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This paper is devoted to stochastic delayed one-predator and two-competing-prey systems with two kinds of different functional
responses. By establishing appropriate Lyapunov functions, the globally positive solution and stochastic boundedness are
investigated. In some case, the stochastic permanence and extinction are also obtained. Moreover, sufficient conditions of the global
asymptotic stability of the system are established. Finally, some numerical examples are provided to explain our conclusions.

1. Introduction

It is well known that predator-prey system, cooperative
system, and competitive system are three kinds of important
ecological systems. The dynamic relationship among species
is a significant theme whether in ecology or in mathematical
ecology because of its importance and universal existence
with many concerned biological systems (see [1]). A lot of
systems about predator-prey behaviors have been proposed
(see [2-4]).

A main objective for ecologists is to find the relationships
among species. And the consumption rate of each predator on
prey is an important component of the relationships between
predator and prey, that is, predator’s functional response. In
order to describe different situations when predators search
or compete for food, many significant functional responses
have been proposed, such as L-V and Holling II-IV types
(see [5-7]). A suitable functional response is not only related
to the density of prey, but also to the predator. A statis-
tics from 19 predator-prey systems indicates that Crowley-
Martin type, Beddington-DeAngelis type, and Hassell-Varley
type predator-dependent functions can provide a better

description in some case. In [8], the following predator-prey
system bas been studied:
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where x is the density of prey and y is the density of predator
at time ¢.

However, interaction of multiple species often occurs in
nature and their relationships are much more complex than
that of the two species (see [9, 10]). Therefore, it is more
realistic to study the multiple species predator-prey systems.
Motivated by above, we consider the following systems:
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where y,, y, and z denote two competed prey and predator
densities, respectively. And the parameters a,, a,, and a; are
the intrinsic growth of three species; b;, b,, and b; are the
intraspecific competition rate of three species, respectively. ¢,
and ¢, are the interspecific competition rates of two competed
species, ¢; and ¢, are the predators’ capturing rates, and
d, and d, are the rates of conversion of nutrients into the
production of predator. And all the parameters in system (2)
are constants. It is very necessary to point out that ¢;z/(1 +
my, + nz + ky, z) is a special functional response; when m =
n =k = 0 it becomes a linear mass-action function response
(or Holling type I functional response), whenn = k = 0 it
becomes a Holling type II functional response, when k = 0
it becomes a modified Holling type II functional response,
and when mn = k it becomes a Crowley-Martin functional
response.

In the real world, population dynamics are often affected
by white noise from the environment, which relate to climate,
geographical distribution, geological features, human disas-
ter, human intervention, and other environmental factors.
Therefore, the flow of biological energy is a process of
fluctuation. The oscillation of population biomass is directly
related to the birth and death rate of random perturbation.
Up to now, there have been many works considering the
effect of random perturbation (see [11-13]). In this paper,
we assume that white noise affects the intrinsic birth rate,
capture rate of predator, and conversion rate of the predator
population. On the other hand, the development trend of
the real biological system is not only related to the status of
the system, but also depends on the history of the system
more or less, which is called time delays. Moreover, time
delay widely exists in biological systems; for example, in
the predator-prey system, the process for the conversion
of prey to predators is not immediately translated into the
predator population but after a certain period of time to
digest the transformation. So a more realistic predator-prey
model should consider the effects of time delays (see [14, 15]).
As a matter of fact, delay differential systems have much
more complicated dynamical behaviors than the differential
equations without delays. Therefore, the following stochastic
delay systems are considered:
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o7 are the intensities of the noises, i = 1,2,3,4,5. B;(t)
are standard Brownian motions which are defined on a
complete probability space (Q,F,P), i = 1,2,3,4,5. Let
T = max{r, 7,13} and C = C([-7, 0],Ri) be the set of
continuous functions from [-7, 0] to Ri with initial condition
y € C([-T, 0],Ri) and the norm [ly| = sup_,_4.,6(0) <
+00.

Any biological system, whether it is population, biological
communities, ecosystems, or the biosphere, its dynamic
behavior is one of the main objects of the study, such as the
resistance of ecosystem, persistence, recoverability, variabil-
ity, and consistency. Therefore, we use mathematical theory
and methods to study the dynamics of biological populations,
which can not only protect the ecological balance but also
can improve the ecological environment for human survival.
According to what we know, few current literatures are
found to discuss stochastic delayed predator-prey systems
with Holling type IV and Crowley-Martin type functional
responses at the same time. In this paper, it is the first time to
obtain the condition of global asymptotic stability of system
(3).

This paper is carried out as follows. In Section 2 and in
Section 3, global positive solution and stochastically ultimate
boundedness of system (3) are investigated. In Sections 4
and 5, we study the stochastic permanence and extinction,
respectively. In Section 6, we obtain the fact that system
(3) is globally asymptotically stable. In the end, in Sec-
tion 7, some numerical examples are provided to explain our
findings.

2. Existence of Global Positive Solution

Theorem 1. For arbitrary initial data y € C([-T, 0],Ri),
system (3) has a unique positive solution on T > 0 which will
remain in R with probability 1.
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Proof. Define a C’-function V; — R, by

Vil ywz)=ym—-1-lny+y,-1-Iny,+z-1 @

—Inz.

Clearly, V,(y,, y,,2) is nonnegative when y, > 0, y, >
0, z > 0. Now we continue to define

t
Vy (1 2:2) = Vi (1 92, 2) + ¢ L— i (s)ds
t ©)
+¢ J; ¥, (s)ds,

where ¢, ¢, are the same in system (3). By the same method
in [13], we can complete the proof and omit it here. O

3. Stochastically Ultimate Boundedness

Stochastically ultimate boundedness of system (3) is studied
in this part. Firstly, we present a useful lemma in the
following.

Lemma 2. For any initial data y € C([-7,0],R>), (y;(t),
¥,(t), z(t)) is a positive solution of system (3); there exist three
positive constants K,(p), K,(p), and K;5(p), p > 1, which

satisfy
limE[y, (0] = K, (p),
limE |y, 0" = K, (p), (6)
limElz ()" = K; (p).

Proof. We define V,(y;) = y¥, V,(y,) = ¥, and V5(2) = 2.
By It6’s formula, we have
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Also, we can obtain that
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By taking expectation in both sides of inequality (9), we have
that
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By the same way, we can obtain that
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Therefore, we have
JlimEly, (0)]° = K, (p).
: P _
limE |y, 0)|” = K, (p), (13)

lim E |z (1)]” = K; (p),

where

K, (p) =<

a,+(p-1)032\
(-0

b

a +(p-1)0r/2+(p-1)0;/2n )"
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K3(P)= b3 .

This completes the proof. O

Theorem 3. For arbitrary initial data y € C([-, 0],Ri), by
the definition of stochastic boundedness, one has the fact that
system (3) is stochastically ultimately bounded.

Proof. From Lemma 2, we can see that E[|y,(t), y,(t),
z(1)|P] < K(p). Foranye € (0,1),let G = [K(p)/e]"'?, p > 1;
then using Chebyshev inequality, we can obtain that

Py, (0,9, 1),z (1) > G}

15
E [l ®). 3,0, 2()] 15)
< <6
GP
where K(p) = 37/2(K,(p) + K,(p) + K5(p)).
This completes the proof of Theorem 3. O
4. Stochastic Permanence
Theorem 4. If
1 o2 + o2 o2 + o2
L nax {af ML P IS
(16)

< min {al -Gy —C, a3 — 3}
m

holds, by the definition of stochastic permanence, we say that
system (3) is stochastically permanent.

Proof. Define V(yy, ¥,,2) = y1+y,+z for (3, (1), ¥,(t), z(¢)) €
R?; then
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Let W(yy, ¥5,2) = 1/V(yy, ¥,,2); using Ito’s formula, we can
obtain
1
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If (16) holds, we can find a positive constant y which satisfies
the following condition:

2 2 2 2
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Under the condition of (20), we can choose another positive
constant k making it satisfy the following condition:
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Using It6’s formula, we can obtain
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Obviously, we can find a positive constant K which satisfies
LeM (1+ W) < Ke". (26)
Then

de (1+ W) < Ke™ — e uw? (1 + w)r™

: (alyldBl (t) + 03y,dB; (t) + 04zdB, (t) 27)

12
dB, (t dB: (1)) |.
1+my1+nz+kylz(02 5 (£) + 05 5()))

We can integrate above inequality and then take expectation

E [e’“ 1+ W)"] <(1+W () + %ekt

(28)
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where M, = K/k, so
. u . “
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Since (y,(£) + y,(t) + () < 3#(y,(t) + p(t) + 2O =
3¥| 3, (8), ¥, (1), z(8)], where (¥, (t), y,(£), z(¢)) € Ri, therefore

1
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i

<3 lim supE (W @] <3"M,.
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From Theorem 3, we have
lim supE ]y, (0,2, 0,20 ] <K(p), @)

for any ¢ > 0; let y = (K(p)/s)l/P , using Chebyshev’s
inequality, we can obtain the conclusion. O

5. Extinction

The extinction of system (3) will be investigated in this part.

Definition 5. For arbitrary initial data y € C([-7,0], R}), if
1 t
lim sup ny, () 0,
t—+00 t
t
lim s py—z() <0, (32)
t—+00 t
lim suplnz(t) 0
t—+00 t

hold, then system (3) is extinct.

Theorem 6. For arbitrary initial data y € C([-T, O],Ri),
assume that
ol
a, ——= <0,
2
2
03
a,— — <0, (33)
2
2 2
1 o
g+ L+ 2y —-2<0
m 2 2m 2

holds; by the definition of extinction, system (3) is said to be
extinct.

Proof. We establish three Lyapunov functions as follows:

Vi(y ) =Iny, (1),
Vy (3, (1) =1ny, (1), (34)
Vi (z(®) =lnz ().

Making use of the generalized It6’s formula results in

dy @) (o, en-n)
w2\

av; =
1(}’1) 1+y2(f—‘l'2)

Gz

1+my, +nz+kyz

2 2
- l of + %% 3 dt
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dy, (d)’z)z ali (t - Tl)
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2.2
+ 0,2 (s) i ds
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t
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0
! -7
Iny, (t) = In y, (0) + L <a2 —byy, (s) - %
IEREIONIN: A PN & 66
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L[ 5
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t
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+

where M,(t) = f;(azz(s)/(l + my(s) + nz(s) +

ky,(s)z(s)))dB,(s) and M,(t) = J;(asyl(s)/(l + my,(s) +
nz(s) + ky, (s)z(t)))dBs(s) are martingales. And

(M, (t), M, (1))

- Jt ( 340 )2 ds
o \ 1+my; (s) +ny(s) +ky, (s)z(s) ’
(M, (), M, (1))

(37)

: 2
_ j 05, (5) ds
o \ 1 +my, (s) +nz(s) +ky, (s)z(s)
are the quadratic variations, respectively. Using the expo-

nential martingale inequality, for arbitrary positive constants
N, 7, and v, we can obtain

p{ sup [M(t) - % (M (t),M(t))] > ﬁ]» =e™. (38)

0<t<N

Choosing N =n, # = 1, and v = 2Inn, we have that

P { sup [Ml ) - % (M, (t), M, (t))] > 21nn}

o<t
<l

(39)
j2 { sup [M2 (t) - % (M, (t), M, (t))] >21lnn

Ostsn

< 1
X 5.
n2

Applying the Borel-Cantelli lemma, there exists a random
integer n, = ny(w) for almost all w € O such that

sup [Ml (t) - % (M, (t), M, (t))] <2lnmn,
ost<n

(40)
sup [Mz (t) - % (M, (t), M, (t)}] <2lnn,

0<t<n

for n > n,.
Thus
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<2lnn

0,2 (s)

. "
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(41)

M, (t)

<2lnn
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forall 0 <t <m, n > n,as. We substitute it into (36)

t
Iny, (t) —1n y, (0) < <a1 - %of) t+ Jo 0,dB, (s)

+21lnn,

1 t
Iny, (t) —In y, (0) < <C’2 - 5()‘?) t+ L 03dB; (s), (42)

d d 1 2
Inz(t) - lnz(0) < a3+—+—+__0_4 ¢
m 2 2m; 2

t
+ J 0,dB, (s) + 21Inn.
0

We divide t on both sides of (42) and let t — +00:

In y, (2) < Uf

tgrgloosup . S <0,
I ) % (43)
Jim sup = <4 - <0,
d 2 1 o;
lim sup ()$3 L2+ —-2 <o
t=+oo m 2 2m, 2
The desired assertion is derived. O

6. Global Asymptotic Stability

Definition 7. Let (y,(t), y,(t), z(t)) and (y; (), y, (t), 2" (t)) be
two arbitrary solutions of system (3) with initial data y,y* €
([-7,0], R?), respectively. If

P {tggnooE [|(y1 t),y,(),2z(1))

(44)
N CACBACERO) B o} -1,

we say that system (3) is globally asymptotically stable in
expectation.

Lemma 8. For any initial data y € C([-T, 0],Ri), (3, (®),
¥,(t), z(t)) is a solution of system (3); then almost every sample
track of (y,(t), y,(t), z(t)) is uniformly continuous for t > —t.

Proof. Considering system (3), we have that

y () =, (0) + L fi(s)ds+ L g, (s)dBy (s)
(45)

+ [ 20,0,
0
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where
H) =y ()| a-b (s)—m
1 N 1~ 90N T4y, (-1
- 2z (5)
L my, (s) +nz () + kyy () 2(5) ) (46)
91(s) =01y, (5),
9a (s) = )1 (s)z(s)

1+my, (s) +nz(s) + ky, (s)z (s)

Letting 9 > 2, we obtain that

oy t—-1
E [|f1 (f)|9] =E [ Y1 (‘11 —biy - %
2 2
) 1
- 52 <lg 1
l+my1+nz+ky1z> T2 [l)’1| ]+2

4291 [|a1|29 N |b1|29

E[[[*] + e
|- o)+l B 127] | < 3, 29

w24 o+ K (29) + | K, (29) (47)
+o K (29)] 2 L, (9),
E[lg: O] = B[lou" I91[°] = o B I |"]

07K (9) £ L, (9),

E(lg, )] =E[
] s(%)SKI ©9) 21, (9).

For another, using the moment inequality of stochastic
integral (see [16]), for 0 < t; < t, < +oo and 9 > 2, we
have that

9]

E
ty

j2g1 (s) dB, (5)
9/2
< [—9(9_1)] (1, —1,)" " sz[Igl @] ds (48)

03012
1 +my, +nz +ky,z

FP4Y
n

2

9/2
< [9(92‘ 1)] (1) L, 9),
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9/2
9(9-1 _ t
< [ ( ) ] (t, - tl)(9 e L E [lgz (S)ls] ds (49)

Lz g, (s)dB, (s)

2

1

9/2
<[9(9‘1’] (t,- 1)1, (9).

2

Thus fort, —t; < 1and 1/9 + 1/g = 1, we can obtain

E|)’1 (t2) - n (t1)|9 =E [ LZ f1(s)ds

t

t2 2
[ awan o+ [ a6
tl tl

o o]
" |
S

9/2
+[‘°’(9‘”] }L4(9><t2—t1>9”,

T

L ’ f1(s)ds
(50)

t
J; g, (s)dBy (s)

Lz g, (5)dB, (5)

1

2

where L,(9) = max{L,(9),L,(9) + L;(9)}. From Lemma
2.3 of [13], we have that almost every sample path of y, ()
is uniformly continuous. In the same method, the uniform
continuity of y,(t) and z(f) can be obtained. O

Lemma 9 (see [17]). g(t) > 0 is a uniformly continuous and
integrable function defined on [0, +00); then lim,_, g(t) = 0.

Theorem 10. If

(mn+k)o?
3

20§ (mn+k)c
2

A=-b +¢+2d, + <0,

m n n
3d
B::—bz+oz+72

2¢,m, (a, +03) (a3 +dy/m+d5[2+1/2m, + 0} + 0% [m”) (51)
"
byb;

<0,

200 (mn+k)d, (mn+k)o?
+ +

C:=—b3+2%+2c4+7 > 3 <0,

m m

then system (3) is globally asymptotically stable.

Proof. (y,(t), y,(t),z(t)) and (y; (), y; (t),2"(t)) are two
arbitrary solutions of system (3) with initial data y,y* €

([-,0], Ri), respectively. Define

V() =|ny, —Iny;|+[iny, - In ;|

+ |lnz —lnz*| +q J:_T |y1 (s) =y, (s)|ds

+o J: |72 (5) = y; ()] ds

t (52)
+2d, J-t_ |y1 (s) =y (s)lds

3d, (! .
+sz |y2(s)—y2 (s)|ds
t—15

+ M f |2(s) - 2" (s)| ds.

m

Calculating the right differential 4"V (¢), by Itd’s formula

t—1,)
4V = ( _ ) Cpy 2 (t-T)
Sgn\ V1~ ) QL -an T+y(t-1)

B Gz B 032" gt
L+my, +nz+kyz 2(1 +my, Jrnz+kylz)2

0,2
+0,dB, (t) + mde (t)} - {(“1

oy (t-1) oz

— by = _
11 1+y; (t—1) Ll+my; +nz* +kyfz*

2(_+)\?
_ 9% (=) 5 )dnaldBl (1)

2(1 +my; +nz* +ky;z*

02" ( *)
B -
ay (t-n) Gy
. -byy, — - dt
<l|:<a2 2)2 L+y (t-1) l+my]
<“2_sz’2*_

_ C“Z(**)z>dt+o3d83(t)} +sgn<zfz*)
Y2

ay (t-7)
T+yi(t-1)

+03dB; (t) } -

1+m

d t—
4y —byz + 2)2 (2 )
L myy; (t=73)



10

i diy (t-13)
L+my, (t—13) +nz(t—13) +ky, (t—13) 2 (t — 73)

2(1 +my, +nz +ky,z

2.2
- %51 )2 > dt +o,dB, (t)

9501 *
—>————dBs (t) | - -b.
+1+myl+nz+kylz 5()l <a3 5E

dyy; (t- 1)
L+myy;? (¢ -75)

diy; (t-13)
+
L+myf (t—13) +nz* (t—13) +ky; (t—13) 2" (t —13)

2 %2
- 5N )2 > dt +0,dB, (t)

2(1 +my! +nz* +kyfz*

Tomyr v nz T2 non

i) wJ% ve

—lyl(t—n)—yf (t_Tl)]*'czH)’z_}’; _‘}’z(t_'fz)

—yz*(t—rz)]+2d1[yl—yf —‘yl(t—‘@)—yf(t
_Ts)]*'%[;"z_;"z* _‘}’z(f—Tg)—y;(t—r3)H
+(m”;l¢[z—z* _‘z(t—r3)—z*(t—r3)H.

(53)
We can take integration from 0 to ¢ and then take expectation

E[V(®H]-E[V(0)]

t
=E L sgn (31 () = ¥; (9)) (—h (G- )

_ ( »(s-1)
=

1+J’2(5—T2)_

B z(s)
E 1 +my, (s) +nz(s) + ky, (s)z (s)

ys (s-1) >

L+y; (s=7)

B z" (s)
1+ my; (s) +nz* (s) + ky; (s) z* (s)

2 20
2\ (1 +my, (s) +nz(s) +ky, (s)z (s))2

- (Z* (S))Z
(1 +myy (s) +nz* (s) + ky;y (s) z* (s))2

+5gn(1,6) =y )| ~b (109 ()
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—C1< »nls-7)

1+ y(s—7) B
. z (s) B z" (s)
1 emyy2(s) L+m, (J’z* (S))z

~by(z(s)-2"(9))

y(s-m) )

L+y)(s—m)

+sgn (z (s)-z" (s))

+d )’1(5_73)

"N1amy, (s—1) +nz(s—1) +ky, (s—13) z (s — 13)
_ yi(s-15)

L+my; (s—13) +nz* (s—13) +ky; (s—13) 2" (s — 73)

+d2< ¥, (s - 15)

L+my; (s—13)

y; (s-13) >

L+ myp;? (s - 13)

o y1(s)
2\ (1 +my, (s) +nz(s)+ky, (s)z (s))2

2

i (7 @)’

(1 +my; (s) +nz* (s) + ky; (s) z* (s))2
v [ © -3 O s-7) -y (-]
o[- 3 O~ (- 1) - 35 (- )]
+2d, “J’l ) -0 (5)| - |)’1 (s=73) =y (s- Ts)l]

22 1y - 35 O] a5 ) - 35 (5~ )]

. (mn+k)d,

m?

. Uz(s) -z" (s)l - |z (s=1)-2"(s- 73)|] dst.

(54)
Hence,
dE[V (¢ 2072 k
ﬂﬁ _b1+61+2d1+&+w
dt m n?

k) o2
+(n/m:;#]E“yl_/"’f|]+[_bz*">z+32i

+¢ymy ([E |z|3]1/3 [E |;V2|3]1/3

3]1/3) [E|y2 _y;|]] + [—b3

*

2

+@pﬂ”ﬂﬁy
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200 (mn+k)d, (mn+k)o? 3113 a,+ 05
T2+ 20+ — 5t + e [E|)/z(t)| ] < b
1/3
.E“z—z* ] [E]z(t)|3]
(55) a, +d,/m+d2[2+1/2m, + 0> + 0 |m*
< 3 1 2 1 4 5
By Lemma 2, we have b, .
13 24 62 I (56)
3 a, + o0y +05/n
[Elyl )| ] s b, ’ Thus
dE [V (t)] 202 (mn+k)e, (mn+k)o’ .
Ts —bl+c1+2d1+?+ " + 3 E“y1 (t) -y (t)']
2em; (a, + 02) (as + 0% +d, /m+d% /2 + 1/2m, + 0% |m?
+ _b2+f2+3_dz+ - 1(2 3)(3 - : — ) E“}’z(t)_)’;(f)’]
2 b,b, (57)
203 k)d k)o:
N <—b3 204264 20; (mn+2 ) + (mn+3 )o: >E['z(t)—z* (t)H
n m m
= AE (|9, ®) -y} ®)]] + BE [, 0 - 5 0] | + CE[[z () - 2" ] ]
Integrating both sides of (57) yields that Thus it follows from Lemma 9 that
t : Jim [y, (0 =37 0] =0,
vO-vo <A Elly -y of]ds
t lim |y, (1) = y; (0] =0, (61
+B J E (s) =y (s)||ds (58)
0 CACRPAC] lim |z (1) - 2" ()] = 0.
t
+ Cj E -z" ds.
. Hz(s) z (s)'] s O

Therefore 7. Numerical Simulation

t . We give some illustrative examples to evidence our results in
V() - <A J E “ () -» (5)'] ds this part. Using the Milstein method mentioned in ([18]), we
0 get the discretization equations of system (3):

t
+8[ B[l -y of]ds (59) .
Vs =Yty e -y - ———
¢ L+ Y i-sy)
+CJ E []z (s) - 2" (s)|] ds) <V (0) < +00.
0 .
- el >At+01)’1i@’11i
L +my,; +nz; + ky, ;z; ’ ’

Then we have
03 )1,i%i
* * * +
E “()’1 t),y,(t),z(t) - ()’1 ®),y, 1),z (t))” 1+my,; +nz; + ky,z;

U%)’l,iziz (1+nz)

2
o 2
VAt ; + 71)’1,1‘ (’h,z‘

<E[|y ) =37 0]+ [0 - 35 @) (60) ~1)At+ (2 -1)

3
2 (1 +my,; +nz; + kyl’,.zi)

+lz(t) - 2" )]] € L' [0,+00). At
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G V1(i-s)
Va1 = Vit il e —byyy - ———
L+ y16s)
oz o2
47 3 2
- 2 VAt + 03y, VAt + =y, (15,
T, ) SRR S
~1)At,

Zii1 =% 1% <a3 -byz;

dlyl,(i—s3)
L+myy g + N2, + kyy i) Zi

i-s3

N dz)’z,(if%)

2
1+m, Y3 i=s;)

> At + 04z; \/Em,,-

2

0= Y1.2; o
2L VAt + =z (1
1 +my,; +nz; + ky, ;z; ) g

Ug)’iizi(l +m1)’1,z‘) ( ) 1)
1

- 1)At+ Hs.;

3

2 (1 +my,; +nz; + kyl)izi)
- At,

(62)

where 1, ;, %55 %3, Ha;» and 75 ; are independent Gaussian

random variables which follow N(0,1). Let step size At =
0.01 and steps = 20000. We choose

a, =0.4;
b =0.5;
¢ =02
G =02
m=1;
n=0.23;
k=0.1;
a, = 0.5;
b, = 0.55;
¢ =0.1;
¢ =0.1;
m; =1;
a; = 0.6;
b, =0.7;
d, =0.02;
d, =0.01;

Discrete Dynamics in Nature and Society

1.6 T T T

14+ E

1.2 R

0.2 \ \ \
0 50 100 150 200

— y,(t) stochastic
1 (t) deterministic

FIGURE 1: Solution of model (62) for y,(0) = (1.5,1.3,1). Blue: 0; =
0.1 (i=1,2,3,4,5).Red: 0, =0 (i = 1,2,3,4,5).

7, =0.1;
7, = 0.2;
73 =0.3.

(63)

We assume that the parameters are the same above in the
following discussion. Let the initial data be

y,(0) =(1.513,1), -1<6<0, (64)
where 7 = max{r,,7,,7;}. We choose 0, = 0, = 05 =
o, = 05 = 0.1; from Theorem 3 we know that system

(62) is stochastically ultimately bounded (see Figures 1-3:
blue curves). To understand the influence of white noise, we
choose 0, = 0, = 0; = 0, = 05 = 0; we obtain deterministic
system of system (62) and it is also ultimately bounded (see
Figures 1-3: red curves).

For stochastic permanence, we also choose 0, = 0, =
05 = 0, = 05 = 0.1; by calculating we obtain that

. c
mina, —¢,a, —¢,a; — —3}
m

2, 2 2, 2
1 o, +o0 o, +0
— — max 0f+2—25,0§,oi+ 2 5 > (65)
2 n m

287
"~ 1600°

which satisfies the condition (16) (see Figure 4).

In the following we choose larger noises o, = 0.95, o, =
0.1, o3 = 1.05, 0, = 1.5, and o5 = 0.1, which satisfy the
condition of Theorem 6; then system (62) will go to extinction
(see Figure 5).
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1.3 T T T

1.2 E

1.1 i

1H J

0.9 E

0.8

0.7

0.6

0'5 1 1 1
0 50 100 150 200

— y,(¢) stochastic
¥, (t) deterministic

FIGURE 2: Solution of model (62) for y,(0) = (1.5,1.3,1). Blue: g, =
0.1 (i=1,2,3,4,5).Red:0; =0 (i =1,2,3,4,5).

1.2 T T T

1.1+ i

0.9 | ‘
0.8
0.7 b i

0.6 R

0'5 1 1 1
0 50 100 150 200

— z(t) stochastic
z(t) deterministic

FIGURE 3: Solution of model (62) for y,(0) = (1.5,1.3,1). Blue: g; =
0.1 (i=1,2,3,4,5).Red:0;,=0 (i =1,2,3,4,5).

In the end, we discuss the global asymptotic stability. Let

Y =(0.7,08,06), -7<0<0; (66)

we also choose 0, = 0, = 05 = 0, = 05 = 0.1; by calculating
we have that

(mn+k)a?

202 (mn+k)c
+ 3

A:=—b1+cl+2d1+7+ 3

n n

527

712800

13

1.6 T T T

12+ g

0 50 100 150 200

»i(t)
-—— (D)
— z(t)

FIGURE 4: Solution of model (62) for y,(6) = (1.5,1.3,1) and 0; =
0.1 (i =1,2,3,4,5).

50 100 150 200

t
»i(t)
ERRSR0
— z(t)

FIGURE 5: Solution of model (62) for y,(0) = (1.5,1.3,1) and 0, =
0.95, 0, =0.1, 05 =1.05, 0, = 1.5,and 05 = 0.1.

B::—b2+cl+%

2m, (a, +03) (a5 +dy/m + d3/2 + 1/2m, + 0} + 02 /m”)
+

bybs
174
T 5279
C=-by +2¢ +2c4+ﬁ+ (mn+2k)d1 + (mn+3k)a§
n m m
6
T

(67)
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1.6 T T T

14 R

0 50 100 150 200

—— y,(t) stochastic
7 (t) stochastic
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1.6 T T T

14 k

0.8 b

0.6 1 i

0.4 1 1 1
0 50 100 150 200

—— y,(t) deterministic
71 (t) deterministic

FIGURE 6: The path curve of y,(¢) and y; (¢). Red: solution of model (62) for y;(8) = (1.5,1.3,1). Green: solution of model (62) for y, =

(0.7,0.8,0.6).

1.3 T T T

12 i

1.1 R

0.5 L

0 50 100 150 200

—— y,(t) stochastic
y; (t) stochastic

1.3 T T T

12 | i

0.9 1

0.7 . . .
0 50 100 150 200

— y,(t) deterministic
y; (t) deterministic

FIGURE 7: The path curve of y,(t) and y; (t). Red: solution of model (62) for y,(0) = (1.5,1.3,1). Green: solution of model (62) for y, =

(0.7,0.8,0.6).

which satisfy the condition of Theorem 10; then system (62) is
globally asymptotically stable. By the same way, we can obtain
the fact that the deterministic system of (3) is also globally
stable (see Figures 6-8).

8. Conclusions and Discussion

In this work, stochastic delayed one-predator and two-
competing-prey systems with two different kinds of func-
tional responses have been studied. Globally positive solu-
tion, stochastically ultimate boundedness, and the stochastic

permanence and extinction for system (3) are investigated.
Moreover, sufficient criteria for the global asymptotic stability
of the system are established. In the end, some numerical
examples are provided to explain our results. Through the
study of the dynamic behavior of system (3), by comparing
Theorems 4 and 6, we can obtain that if the environment
noise is small, the stochastic system can maintain permanent
while the system can be extinct under sufficiently large
environmental noise (see Figures 4 and 5). Therefore, from
Theorem 10, we can choose the appropriate parameters in
a suitable environment noise intensity to make system (3)
asymptotically stable.
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1.2 T T T

ik ‘ ; -

0.5 \ \ \
0 50 100 150 200

—— z(t) stochastic
Z*(t) stochastic

15

0.65 | 1

0 50 100 150 200

—— z(t) deterministic
z*(t) deterministic

FiGURE 8: The path curve of z(t) and z"(t). Red: solution of model (62) for y,(6) = (1.5, 1.3, 1). Green: solution of model (62) for y; =

(0.7,0.8,0.6).

Recently, predator-prey models have been investigated
extensively for their theoretical and practical significance.
In the current literatures, most of this work is restricted to
two-dimensional predator-prey system; few has been done
on predator-prey system with interspecific competition in
preys. In system (3), we study a three-dimensional hybrid
system where the predator can capture two kinds of preys
with different functional responses. In fact, the population
models are often subjected to the influence of environmental
noises inevitably. In most of predator-prey models, there is
only a white noise which affects intrinsic rate of increase of
predator or prey. In system (3), we consider the white noise
not only has effect on the intrinsic rate of population growth
but also on capture rate of predator and conversion rate of
the predator population. Three time delays are introduced
to make the model closer to the reality. It is interesting to
point out that system (3) contains two kinds of different
mathematical models; if we remove the predator, system (3)
is reduced to a competitive model in [13]; if we remove
any one of the two preys system (3) is reduced to a simple
predator-prey system. Some meaningful questions deserve
further investigation. One may investigate the stationary
distribution of system (3). Moreover, it is worth considering
the corresponding nonautonomous system of system (3). One
may discuss dynamics behaviors contained predators with a
mutual cooperation in other ecosystems.
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