δ
𝜖
(𝑥)) = 𝜖

𝜏+𝑟𝑖ℎ
𝑖
(𝑥) for any 𝑥 ∈ R𝑛 \ {0}, 𝜖 > 0.

(4) A homogeneous 𝑞-norm is defined as ‖𝑥‖
Δ,𝑞

=

(Σ
𝑛

𝑖=1
|𝑥
𝑖
|
𝑞/𝑟𝑖)
1/𝑞 for any 𝑥 ∈ R𝑛, where 𝑞 > 1 is a constant.

For simplicity, in this paper, we choose 𝑞 = 2 and write ‖𝑥‖
Δ

for ‖𝑥‖
Δ,2

.

Lemma 4 (see [11, 15, 22]). For system (1), if there exist a
function 𝑉(𝑥(𝑡), 𝑡) ∈ C2,1(𝑅𝑛 × [−𝑑,∞); 𝑅

+
), two class K

∞

functions 𝛼
1
, 𝛼
2
, and a classK function 𝛼

3
such that

𝛼
1
(|𝑥 (𝑡)|) ≤ 𝑉 (𝑥 (𝑡) , 𝑡) ≤ 𝛼

2
( sup
−𝑑≤𝜎≤0

|𝑥 (𝜎 + 𝑡)|) , (5)

L𝑉 (𝑥 (𝑡) , 𝑡) ≤ −𝛼
3
(|𝑥 (𝑡)|) , (6)

then there exists a unique solution on [−𝑑,∞) for each 𝑥
0
∈ R𝑛

and the equilibrium 𝑥(𝑡) = 0 is globally asymptotically stable
in probability.

Lemma 5 (see [22]). Suppose that 𝑉 : R → 𝑅 is a
homogeneous function of degree 𝜏 with respect to the dilation
weight Δ; then

(i) 𝜕𝑉/𝜕𝑥
𝑖
is homogeneous of degree 𝜏 − 𝑟

𝑖
with 𝑟

𝑖
being

the homogeneous weight of 𝑥
𝑖
;

(ii) there is a constant 𝛾 such that 𝑉(𝑥(𝑡)) ≤ 𝛾‖𝑥(𝑡)‖
𝜏

Δ
.

Moreover, if𝑉(𝑥(𝑡)) is positive definite, then𝑉(𝑥(𝑡)) ≥

𝛾‖𝑥(𝑡)‖
𝜏

Δ
, where 𝛾 is a positive constant.

Lemma 6 (see [1]). Let 𝑉 : 𝐷 → 𝑅 be a continuous positive
definite on a domain𝐷 = 𝑅

𝑛 that contains the origin. Let 𝐵
𝑟
⊂

𝐷 for some 𝑟 > 0. Then, there exist class K functions 𝛼
1
and

𝛼
2
, defined on [0,r], such that

𝛼
1
(|𝑥 (𝑡)|) ≤ 𝑉 (𝑥 (𝑡)) ≤ 𝛼

2
(|𝑥 (𝑡)|) (7)



Discrete Dynamics in Nature and Society 3

for all𝑥 ∈ 𝐵
𝑟
. If𝐷 = R𝑛, the functions𝛼

1
and𝛼
2
will be defined

on [0,∞) and the foregoing inequality will hold for all 𝑥 ∈ R𝑛.
Moreover, if𝑉(𝑥(𝑡)) is radially unbounded, then 𝛼

1
and 𝛼

2
can

be chosen to belong to classK
∞
.

Lemma 7. For any constants 𝑎 > 0 and 𝑏 ∈ R, one has that,
for any 𝑥, 𝑦 ∈ R,

−𝑎𝑥
4
+ 𝑏𝑥𝑦

3
≤ 𝑘
1
𝑎
−1/3

𝑏
4/3

𝑦
4
, (8)

−𝑎𝑥
4
+ 𝑏𝑥
3
𝑦 ≤ 𝑘
2
𝑏
4
𝑎
−3
𝑦
4
, (9)

where 𝑘
1
= 4
−1/3

− 4
−4/3

> 0 and 𝑘
2
= (3/4)

3
− (3/4)

4
> 0.

Proof. We first prove (8). Let 𝑍
1
(𝑥) = −𝑎𝑥

4
+ 𝑏𝑥𝑦

3, where 𝑦

is a parameter. Then, we have

𝑍
󸀠

1
(𝑥) = −4𝑎𝑥

3
+ 𝑏𝑦
3
= 0, 𝑥 = (

𝑏

4𝑎
)

1/3

𝑦. (10)

It is clear that, for any 𝑥 ∈ (−∞, (𝑏/4𝑎)
1/3

𝑦), 𝑍󸀠
1
(𝑥) > 0

and 𝑥 ∈ ((𝑏/4𝑎)
1/3

𝑦, +∞), 𝑍󸀠
1
(𝑥) < 0. With the sufficient

condition of extreme value, 𝑥 = (𝑏/4𝑎)
1/3

𝑦 is the maximum
point of function 𝑍

1
(𝑥). Therefore, we get

𝑍
1
(𝑥) ≤ −𝑎 [(

𝑏

4𝑎
)

1/3

𝑦]

4

+ 𝑏 [(
𝑏

4𝑎
)

1/3

𝑦]𝑦
3

= (4
−1/3

− 4
−4/3

) 𝑎
−1/3

𝑏
4/3

𝑦
4
.

(11)

We now prove (9). Similarly, letting 𝑍
2
(𝑥) = −𝑎𝑥

4
+ 𝑏𝑥
3
𝑦,

where 𝑦 is a parameter, we have

𝑍
󸀠

2
(𝑥) = −4𝑎𝑥

3
+ 3𝑏𝑥

2
𝑦 = 0, 𝑥 =

3𝑏𝑦

4𝑎
or 𝑥 = 0. (12)

Obviously, for any 𝑥 ∈ (−∞, 3𝑏𝑦/4𝑎), 𝑍󸀠
2
(𝑥) > 0 and 𝑥 ∈

(3𝑏𝑦/4𝑎, +∞), 𝑍󸀠
2
(𝑥) < 0. With the sufficient condition of

extreme value, 𝑥 = 3𝑏𝑦/4𝑎 is the maximum point of function
𝑍
2
(𝑥). Therefore, we obtain

𝑍
2
(𝑥) ≤ −𝑎(

3𝑏𝑦

4𝑎
)

4

+ 𝑏(
3𝑏𝑦

4𝑎
)

3

𝑦

= [(
3

4
)

3

− (
3

4
)

4

] 𝑏
4
𝑎
−3
𝑦
4
.

(13)

Lemma 8 (Cauchy-Schwartz’s inequality). For any vector 𝑥 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ R𝑛 and 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ R𝑛, one has

(𝑥
1
𝑦
1
+ 𝑥
2
𝑦
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑦
𝑛
)
2

≤ (𝑥
2

1
+ ⋅ ⋅ ⋅ + 𝑥

2

𝑛
) (𝑦
2

1
+ ⋅ ⋅ ⋅ + 𝑦

2

𝑛
) .

(14)

Lemma 9. For a sequence of numbers 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
∈ R
+
, one

has

󵄨󵄨󵄨󵄨𝑎1 + 𝑎
2
+ ⋅ ⋅ ⋅ + 𝑎

𝑛

󵄨󵄨󵄨󵄨 ≥
√𝑎
2

1
+ 𝑎
2

2
+ ⋅ ⋅ ⋅ + 𝑎2

𝑛
,

√
𝑎
2

1
+ 𝑎
2

2
+ ⋅ ⋅ ⋅ + 𝑎

2

𝑛

𝑛
≥

𝑎
1
+ 𝑎
2
+ ⋅ ⋅ ⋅ + 𝑎

𝑛

𝑛

≥ 𝑛√𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑛

≥
𝑛

1/𝑎
1
+ 1/𝑎
2
+ ⋅ ⋅ ⋅ + 1/𝑎

𝑛

.

(15)

Lemma 10 (see [17]). For any given real numbers c, d and any
real-valued functions 𝑓(𝑥, 𝑦) > 0, 𝑔(𝑥, 𝑦, 𝑧) ≥ 0, the following
inequality holds:

𝑔 (𝑥, 𝑦, 𝑧) |𝑥|
𝑐 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

𝑑

≤
𝑐

𝑐 + 𝑑
𝑓 (𝑥, 𝑦) |𝑥|

𝑐+𝑑

+
𝑑

𝑐 + 𝑑
(𝑔 (𝑥, 𝑦, 𝑧))

(𝑐+𝑑)/𝑑

(𝑓 (𝑥, 𝑦))
−𝑐/𝑑 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

𝑐+𝑑

,

(16)

where 𝑥, 𝑦, 𝑧 ∈ R. Particularly when one takes 𝑓(𝑥, 𝑦) =

𝑔(𝑥, 𝑦, 𝑧) = 1, 𝑐 = 3, and 𝑑 = 4, then the inequality will
become

𝑥
3
𝑦 ≤

3

4
𝑥
4
+

1

4
𝑦
4
. (17)

3. The Output Feedback Model and
Control Design

In this section, we will design a linear observer system for
a class of stochastic nonlinear systems with time-varying
delays. Using the backstepping method, a simple linear
controller will be constructed to guarantee that the closed-
loop stochastic system is globally asymptotically stable in
probability.

Consider the following stochastic nonlinear system with
time-varying delay:

𝑑𝑥
1
= (𝑥
2
+ 𝑓
1
(𝑡, 𝑥
1
, 𝑥
1
(𝑡 − 𝑑 (𝑡)))) 𝑑𝑡

+ 𝑔
𝑇

1
(𝑡, 𝑥
1
, 𝑥
1
(𝑡 − 𝑑 (𝑡))) 𝑑𝑤,

𝑑𝑥
2
= (𝑥
3
+ 𝑓
2
(𝑡, 𝑥
2
, 𝑥
2
(𝑡 − 𝑑 (𝑡)))) 𝑑𝑡

+ 𝑔
𝑇

2
(𝑡, 𝑥
2
, 𝑥
2
(𝑡 − 𝑑 (𝑡))) 𝑑𝑤,

.

.

.

𝑑𝑥
𝑛
= (𝑢 + 𝑓

𝑛
(𝑡, 𝑥
𝑛
, 𝑥
𝑛
(𝑡 − 𝑑 (𝑡)))) 𝑑𝑡

+ 𝑔
𝑇

𝑛
(𝑡, 𝑥
𝑛
, 𝑥
𝑛
(𝑡 − 𝑑 (𝑡))) 𝑑𝑤,

𝑦 = 𝑥
1
,

(18)

where the initial data {𝑥(𝜃) : −𝑑 ≤ 𝜃 ≤ 0} = 𝜉 ∈

C𝑏F0([−𝑑, 0];R
𝑛
), 𝑑(𝑡) : R

+
→ [0, 𝑑] is a Borel measurable
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function and 𝑑
󸀠
(𝑡) ≤ 𝑑

󸀠
< 1; 𝜔 is an 𝑟-dimensional standard

Wiener process defined on the complete probability space
(Ω,F, {F

𝑡
}
𝑡≥0

, 𝑃). 𝑥
𝑖
= (𝑥
1
, . . . , 𝑥

𝑖
) is the system state, 𝑥

𝑖
(𝑡 −

𝑑(𝑡)) = (𝑥
1
(𝑡−𝑑(𝑡)), . . . , 𝑥

𝑖
(𝑡−𝑑(𝑡))) is the time-delayed state

vectors, 𝑢 ∈ R is the system input, and 𝑦 ∈ R is the system
output. 𝑓

𝑖
: R
+
× R𝑖 × R𝑖 → R and 𝑔

𝑖
: R
+
× R𝑖 × R𝑖 →

R𝑟 are assumed to be locally Lipschitz in (𝑥(𝑡), 𝑥(𝑡 − 𝑑(𝑡)))

uniformly in 𝑡 with 𝑓
𝑖
(𝑡, 0, 0) = 0, 𝑔

𝑖
(𝑡, 0, 0) = 0, 𝑖 = 1, . . . ,

𝑛.

Remark 11. It should be pointed out that Zhai and Zha [23]
considered the global adaptive output feedback control for
system (18) without the diffusion terms. And Duan and Xie
[24] discussed the globally asymptotic stability for system
(18) without time-varying delay. Compared with these works,
we focus on the output feedback stabilization of stochas-
tic nonlinear systems with time-varying delay (see system
(18)).

Assumption 12. There exist nonnegative constants 𝑙
1
, 𝑙
2
∈ R
+

such that

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑡, 𝑥𝑖, 𝑥𝑖 (𝑡 − 𝜃 (𝑡)))
󵄨󵄨󵄨󵄨 ≤ 𝑙
1
(
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑥1 (𝑡 − 𝜃 (𝑡))

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡 − 𝜃 (𝑡))

󵄨󵄨󵄨󵄨) ,

󵄨󵄨󵄨󵄨𝑔𝑖 (𝑡, 𝑥𝑖, 𝑥𝑖 (𝑡 − 𝜃 (𝑡)))
󵄨󵄨󵄨󵄨 ≤ 𝑙
2
(
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑥1 (𝑡 − 𝜃 (𝑡))

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡 − 𝜃 (𝑡))

󵄨󵄨󵄨󵄨) .

(19)

The linear observer system is designed as

̇̂𝑥
1
= 𝑥̂
2
(𝑡) + 𝐿𝑎

1
(𝑥
1
− 𝑥̂
1
) ,

̇̂𝑥
2
= 𝑥̂
3
(𝑡) + 𝐿

2
𝑎
2
(𝑥
1
− 𝑥̂
1
) ,

.

.

.

̇̂𝑥
𝑛−1

= 𝑥̂
𝑛
(𝑡) + 𝐿

𝑛−1
𝑎
𝑛−1

(𝑥
1
− 𝑥̂
1
) ,

̇̂𝑥
𝑛
= 𝑢 + 𝐿

𝑛
𝑎
𝑛
(𝑥
1
− 𝑥̂
1
) ,

(20)

where 𝐿 ≥ 1 is a constant to be determined and 𝑎
𝑖
> 0, 𝑖 =

1, . . . , 𝑛, are coefficients of the Hurwitz polynomial

𝑝 (𝑡) = 𝑡
𝑛
+ 𝑎
1
𝑡
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑎
𝑛−1

𝑡 + 𝑎
𝑛
. (21)

The observation error 𝜀
𝑖
= (𝑥
𝑖
− 𝑥̂
𝑖
)/𝐿
𝑖−1 satisfies

𝑑𝜀 = 𝐿

[
[
[
[
[
[
[
[
[

[

−𝑎
1

1 0 ⋅ ⋅ ⋅ 0

−𝑎
2

0 1 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

. d
.
.
.

−𝑎
𝑛−1

0 0 ⋅ ⋅ ⋅ 0

−𝑎
𝑛

0 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]
]

]

𝜀𝑑𝑡 +

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑓
1

𝑓
2

𝐿
.
.
.

𝑓
𝑛−1

𝐿𝑛−2

𝑓
𝑛

𝐿𝑛−1

]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝑑𝑡

+

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑔
𝑇

1

𝑔
𝑇

2

𝐿
.
.
.

𝑔
𝑇

𝑛−1

𝐿𝑛−2

𝑔
𝑇

𝑛

𝐿𝑛−1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝑑𝑤 = 𝐿𝐴𝜀𝑑𝑡 + 𝐹𝑑𝑡 + 𝐺𝑑𝑤,

(22)

where 𝐴 is a Hurwitz matrix. Therefore, there is a positive-
definite matrix 𝑃 such that

𝐴
𝑇
𝑃 + 𝑃𝐴 = −𝐼. (23)

Theorem 13. Suppose Assumption 12 holds. Then, the equi-
librium at origin of closed-loop stochastic nonlinear system
(18) and (20) with the linear controller (50) below is globally
asymptotically stable in probability and𝑃{lim

𝑡→∞
|𝑥(𝑡)| = 0} =

1. Furthermore, the closed-loop systemhas a unique solution on
[−𝑑,∞) for each 𝜉 ∈ R𝑛.

Proof. Note 𝑧 = (𝑥, 𝑥̂), 𝑥
𝑖
(𝑡) = 𝑥

𝑖
, and 𝑥̂

𝑖
(𝑡) = 𝑥̂

𝑖
for

simplicity. Consider the following Lyapunov function: 𝑉
0

=

((𝑛 + 1)/2)(𝜀
𝑇
𝑃𝜀)
2. Then by Lemma 10, a direct computation

yields

L𝑉
0
= (𝑛 + 1) (𝜀

𝑇
𝑃𝜀) (𝐿𝜀

𝑇
(𝐴
𝑇
𝑃 + 𝑃𝐴) 𝜀 + 2𝜀

𝑇
𝑃𝐹)

+
1

2
tr (𝐺𝑇 (𝑛 + 1) (4𝑃𝜀𝜀

𝑇
𝑃 + 2𝜀

𝑇
𝑃𝜀𝑃)𝐺)

≤ − (𝑛 + 1) 𝜆min𝐿 |𝜀|
4
+ 2 (𝑛 + 1) 𝜆

2

max |𝜀|
3
|𝐹|

+ 3 (𝑛 + 1) 𝑟√𝑟𝜆
2

max |𝜀|
2
|𝐺|
2

≤ − (𝑛 + 1) 𝜆min𝐿 |𝜀|
4

+
3 (𝑛 + 1)

2
(1 + 𝑟√𝑟) 𝜆

2

max |𝜀|
4

+
𝑛 + 1

2
𝜆
2

max |𝐹|
4
+

3 (𝑛 + 1)

2
𝑟√𝑟𝜆
2

max |𝐺|
4
,

(24)

where 𝜆min denotes the minimum eigenvalue of the matrix 𝑃

and 𝜆max denotes the maximum eigenvalue of the matrix 𝑃.
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By Lemmas 8 and 9 and Assumption 12, one gets

|𝐹|
4
≤ 𝑙
4

1
𝑛
5
(𝑥
4

1
+

1

𝐿4
𝑥
4

2
+ ⋅ ⋅ ⋅ +

1

𝐿4𝑛−4
𝑥
4

𝑛
)

+ 𝑙
4

1
𝑛
5
(𝑥
4

1
(𝑡 − 𝜃 (𝑡)) +

1

𝐿4
𝑥
4

2
(𝑡 − 𝜃 (𝑡)) + ⋅ ⋅ ⋅

+
1

𝐿4𝑛−4
𝑥
4

𝑛
(𝑡 − 𝜃 (𝑡))) ,

|𝐺|
4
≤ 𝑙
4

2
𝑛
5
(𝑥
4

1
+

1

𝐿4
𝑥
4

2
+ ⋅ ⋅ ⋅ +

1

𝐿4𝑛−4
𝑥
4

𝑛
)

+ 𝑙
4

2
𝑛
5
(𝑥
4

1
(𝑡 − 𝜃 (𝑡)) +

1

𝐿4
𝑥
4

2
(𝑡 − 𝜃 (𝑡)) + ⋅ ⋅ ⋅

+
1

𝐿4𝑛−4
𝑥
4

𝑛
(𝑡 − 𝜃 (𝑡))) .

(25)

Substituting (25) into (24), we have

L𝑉
0
≤ − (𝑛 + 1) 𝜆min𝐿 |𝜀|

4

+
3 (𝑛 + 1)

2
(1 + 𝑟√𝑟) 𝜆

2

max |𝜀|
4

+
(𝑛 + 1) 𝑛

5

2
𝜆
2

max (𝑙
4

1
+ 3𝑟√𝑟𝑙

4

2
)

𝑛

∑

𝑖=1

𝑥
4

𝑖
(𝑡 − 𝜃
𝑡
)

𝐿4𝑖−4

+
(𝑛 + 1) 𝑛

5

2
𝜆
2

max (𝑙
4

1
+ 3𝑟√𝑟𝑙

4

2
)

𝑛

∑

𝑖=1

𝑥
4

𝑖

𝐿4𝑖−4

= − (𝑛 + 1) 𝜆min𝐿 |𝜀|
4

+
3 (𝑛 + 1)

2
(1 + 𝑟√𝑟) 𝜆

2

max |𝜀|
4
+ 𝛼
1

𝑛

∑

𝑖=1

𝑥
4

𝑖

𝐿4𝑖−4

+ 𝛼
1

𝑛

∑

𝑖=1

𝑥
4

𝑖
(𝑡 − 𝑑 (𝑡))

𝐿4𝑖−4
,

(26)

where

𝛼
1
=

(𝑛 + 1) 𝑛
5

2
𝜆
2

max (𝑙
4

1
+ 3𝑟√𝑟𝑙

4

2
) . (27)

Take

𝑊 =
𝛼
1

1 − 𝑑󸀠

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝑑(𝑡)

𝑥
4

𝑖
(𝑠)

𝐿4𝑖−4
𝑑𝑠; (28)

then

L (𝑉
0
+ 𝑊)

≤ −((𝑛 + 1) 𝜆min𝐿 −
3 (𝑛 + 1)

2
(1 + 𝑟√𝑟) 𝜆

2

max) |𝜀|
4

+ 𝛼
1
(1 +

1

1 − 𝑑󸀠
)

𝑛

∑

𝑖=1

𝑥
4

𝑖
(𝑡)

𝐿4𝑖−4
.

(29)

Substituting 𝑥
𝑖
= 𝑥̂
𝑖
+ 𝐿
𝑖−1

𝜀
𝑖
, 𝑖 = 1, . . . , 𝑛, into (29), one gets

L (𝑉
0
+ 𝑊) ≤ − ((𝑛 + 1) 𝜆min𝐿 − 𝑐

0
) |𝜀|
4

+ 𝑐
1

𝑛

∑

𝑖=1

𝑥̂
4

𝑖

𝐿4𝑖−4
,

(30)

where

𝑐
0
=

3 (𝑛 + 1)

2
(1 + 𝑟√𝑟) 𝜆

2

max + 8𝑛𝛼
1
(1 +

1

1 − 𝑑󸀠
) ,

𝑐
1
= 8𝛼
1
(1 +

1

1 − 𝑑󸀠
) .

(31)

Next, we will combine the backstepping design method
with the mathematical induction to design the linear output
feedback control.

Step 1. Construct the Lyapunov function 𝑉
1

= 𝑉
0
+ 𝑊 +

(1/4)𝑥̂
4

1
. A direct calculation gives

L𝑉
1
= L𝑉

0
+L𝑊 + 𝑥̂

3

1
(𝑥̂
2
+ 𝐿𝑎
1
𝜀
1
)

≤ − ((𝑛 + 1) 𝜆min𝐿 − 𝑐
0
) |𝜀|
4
+ 𝑐
1

𝑛

∑

𝑖=1

𝑥̂
4

𝑖

𝐿4𝑖−4
+ 𝑥̂
3

1
𝑥̂
2

+ 𝐿𝑎
1
𝑥̂
3

1
𝜀
1

≤ − (𝑛𝜆min𝐿 − 𝑐
0
) |𝜀|
4
+ 𝑐
1

𝑛

∑

𝑖=1

𝑥̂
4

𝑖

𝐿4𝑖−4

+ 𝑘
1
𝜆
−1/3

min 𝑎
4/3

1
𝐿𝑥̂
4

1
+ 𝑥̂
3

1
𝑥̂
2
,

(32)

where 𝑘
1
is defined in Lemma 7.

Define 𝜉
2
= 𝑥̂
2
− 𝑥̂
∗

2
with 𝑥̂

∗

2
being a virtual control.Then,

we have

L𝑉
1
≤ − (𝑛𝜆min𝐿 − 𝑐

0
) |𝜀|
4
+ 𝑐
1
(
𝑥̂
4

3

𝐿8
+ ⋅ ⋅ ⋅ +

𝑥̂
4

𝑛

𝐿4𝑛−4
)

+ (𝑐
1
+ 𝑘
1
𝜆
−1/3

min 𝑎
4/3

1
𝐿) 𝑥̂
4

1
+

𝑐
1

𝐿4
(𝜉
2
+ 𝑥̂
∗

2
)
4

+ 𝑥̂
3

1
(𝜉
2
+ 𝑥̂
∗

2
)

≤ − (𝑛𝜆min𝐿 − 𝑐
0
) |𝜀|
4
+ 𝑐
1
(
𝑥̂
4

3

𝐿8
+ ⋅ ⋅ ⋅ +

𝑥̂
4

𝑛

𝐿4𝑛−4
)

+ (𝑐
1
+ 𝑘
1
𝜆
−1/3

min 𝑎
4/3

1
𝐿) 𝑥̂
4

1
+

8𝑐
1

𝐿4
𝜉
4

2
+

8𝑐
1

𝐿4
(𝑥̂
∗

2
)
4

+ 𝑥̂
3

1
𝜉
2
+ 𝑥̂
3

1
𝑥̂
∗

2
.

(33)

Choose the virtual controller

𝑥̂
∗

2
= −𝐿 (𝑛 + 𝑐

1
+ 𝑘
1
𝜆
−1/3

1
𝑎
4/3

1
) 𝑥̂
1
= −𝐿𝑏

1
𝑥̂
1
, (34)

where 𝑏
1
> 0 is independent of 𝐿. Hence,

L𝑉
1
≤ − (𝑛𝜆min𝐿 − 𝑐

0
) |𝜀|
4
+ 𝑐
1
(
𝑥̂
4

3

𝐿8
+ ⋅ ⋅ ⋅ +

𝑥̂
4

𝑛

𝐿4𝑛−4
)

+ (8𝑐
1
𝑏
4

1
− 𝑛𝐿) 𝑥̂

4

1
+

8𝑐
1

𝐿4
𝜉
4

2
+ 𝑥̂
3

1
𝜉
2
.

(35)
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Step 𝑘. Suppose that, at Step 𝑘, there exists a smooth Lyapunov
function 𝑉

𝑘
which is positive definite, radially unbounded,

and twice continuously differentiable, satisfying

L𝑉
𝑘
≤ − ((𝑛 + 1 − 𝑘) 𝜆min𝐿 − 𝑐

0
) |𝜀|
4

−

𝑘

∑

𝑗=1

1

𝐿4𝑗−4
((𝑛 + 1 − 𝑘) 𝐿 − 8𝑐

1
𝑏
4

𝑗
) 𝜉
4

𝑗

+ 𝑐
1
(

1

𝐿4𝑘+4
𝑥̂
4

𝑘+2
+ ⋅ ⋅ ⋅ +

1

𝐿4𝑛−4
𝑥̂
4

𝑛
) +

8𝑐
1

𝐿4𝑘
𝜉
4

𝑘+1

+
1

𝐿4𝑘−4
𝜉
3

𝑘
𝜉
𝑘+1

,

(36)

with a set of virtual controllers 𝑥̂∗
1
, 𝑥̂
∗

2
, . . . , 𝑥̂

∗

𝑘
, defined by 𝑥̂∗

1
=

0, 𝑥̂∗
𝑖

= −𝐿𝑏
𝑖−1

𝜉
𝑖−1

with 𝑏
𝑖−1

> 0 being independent of the
gain constant 𝐿, where 𝜉

𝑖
= 𝑥̂
𝑖
− 𝑥̂
∗

𝑖
, 𝑖 = 1, . . . , 𝑛.

From the above definition, we have

𝜉
𝑘+1

= 𝑥̂
𝑘+1

+ 𝐿𝑏
𝑘
𝜉
𝑘

= 𝑥̂
𝑘+1

+ 𝐿𝑏
𝑘
𝑥̂
𝑘
+ 𝐿
2
𝑏
𝑘
𝑏
𝑘−1

𝑥̂
𝑘−1

+ ⋅ ⋅ ⋅

+ 𝐿
𝑘
𝑏
𝑘
𝑏
𝑘−1

⋅ ⋅ ⋅ 𝑏
1
𝑥̂
1
.

(37)

A direct computation yields

L(
1

4𝐿4𝑘
𝜉
4

𝑘+1
) =

1

𝐿4𝑘
𝜉
3

𝑘+1
(𝑥̂
𝑘+2

+ 𝐿
𝑘+1

𝑎
𝑘+1

𝜀
1

+ 𝐿𝑏
𝑘

𝑘

∑

𝑖=1

𝜕𝜉
𝑘

𝜕𝑥
𝑖

(𝑥̂
𝑖+1

+ 𝐿
𝑖
𝑎
𝑖
𝜀
1
)) =

1

𝐿4𝑘
𝜉
3

𝑘+1
(𝑥̂
𝑘+2

+ 𝐿
𝑘+1

𝑎
𝑘+1

𝜀
1

+

𝑘

∑

𝑖=1

𝐿
𝑘−𝑖+1

𝑏
𝑘
⋅ ⋅ ⋅ 𝑏
𝑖
(𝜉
𝑖+1

− 𝐿𝑏
𝑖
𝜉
𝑖
+ 𝐿
𝑖
𝑎
𝑖
𝜀
1
)) =

1

𝐿4𝑘

⋅ 𝜉
3

𝑘+1
(𝑥̂
𝑘+2

+ 𝐿
𝑘+1

𝑑
0
𝜀
1
+ 𝐿
𝑘+1

𝑑
1
𝜉
1
+ 𝐿
𝑘
𝑑
2
𝜉
2
+ ⋅ ⋅ ⋅

+ 𝐿
2
𝑑
𝑘
𝜉
𝑘
+ 𝐿𝑑
𝑘+1

𝜉
𝑘+1

) ,

(38)

where

𝑑
0
= 𝑎
𝑘+1

+ (𝑏
𝑘
⋅ ⋅ ⋅ 𝑏
1
𝑎
1
) + (𝑏
𝑘
⋅ ⋅ ⋅ 𝑏
2
𝑎
2
) + ⋅ ⋅ ⋅ + 𝑏

𝑘
𝑎
𝑘
,

𝑑
1
= −𝑏
𝑘
⋅ ⋅ ⋅ 𝑏
2

1
,

𝑑
2
= 𝑏
𝑘
⋅ ⋅ ⋅ 𝑏
1
− 𝑏
𝑘
⋅ ⋅ ⋅ 𝑏
2

2
,

.

.

.

𝑑
𝑘
= 𝑏
𝑘
𝑏
𝑘−1

− 𝑏
2

𝑘
,

𝑑
𝑘+1

= 𝑏
𝑘
> 0.

(39)

Obviously, 𝑑
0
, 𝑑
1
, . . . , 𝑑

𝑘+1
are suitable real numbers and they

are independent of the gain constant 𝐿.

Let us consider the following Lyapunov function:

𝑉
𝑘+1

= 𝑉
𝑘
+

1

4𝐿4𝑘
𝜉
4

𝑘+1
. (40)

Then, combining (36) and (38), we obtain

L𝑉
𝑘+1

≤ − ((𝑛 + 1 − 𝑘) 𝜆min𝐿 − 𝑐
0
) |𝜀|
4

−

𝑘

∑

𝑗=1

1

𝐿4𝑗−4
((𝑛 + 1 − 𝑘) 𝐿 − 8𝑐

1
𝑏
4

𝑗
) 𝜉
4

𝑗

+ 𝑐
1
(

1

𝐿4𝑘+4
𝑥̂
4

𝑘+2
+ ⋅ ⋅ ⋅ +

1

𝐿4𝑛−4
𝑥̂
4

𝑛
) +

8𝑐
1

𝐿4𝑘
𝜉
4

𝑘+1

+
1

𝐿4𝑘−4
𝜉
3

𝑘
𝜉
𝑘+1

+
1

𝐿4𝑘
𝜉
3

𝑘+1
(𝑥̂
𝑘+2

+ 𝐿
𝑘+1

𝑑
0
𝜀
1

+ 𝐿
𝑘+1

𝑑
1
𝜉
1
+ ⋅ ⋅ ⋅ + 𝐿

2
𝑑
𝑘
𝜉
𝑘
+ 𝐿𝑑
𝑘+1

𝜉
𝑘+1

)

≤ − ((𝑛 − 𝑘) 𝜆min𝐿 − 𝑐
0
) |𝜀|
4

−

𝑘

∑

𝑗=1

1

𝐿4𝑗−4
((𝑛 − 𝑘) 𝐿 − 8𝑐

1
𝑏
4

𝑗
) 𝜉
4

𝑗
+ 𝑐
1
(

1

𝐿4𝑘+8
𝑥̂
4

𝑘+3

+ ⋅ ⋅ ⋅ +
1

𝐿4𝑛−4
𝑥̂
4

𝑛
) +

8𝑐
1

𝐿4𝑘+4
𝜉
4

𝑘+2
+

8𝑐
1

𝐿4𝑘+4
(𝑥̂
∗

𝑘+2
)
4

+
1

𝐿4𝑘
𝜉
3

𝑘+1
𝑥̂
∗

𝑘+2
+

1

𝐿4𝑘
𝜉
3

𝑘+1
𝜉
𝑘+2

+
𝑑
𝑘+1

+ 8 (𝑐
1
/𝐿)

𝐿4𝑘−1

⋅ 𝜉
4

𝑘+1
+ (−𝜆min𝐿𝜀

4

1
+

1

𝐿3𝑘−1
𝑑
0
𝜉
3

𝑘+1
𝜀
1
) + (−𝐿𝜉

4

1

+
𝑑
1

𝐿3𝑘−1
𝜉
3

𝑘+1
𝜉
1
) + (−

1

𝐿3
𝜉
4

2
+

𝑑
2

𝐿3𝑘
𝜉
3

𝑘+1
𝜉
2
) + ⋅ ⋅ ⋅

+ (−
1

𝐿4𝑘−9
𝜉
4

𝑘−1
+

𝑑
𝑘−1

𝐿4𝑘−3
𝜉
3

𝑘+1
𝜉
𝑘−1

) + (−
1

𝐿4𝑘−5
𝜉
4

𝑘

+
𝑑
𝑘

𝐿4𝑘−2
𝜉
3

𝑘+1
𝜉
𝑘
+

1

𝐿4𝑘−4
𝜉
3

𝑘
𝜉
𝑘+1

) .

(41)

It follows from Lemma 7 that

−𝜆min𝐿𝜀
4

1
+

1

𝐿3𝑘−1
𝑑
0
𝜉
3

𝑘+1
𝜀
1
≤ 𝑘
1
𝑑
4/3

0
𝜆
−1/3

min
𝜉
4

𝑘+1

𝐿4𝑘−1
,

−𝐿𝜉
4

1
+

𝑑
1

𝐿3𝑘−1
𝜉
3

𝑘+1
𝜉
1
≤ 𝑘
1
𝑑
4/3

1

𝜉
4

𝑘+1

𝐿4𝑘−1
,

−
1

𝐿3
𝜉
4

2
+

𝑑
2

𝐿3𝑘
𝜉
3

𝑘+1
𝜉
2
≤ 𝑘
1
𝑑
4/3

2

𝜉
4

𝑘+1

𝐿4𝑘−1
,

.

.

.

−
1

𝐿4𝑘−9
𝜉
4

𝑘−1
+

𝑑
𝑘−1

𝐿4𝑘−3
𝜉
3

𝑘+1
𝜉
𝑘−1

≤ 𝑘
1
𝑑
4/3

𝑘−1

𝜉
4

𝑘+1

𝐿4𝑘−1
.

(42)
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In particular, the last term of (41) yields

−
1

𝐿4𝑘−5
𝜉
4

𝑘
+

𝑑
𝑘

𝐿4𝑘−2
𝜉
3

𝑘+1
𝜉
𝑘
+

1

𝐿4𝑘−4
𝜉
3

𝑘
𝜉
𝑘+1

≤ [−
1

2𝐿4𝑘−5
𝜉
4

𝑘
+

𝑑
𝑘

𝐿4𝑘−2
𝜉
3

𝑘+1
𝜉
𝑘
]

+ [−
1

2𝐿4𝑘−5
𝜉
4

𝑘
+

1

𝐿4𝑘−4
𝜉
3

𝑘
𝜉
𝑘+1

]

≤ (𝑘
1
(
1

2
)

−1/3

𝑑
4/3

𝑘
+ 𝑘
2
(
1

2
)

−3

)
𝜉
4

𝑘+1

𝐿4𝑘−1
.

(43)

Hence,

L𝑉
𝑘+1

≤ − ((𝑛 − 𝑘) 𝜆min𝐿 − 𝑐
0
) |𝜀|
4

−

𝑘

∑

𝑗=1

1

𝐿4𝑗−4
((𝑛 − 𝑘) 𝐿 − 8𝑐

1
𝑏
4

𝑗
) 𝜉
4

𝑗

+ 𝑐
1
(

1

𝐿4𝑘+8
𝑥̂
4

𝑘+3
+ ⋅ ⋅ ⋅ +

1

𝐿4𝑛−4
𝑥̂
4

𝑛
)

+
8𝑐
1

𝐿4𝑘+4
𝜉
4

𝑘+2
+

8𝑐
1

𝐿4𝑘+4
(𝑥̂
∗

𝑘+2
)
4

+
1

𝐿4𝑘
𝜉
3

𝑘+1
𝑥̂
∗

𝑘+2
+

1

𝐿4𝑘
𝜉
3

𝑘+1
𝜉
𝑘+2

+
1

𝐿4𝑘−1
(𝑑
󸀠

0
+ 𝑑
󸀠

1
+ ⋅ ⋅ ⋅ + 𝑑

󸀠

𝑘+1
) 𝜉
4

𝑘+1
,

(44)

where

𝑑
󸀠

0
= 𝑘
1
𝑑
4/3

0
𝜆
−1/3

min ,

𝑑
󸀠

1
= 𝑘
1
𝑑
4/3

1
,

.

.

.

𝑑
󸀠

𝑘−1
= 𝑘
1
𝑑
4/3

𝑘−1
,

𝑑
󸀠

𝑘
= 𝑘
1
(
1

2
)

−1/3

𝑑
4/3

𝑘
+ 𝑘
2
(
1

2
)

−3

,

𝑑
󸀠

𝑘+1
= 𝑑
𝑘+1

+ 8𝑐
1
.

(45)

Now, we choose the following linear controller:

𝑥̂
∗

𝑘+2
= −𝐿 (𝑛 − 𝑘 + 𝑑

󸀠

0
+ 𝑑
󸀠

1
+ ⋅ ⋅ ⋅ + 𝑑

󸀠

𝑘+1
) 𝜉
𝑘+1

= −𝐿𝑏
𝑘+1

𝜉
𝑘+1

,

(46)

with 𝑏
𝑘+1

> 0 being independent of 𝐿.

So it follows from (44) that

L𝑉
𝑘+1

≤ − ((𝑛 − 𝑘) 𝜆min𝐿 − 𝑐
0
) |𝜀|
4

−

𝑘+1

∑

𝑗=1

1

𝐿4𝑗−4
((𝑛 − 𝑘) 𝐿 − 8𝑐

1
𝑏
4

𝑗
) 𝜉
4

𝑗

+ 𝑐
1
(

1

𝐿4𝑘+8
𝑥̂
4

𝑘+3
+ ⋅ ⋅ ⋅ +

1

𝐿4𝑛−4
𝑥̂
4

𝑛
)

+
8𝑐
1

𝐿4𝑘+4
𝜉
4

𝑘+2
+

1

𝐿4𝑘
𝜉
3

𝑘+1
𝜉
𝑘+2

.

(47)

Step 𝑛. Using the inductive argument step by step, at the (𝑛 −

1)th step, we get

L𝑉
𝑛−1

≤ − (2𝜆min𝐿 − 𝑐
0
) |𝜀|
4

−

𝑛−1

∑

𝑗=1

1

𝐿4𝑗−4
(2𝐿 − 8𝑐

1
𝑏
4

𝑗
) 𝜉
4

𝑗
+

8𝑐
1

𝐿4𝑛−4
𝜉
4

𝑛

+
1

𝐿4𝑛−8
𝜉
3

𝑛−1
𝜉
𝑛
.

(48)

Noting the function 𝑉
𝑛
= 𝑉
𝑛−1

+ (1/4𝐿
4𝑛−4

)𝜉
4

𝑛
, we have

L𝑉
𝑛
≤ − (2𝜆min𝐿 − 𝑐

0
) |𝜀|
4

−

𝑛−1

∑

𝑗=1

1

𝐿4𝑗−4
(2𝐿 − 8𝑐

1
𝑏
4

𝑗
) 𝜉
4

𝑗
+

8𝑐
1

𝐿4𝑛−4
𝜉
4

𝑛
+

1

𝐿4𝑛−8

⋅ 𝜉
3

𝑛−1
𝜉
𝑛
+

1

𝐿4𝑛−4
𝜉
3

𝑛
𝑥̂
𝑛+1

+
1

𝐿4𝑛−4
(𝐿
𝑛
𝑑
0
𝜀
1
+ 𝐿
𝑛
𝑑
1
𝜉
1

+ ⋅ ⋅ ⋅ + 𝐿
2
𝑑
𝑛−1

𝜉
𝑛−1

+ 𝐿𝑑
𝑛
𝜉
𝑛
) 𝜉
3

𝑛
≤ − (𝜆min𝐿 − 𝑐

0
)

⋅ |𝜀|
4
−

𝑛−1

∑

𝑗=1

1

𝐿4𝑗−4
(𝐿 − 8𝑐

1
𝑏
4

𝑗
) 𝜉
4

𝑗
+

1

𝐿4𝑛−4
𝜉
3

𝑛
𝑥̂
𝑛+1

+ (
8𝑐
1

𝐿4𝑛−4
+

1

𝐿4𝑛−5
𝑑
𝑛
) 𝜉
4

𝑛
+

1

𝐿4𝑛−5
(𝑑
󸀠

0
+ 𝑑
󸀠

1
+ ⋅ ⋅ ⋅

+ 𝑑
󸀠

𝑛−1
) 𝜉
4

𝑛
≤ − (𝜆min𝐿 − 𝑐

0
) |𝜀|
4

−

𝑛−1

∑

𝑗=1

1

𝐿4𝑗−4
(𝐿 − 8𝑐

1
𝑏
4

𝑗
) 𝜉
4

𝑗
+

1

𝐿4𝑛−4
𝜉
3

𝑛
𝑥̂
𝑛+1

+
1

𝐿4𝑛−5
(𝑑
󸀠

0
+ 𝑑
󸀠

1
+ ⋅ ⋅ ⋅ + 𝑑

󸀠

𝑛−1
+ 8𝑐
1
+ 𝑑
𝑛
) 𝜉
4

𝑛
.

(49)

We now design the linear controller

𝑢 = 𝑥̂
𝑛+1

= −𝐿𝑏
𝑛
𝜉
𝑛
= −𝐿𝑏

𝑛
(𝑥̂
𝑛
+ 𝐿𝑏
𝑛−1

𝑥̂
𝑛−1

+ 𝐿
2
𝑏
𝑛−1

𝑏
𝑛−2

𝑥̂
𝑛−2

+ ⋅ ⋅ ⋅ + 𝐿
𝑛−1

𝑏
𝑛−1

𝑏
𝑛−2

⋅ ⋅ ⋅ 𝑏
1
𝑥̂
1
) ,

(50)

where 𝑏
𝑛
= 1 + 𝑑

󸀠

0
+ 𝑑
󸀠

1
+ ⋅ ⋅ ⋅ + 𝑑

󸀠

𝑛−1
+ 8𝑐
1
+ 𝑑
𝑛
> 0 is a real

number independent of the gain parameter 𝐿. Thus,

L𝑉
𝑛
≤ −𝛼
3
(𝜀, 𝜉
1
, . . . , 𝜉

𝑛
) , (51)
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where 𝛼
3
(𝜀, 𝜉
1
, . . . , 𝜉

𝑛
) := (𝜆min𝐿− 𝑐

0
)|𝜀|
4
+∑
𝑛−1

𝑗=1
(1/𝐿
4𝑗−4

)(𝐿−

8𝑐
1
𝑏
4

𝑗
)𝜉
4

𝑗
+ (1/𝐿

4𝑛−5
)𝜉
4

𝑛
.

Choosing the gain constant 𝐿 = max{1, 𝑐
0
/𝜆min,

8𝑐
1
𝑏
4

1
, . . . , 8𝑐

1
𝑏
2

𝑛−1
}, it is obvious that 𝛼

3
(𝜀, 𝜉
1
, . . . , 𝜉

𝑛
) is a

positive-definite and proper function. Thus, we see that (6)
is true.

Now, we prove (5). From the above process, we have
constructed the Lyapunov function

𝑉
𝑛
= 𝑉 +

𝛼
1

1 − 𝑑󸀠

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝑑(𝑡)

𝑥
4

𝑖
(𝑠)

𝐿4𝑖−4
𝑑𝑠, (52)

where 𝛼
1
and 𝑑

󸀠 are positive parameters and

𝑉 =
𝑛 + 1

2
(𝜀
𝑇
𝑃𝜀)
2

+

𝑛

∑

𝑖=1

𝜉
4

𝑖

4𝐿4𝑖−4
. (53)

It is easy to verify that 𝑉 is C2 on 𝑧. Suppose that 𝑈(𝑧) is
continuous, positive definite, and radially unbounded. Then
by Lemmas 5 and 6, there exist positive constants 𝛾 and 𝛾 and
two classK

∞
functions 𝛽

1
and 𝛼

11
such that

𝛽
1
(|𝑧|) ≤ 𝑈 (𝑧) ≤ 𝛼

11
(|𝑧|) ,

𝛾 ‖𝑧‖
4

Δ
≤ 𝑈 (𝑧) ≤ 𝛾 ‖𝑧‖

4

Δ
.

(54)

It follows from 𝑑(𝑡) : R
+
→ [0, 𝑑] that

𝛼
1

1 − 𝑑󸀠

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝑑(𝑡)

𝑥
4

𝑖
(𝑠)

𝐿4𝑖−4
𝑑𝑠 ≤ 𝛾∫

𝑡

𝑡−𝑑(𝑡)

𝑛

∑

𝑖=1

𝑥
4

𝑖
(𝑠)

𝐿4𝑖−4
𝑑𝑠

≤ 𝛾∫

𝑡

𝑡−𝑑(𝑡)

‖𝑧 (𝑠)‖
4

Δ
𝑑𝑠 ≤ 𝛾̃ ∫

𝑡

𝑡−𝑑(𝑡)

𝛼
11

(|𝑧 (𝑠)|) 𝑑𝑠

= 𝛾̃ ∫

0

−𝑑(𝑡)

𝛼
11

(|𝑧 (𝜎 + 𝑡)|) 𝑑 (𝜎 + 𝑡)

≤ 𝛾̃ ∫

0

−𝑑

𝛼
11

(|𝑧 (𝜎 + 𝑡)|) 𝑑 (𝜎 + 𝑡)

≤ 𝛾̂ sup
−𝑑≤𝜎≤0

𝛼
11

(|𝑧 (𝜎 + 𝑡)|)

≤ 𝛼
22

( sup
−𝑑≤𝜎≤0

|𝑧 (𝜎 + 𝑡)|) ,

(55)

where 𝛾 = 𝛼
1
/(1 − 𝑑

󸀠
), 𝛾̃ and 𝛾̂ are positive constants, and 𝛼

22

is a classK
∞

function. Noting that

|𝑧 (𝑡)| ≤ sup
−𝑑≤𝜎≤0

|𝑧 (𝜎 + 𝑡)| , (56)

so

𝛼
11

(|𝑧 (𝑡)|) ≤ 𝛼
11

( sup
−𝑑≤𝜎≤0

|𝑧 (𝜎 + 𝑡)|) . (57)

Defining

𝛽
2
( sup
−𝑑≤𝜎≤0

|𝑧 (𝜎 + 𝑡)|)

fl 𝛼
11

( sup
−𝑑≤𝜎≤0

|𝑧 (𝜎 + 𝑡)|)

+ 𝛼
22

( sup
−𝑑≤𝜎≤0

|𝑧 (𝜎 + 𝑡)|) ,

(58)

one gets

𝛽
1
(|𝑧 (𝑡)|) ≤ 𝑉

𝑛
(𝑧 (𝑡)) ≤ 𝛽

2
( sup
−𝑑≤𝜎≤0

|𝑧 (𝜎 + 𝑡)|) . (59)

Therefore, by Lemma 4, the equilibrium of closed-loop
nonlinear stochastic system (18), (20), and (50) is globally
asymptotically stable and the closed-loop systemhas a unique
solution on [−𝑑,∞) for each 𝜉 ∈ R𝑛.

Remark 14. Letting 𝑓
𝑖

= 0 (𝑖 = 1 . . . , 𝑛) and 𝑑(𝑡) ≡ 0 in
system (18), then the model will reduce to that introduced in
[9].Therefore, our result extends and improves those given in
[9].

Remark 15. It should be pointed out that, compared with
the 𝐶

1 output feedback controller in [20], we see that the
linear controller (50) based on the observable linearization
is a smooth one.

Remark 16. In this paper, combining the backstepping design
with mathematical induction, we extend the method in
[21] to the stochastic nonlinear system with time-varying
delay. Although the globally asymptotic stability of stochastic
nonlinear system has been discussed by Liu and Zhang in
[12], they did not consider the term of time-varying delay.
Therefore, our conclusion is proposed for the first time.

Remark 17. In [22], Liu and Xie considered the state feed-
back stability of stochastic feedforward nonlinear systems
with time-varying delays.They introduced the homogeneous
domination approach to construct a state feedback controller.
It is generally known that in real lives the output feedback
control is easier to achieve than the state feedback control
and has great theory significance and utility value.Therefore,
in this paper we combine the backstepping method with
the mathematical induction to design a Lyapunov-Krasovskii
functional and construct a linear output feedback controller
for stochastic nonlinear systems with time-varying delay.
Moreover, we impose different restricted conditions on func-
tions 𝑓

𝑖
and 𝑔

𝑖
(𝑖 = 1, . . . , 𝑛) to ensure the global stability of

stochastic nonlinear systems with time-varying delays.

4. An Example

In this section, we will use a simulation example to illustrate
our main results.
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Consider the following stochastic nonlinear system:

𝑑𝑥
1
= (𝑥
2
+

1

16
𝑥
1
sin𝑥2
2
)𝑑𝑡

+
1

16
cos (𝑥

2
(𝑡 − 𝑑 (𝑡))) 𝑑𝑤,

𝑑𝑥
2
= 𝑢𝑑𝑡

𝑦 = 𝑥
1
,

(60)

where the time-varying delay 𝑑(𝑡) = cos(𝑡). Obvi-
ously, we have |𝑓

1
(𝑥)| ≤ (1/16)(|𝑥

1
| + |𝑥

2
(𝑡 − cos(𝑡))|),

|𝑔
1
(𝑥)| ≤ (1/16)(|𝑥

1
| + |𝑥

2
(𝑡 − cos(𝑡))|), which implies that

Assumption 12 holds. Moreover, both of them are locally
Lipschitz. The linear observer system is designed as

̇̂𝑥
1
= 𝑥̂
2
+ 𝐿 (𝑥

1
− 𝑥̂
1
) ,

̇̂𝑥
2
= 𝑢 + 𝐿

2
(𝑥
1
− 𝑥̂
1
)

(61)

with a suitable choice of the parameter 𝐿. The observation
errors

𝜀
1
= 𝑥
1
− 𝑥̂
1
,

𝜀
2
= 𝑥
2
− 𝑥̂
2

(62)

satisfy

𝑑𝜀 = 𝐿[
−1 1

−1 0
] 𝜀𝑑𝑡 + [

[

𝑓
1

𝑓
2

𝐿

]

]

𝑑𝑡 +
[
[

[

𝑔
𝑇

1

𝑔
𝑇

2

𝐿

]
]

]

𝑑𝑤

= 𝐿𝐴𝜀𝑑𝑡 + 𝐹𝑑𝑡 + 𝐺𝑑𝑤.

(63)

For the abovematrix𝐴, there exists a positive-definite matrix
𝑃 satisfying 𝐴

𝑇
𝑃 + 𝑃𝐴 = −𝐼, where

𝑃 =

[
[
[
[

[

1 −
1

2

−
1

2

3

2

]
]
]
]

]

. (64)

It is easy to get the corresponding eigenvalues 𝜆min = (5 −

√5)/4 and 𝜆max = (5 + √5)/4.
Consider the Lyapunov-Krasovskii functional

𝑉 =
3

2
(𝜀
𝑇
𝑃𝜀)
2

+
𝛼
1

1 + sin𝑥

2

∑

𝑖=1

∫

𝑡

𝑡−cos 𝑡

𝑥
4

𝑖
(𝑠)

𝐿4𝑖−4
𝑑𝑠 +

1

4
𝑥̂
4

1

+
1

4𝐿4
(𝑥̂
2
+ 𝐿𝑏
1
𝑥̂
1
)
4

.

(65)

Then, we take 𝛼
1
= 0.02, 𝑏

1
= 2, 𝑏

2
= 20, 𝐿 = 160, and the

linear control 𝑢 = −3200(𝑥̂
2
+ 𝐿𝑏
1
𝑥̂
1
). ByTheorem 13, we see

that closed-loop system (60), (61) and the linear controller 𝑢
are globally asymptotically stable in probability and there is a
unique solution on [−𝑑,∞). (The state response and control
input with initial conditions 𝑥

1
(0) = 0.5, 𝑥

2
(0) = 50, 𝑥̂

1
(0) =

0.6, and 𝑥̂
2
(0) = −100 are presented in Figures 1(a), 1(b), and

2, where hat𝑥
1
and hat𝑥

2
denote 𝑥̂

1
and 𝑥̂

2
.)
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Figure 1: The state response.

5. Conclusion

In this paper, we combine the backstepping method with the
mathematical induction to prove that a class of stochastic
nonlinear systems with time-varying delays by the output
feedback control is globally asymptotically stable in proba-
bility. It should be pointed out that we not only extend the
results in deterministic nonlinear systems to more complex
stochastic case but also add time-varying delays to stochastic
nonlinear systems. For the term of time-varying delays, we
design a Lyapunov-Krasovskii functional and a linear output
feedback controller to render the closed-loop system globally
asymptotically stable.
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Figure 2: The control input.
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[7] H. Deng and M. Krstić, “Stochastic nonlinear stabilization—I:
a backstepping design,” Systems & Control Letters, vol. 32, no. 3,
pp. 143–150, 1997.
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[17] S. Khoo, J. Yin, Z. Man, and X. Yu, “Finite-time stabilization of
stochastic nonlinear systems in strict-feedback form,”Automat-
ica, vol. 49, no. 5, pp. 1403–1410, 2013.

[18] Z.-J. Wu, X.-J. Xie, and S.-Y. Zhang, “Stochastic adaptive
backstepping controller design by introducing dynamic signal
and changing supply function,” International Journal of Control,
vol. 79, no. 12, pp. 1635–1646, 2006.

[19] Z.-J. Wu, X.-J. Xie, and S.-Y. Zhang, “Adaptive backstepping
controller design using stochastic small-gain theorem,” Auto-
matica, vol. 43, no. 4, pp. 608–620, 2007.

[20] X.-J. Xie and L. Liu, “Further results on output feedback
stabilization for stochastic high-order nonlinear systems with
time-varying delay,” Automatica, vol. 48, no. 10, pp. 2577–2586,
2012.

[21] C. Qian and W. Lin, “Output feedback control of a class of
nonlinear systems: a nonseparation principle paradigm,” IEEE
Transactions on Automatic Control, vol. 47, no. 10, pp. 1710–1715,
2002.

[22] L. Liu and X.-J. Xie, “State feedback stabilization for stochastic
feedforward nonlinear systems with time-varying delay,” Auto-
matica, vol. 49, no. 4, pp. 936–942, 2013.



Discrete Dynamics in Nature and Society 11

[23] J.-Y. Zhai and W.-T. Zha, “Global adaptive output feedback
control for a class of nonlinear time-delay systems,” ISA Trans-
actions, vol. 53, no. 1, pp. 2–9, 2014.

[24] N. Duan and X.-J. Xie, “Further results on output-feedback
stabilization for a class of stochastic nonlinear systems,” IEEE
Transactions on Automatic Control, vol. 56, no. 5, pp. 1208–1213,
2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


