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This paper presents a saving-based heuristic for the vehicle routing problem with time windows and stochastic travel times
(VRPTWSTT). One of the basic ideas of the heuristic is to advance the latest service start time of each customer by a certain
period of time. In this way, the reserved time can be used to cope with unexpected travel time delay when necessary. Another
important idea is to transform the VRPTWSTT to a set of vehicle routing problems with time windows (VRPTW), each of which
is defined by a given percentage used to calculate the reserved time for customers. Based on the above two key ideas, a three-stage
heuristic that includes the “problem transformation” stage, the “solution construction” stage, and the “solution improvement” stage
is developed. After the problem transformation in the first stage, the work of the next two stages is to first construct an initial
solution for each transformed VRPTW by improving the idea of the classical Clarke-Wright heuristic and then further improve the
solution. Finally, a number of numerical experiments are conducted to evaluate the efficiency of the described methodology under
different uncertainty levels.

1. Introduction

Many real-life logistics and distribution problems can be
attributed to a kind of vehicle routing problems with time
windows which has been widely studied. Various kinds of
algorithms have been developed to deal with the problem
[1], which narrows the gap between theory and practical
application. In the extant theory approaches, it is usually
assumed that the travel time between a pair of points is a
definite constant. However, in real traffic conditions of city
areas, there are a large number of uncertainties resulting in
that the travel time of a pair of points will change with the
different traffic conditions and thus is not always the same.
Ignoring the travel time fluctuations when developing route
plans for pickup and/or delivery vehicles can result in inef-
ficient and suboptimal solutions [2]. The extant researches
that incorporate variant travel times are very limited in the
assumption of travel time distribution and computational
efficiency.Therefore, this study is undertaken to better handle
the stochasticity of travel times.

The VRPSTT is arguably one of the most challenging
and practical variants of the VRP [3], and only a few studies
in extant literature have addressed the VRPSTT. Laporte
et al. proposed a variant of VRPSTT chance-constrained
programming model and compensation model [4], where a
penalty function was introduced to prorate the delay time.
Park and Song subsequently constructed three new heuristic
algorithms based on an extension of VRP algorithms [5].
Kenyon and Morton developed two stochastic program-
ming models [6]. The first model minimizes the expected
completion time, whereas the second model maximizes
the probability of completing the project by a prespecified
deadline. More recently, Lecluyse et al. introduced the vari-
ability in traffic flow into the model [7], which was used
to evaluate the routes based on the uncertainty involved.
At the same time, the objective function was extended by
standard deviation of the travel times. Connors and Sumalee
[8] and Chen and Zhou [9] studied the stochasticity of travel
times from the view of travelers’ equilibrium. Zhang et al.
studied the stochastic travel time vehicle routing problem

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2016, Article ID 7841297, 10 pages
http://dx.doi.org/10.1155/2016/7841297



2 Discrete Dynamics in Nature and Society

with simultaneous pickups and deliveries and developed a
new scatter search approach for the problemby incorporating
a new chance-constrained programming method [3]. Wang
and Lin presented a flexible solution methodology for the
capacitated vehicle routing problem with stochastic travel
times [10]. Although these studies have advanced the research
onVRPSTT, practical algorithms and solution approaches are
still needed because the stochasticity of travel times poses a
very challenging combinatorial optimization problem.

To solve theVRPTWSTT,wepresent a three-stage saving-
based heuristic, in which the issue of solving VRPTWSTT is
transformed into a new issue that consists of solving multiple
VRPTW.Also, a number of experiments are conducted to test
the efficiency of the heuristic. The remainder of this paper is
arranged as follows. First, the VRPTWSTT is described and
analyzed in Section 2. Second, the main solution framework
and detailed solution procedures are developed in Section 3.
After the experimental settings and the results are presented
in Section 4, conclusions are provided in the end.

2. Problem Description

This paper focuses on the VRPTWSTT which can be
described in the following.

Let𝐺 = (𝑉, 𝐸) be a graph, where𝑉 = {V
0
, V
1
, . . . , V

𝑛
} is the

set of customer nodes {V
1
, . . . , V

𝑛
} and depot node V

0
and 𝐸 =

{(V
𝑖
, V
𝑗
): V
𝑖
, V
𝑗
∈ 𝑉, 𝑖 ̸= 𝑗} is the set of edges. Each customer

node V
𝑖
(𝑖 = 1, . . . , 𝑛) is associatedwith a positive demand 𝑞

𝑖
, a

service time 𝑠V
𝑖
, and a time window [𝑒𝑡

𝑖
, 𝑙𝑡
𝑖
] with 0 ≤ 𝑒𝑡

𝑖
≤ 𝑙𝑡
𝑖
,

where 𝑒𝑡
𝑖
and 𝑙𝑡

𝑖
denote the earliest service start time and the

latest service start time that customer 𝑖 has preferred. Each
edge (V

𝑖
, V
𝑗
) ∈ 𝐸 (𝑖 ̸= 𝑗) is associated with a positive stochastic

travel time 𝑡
𝑖𝑗
whose distribution function is known and can

follow any known statistical distribution, either theoretical or
empirical, whose expected value exists. Define 𝐾 as a set of
identical vehicles available to deliver goods from the depot to
the customers. Each vehicle has the same capacity 𝐶 (𝐶 ≫

max {𝑞
𝑖
/1 ≤ 𝑖 ≤ 𝑛}). Some additional constraints associated

with the problem are as follows:

(1) Each vehicle can perform only one route in a schedul-
ing period (e.g., a day).

(2) Each customer node can be visited only once by
exactly one vehicle.

(3) All vehicles begin and end their routes at the depot
node V

0
.

(4) No vehicle can be loaded exceeding its maximum
capacity 𝐶.

(5) Let 𝑎𝑡
𝑖
be a vehicle’s arrival time at customer 𝑖 if the

vehicle services customer 𝑖 and let 𝑏𝑡
𝑖
be the service

beginning time of customer 𝑖. Then the two rules
defined in formula (1) must be observed: the vehicle
has to wait until the time 𝑒𝑡

𝑖
if it arrives earlier than

𝑒𝑡
𝑖
; otherwise, the vehicle can immediately begin its

service when it arrives at customer 𝑖. If 𝑎𝑡
𝑖
> 𝑙𝑡
𝑖
, a

penalty that is charged to the logistics service provider
will be incurred and customer 𝑖 is called a “poorly
serviced customer.” The penalty can be considered as

compensation for customer 𝑖 as a result of delayed
service:

𝑏𝑡
𝑖
=
{

{

{

𝑒𝑡
𝑖
, if 𝑎𝑡

𝑖
< 𝑒𝑡
𝑖
,

𝑎𝑡
𝑖
, if 𝑎𝑡

𝑖
≥ 𝑒𝑡
𝑖
.

(1)

It should be noted that the problem addressed is
essentially different from the vehicle routing prob-
lem with soft time windows (VRPSTW), in which
customer time window limitations may be violated
even in an original schedule so that the number
of vehicles required and/or the total travel distance
can be significantly reduced. In the VRPTWSTT,
customer time window limitations must be satisfied
in original routing plans given expected values for all
edges but may be violated during the plan execution
process, because there are many possibilities that the
estimated travel time in the original plan may be
delayed in an actual travel process.

(6) Once a routing plan is made, vehicles must run
according to the plan no matter what disruption
events occur until they return to depot in order to
meet delivery commitments for customers.

The route of vehicle 𝑘, which is defined as (V𝑘
0
, V𝑘
1
, . . . ,

V𝑘
𝑛
, V𝑘
𝑛+1

), where V𝑘
0
and V𝑘
𝑛+1

represent the depot and the other
nodes represent customers, is a cycle starting and ending at
the depot and serving a given subset of sequential customers.
Let 𝑥𝑘
𝑖𝑗
= 1 if the edge (V

𝑖
, V
𝑗
) is included in the route of

vehicle 𝑘 (V𝑘
0
, . . . , V𝑘

𝑖
, V𝑘
𝑗
, . . . , V𝑘

𝑛+1
) or 0 otherwise. The route

of vehicle 𝑘 is called “deficient route” if there is at least one
poorly serviced customer among all its serviced customers.

The VRPTWSTT studied in this paper is a single-
objective problem in which the total cost, including the
travel cost of employed vehicles and the penalty cost of
all poorly serviced customers, should be minimized. The
objective function for VRPTWSTT can be defined as formula
(2), where 𝑐

1
and 𝑐
2
are used to transform the travel time

and the vehicle’s lag time of poorly serviced customers to
travel cost and penalty cost, respectively. Generally, 𝑐

2
/𝑐
1
> 1,

implying a penalty of violating the customer time window
limitation, and hence formula (2) can be naturally simplified
to formula (3), where 𝑐 = 𝑐

2
/𝑐
1
indicating a penalty coefficient

when the customer time window limitation is violated. The
value of 𝑐 can be much larger than 1, for example, 10, 20:

𝑧
0
= 𝑐
1
∑

𝑘∈𝐾

∑

(V𝑖 ,V𝑗)∈𝐸
𝑡
𝑖𝑗
𝑥
𝑘

𝑖𝑗
+ 𝑐
2
∑

V𝑗∈𝑉/V0

max {𝑏𝑡
𝑗
− 𝑙𝑡
𝑗
, 0} , (2)

𝑧 = ∑

𝑘∈𝐾

∑

(V𝑖 ,V𝑗)∈𝐸
𝑡
𝑖𝑗
𝑥
𝑘

𝑖𝑗
+ 𝑐 ∑

V𝑗∈𝑉/V0

max {𝑏𝑡
𝑗
− 𝑙𝑡
𝑗
, 0} . (3)

Formula (3) can also be understood as the total cost when
𝑐
1
= 1. Thus the total cost contains two components, the

travel cost defined as ∑
𝑘∈𝐾

∑
(V𝑖 ,V𝑗)∈𝐸 𝑡𝑖𝑗𝑥

𝑘

𝑖𝑗
and the penalty

cost defined as 𝑐∑V𝑗∈𝑉/V0 max{𝑏𝑡
𝑗
− 𝑙𝑡
𝑗
, 0}. Let ps

𝑖
= 1 if

customer 𝑖 is a poorly serviced customer or 0 otherwise.
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Then the reliability of a solution can be defined as 1 −
(∑V𝑖∈𝑉/V0 ps𝑖)/(|𝑉|−1), indicating what percentage of the total
number of customers the non-poorly serviced customers
account for, and it is an important index in analyzing a
solution.

Note that 𝑡
𝑖𝑗
in formula (3) is not a constant but a

stochastic value whose statistical distribution and expected
value 𝐸(𝑡

𝑖𝑗
) are known. Thus the 𝑧 value depends not only

on the routing solution, indicated by 𝑥𝑘
𝑖𝑗
and 𝑏𝑡

𝑖
, but also on

the actual travel times, indicated by 𝑡
𝑖𝑗
. Different travel times

have different 𝑧 values even for the same routing solution. For
example, any accidental travel time delaymay result in large 𝑧
valuewhile the unobstructed traffic situation can lead to small
𝑧 value. In order to exclude the impact of accidental factors,
the objective of the problem can be described as minimizing
the expected 𝑧 value, which is formulated and transformed in

min𝐸 (𝑧)

= 𝐸
{

{

{

∑

𝑘∈𝐾

∑

(V𝑖 ,V𝑗)∈𝐸
𝑡
𝑖𝑗
𝑥
𝑘

𝑖𝑗
+ 𝑐 ∑

V𝑗∈𝑉/V0

max {𝑏𝑡
𝑗
− 𝑙𝑡
𝑗
, 0}
}

}

}

= ∑

𝑘∈𝐾

∑

(V𝑖 ,V𝑗)∈𝐸
𝐸 (𝑡
𝑖𝑗
) 𝑥
𝑘

𝑖𝑗

+ 𝑐 ∑

V𝑗∈𝑉/V0

𝐸 {max {𝑏𝑡
𝑗
− 𝑙𝑡
𝑗
, 0}} .

(4)

3. The Three-Stage Saving-Based Heuristic

The VRPTWSTT is NP-hard because it can be reduced to
the general VRP, which is a well-known NP-hard problem
[11]. Furthermore, according to the problem’s definition, how
to balance the expected travel cost and the expected penalty
cost is an important factor in constructing a solution. In
general, a solution with less expected travel cost usually has
more expected penalty cost. This is mainly because a route
in a solution with less expected travel cost is often fully
engaged in delivery tasks and hence there is often not much
flexible time left to cope with unexpected transportation
congestion. Once the unexpected event occurs, the penalty
cost will probably be incurred. Therefore, an algorithm that
is devoted to minimizing the expected total cost 𝐸(𝑧) should
be able to integrate the stochasticity of travel time and
generate a solution that can well balance the expected travel
cost and the expected penalty cost and hence minimize the
total cost. As a result of the high complexity level of the
VRPTWSTT, solution techniques capable of producing high-
quality solutions in a limited time, that is, heuristics, are of
prime importance.

3.1. Main Framework. Our heuristic for the VRPTWSTT
consists of three stages: the “problem transformation” stage,
the “solution construction” stage, and the “solution improve-
ment” stage. The objective of the first stage is to transform
the VRPTWSTT into multiple VRPTW in which the latest
service time of each customer is advanced by a period of
time in order to cope with unexpected travel time delays.

As a result of the problem transformation, penalty costs of
solutions to the transformedVRPTW can be greatly reduced.
But on the other hand, if too much time is reserved, travel
costs will also increase rapidly. Therefore, another problem
of how much time should be reserved for each customer
under different routing schemes in order to minimize the
expected total costs is derived from the first stage. To solve
the problem, we develop the next two stages to first construct
an initial solution for each transformed VRPTW and then
to further improve the solution. Finally, for all transformed
problems, we can get their improved solutions, the best of
which indicates the best balance between the travel cost and
the penalty cost and will be reported to decision-makers.

The proposed three-stage heuristic (TSH) is described
in Algorithm 1, where procedures of the three stages are
described in the following subsections, respectively.

3.2. The Problem Transformation Stage. In the problem
transformation stage, the VRPTWSTT is transformed into a
deterministic problem which is different from VRPTWSTT
in the following two points.

(1) The stochastic travel time between any pair of nodes
is replaced with its expected value according to its
statistical distribution.

(2) The latest service start time of each customer is
supposed to be advanced by a period of time, and thus
vehicles should arrive at customers no later than their
advanced times.

The reason for the second point comes from the fact
that decision-makers of logistics service providers are always
reluctant to bear the consequences of penalties but would
rather schedule vehicles to arrive at customers earlier than
their latest service start time in the original plans so that there
are enough reserved times left for vehicles to cope with any
unexpected travel time delay during practical travel process,
such as road congestion. Otherwise, once the travel time
delays are encountered, the penalty cost incurred will be far
greater than the cost of earlier arrivals.

Furthermore, it can be easily concluded from common
sense that the earlier the arrivals at customers, the smaller the
penalty cost but the greater the travel cost. This conclusion
can be also validated from our experiments in Section 4.
Therefore, how long should be advanced for each customer so
that the total cost can beminimized is an important problem.

To decide the advanced time for each customer, we use
the variable 𝑟 (0 < 𝑟 ≤ 1), the loop variable in the
main framework of Algorithm 1, to represent the advanced
percentage of time and calculate the new latest service start
time for each customer, for example, customer 𝑖, by the
formula 𝑙𝑡

𝑖
= 𝑙𝑡
𝑖
− 𝑟 × avgLen

𝑖
, where avgLen

𝑖
represents the

average route length from all the other nodes to customer 𝑖.
Figure 1 is an illustration of advancing 𝑙𝑡

𝑖
to 𝑙𝑡
𝑖
for customer

𝑖.
Note that 𝑙𝑡

𝑖
represents the latest time that a vehicle

should arrive at customer 𝑖 without incurring any penalty
cost. However, in our transformation version of the problem,
𝑙𝑡
𝑖
will be advanced to 𝑙𝑡

𝑖
so that vehicles should arrive at
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(1) Set Solutions = 0;
(2) For 𝑟 = 𝑟

0
to 𝑟max step 𝑟step, do:

(3) Transform VRPTWSTT to a deterministic VRPTW (Section 3.2);
(4) Solve the VRPTW(𝑟) by using an improved saving-based heuristic in order to get an

initial solution IS (Section 3.3);
(5) Improve the initial solution IS by a solution improvement procedure and then multiple

solutions can be obtained, the minimum expected total cost of which is inserted into
the set Solutions (Section 3.4);

(6) Next 𝑟;
(7) Select and return the solution that has the minimum expected total cost from Solutions.

Algorithm 1: Main framework of the suggested heuristic TSH.

Time
0

The reserved time =

r × avgLen
i

eti lt


i lti

Figure 1: An illustration of advancing 𝑙𝑡
𝑖
to 𝑙𝑡
𝑖
for customer 𝑖.

customer 𝑖 before 𝑙𝑡
𝑖
(not 𝑙𝑡

𝑖
) in the original plan and the

time that is equal to 𝑟 × avgLen
𝑖
(𝑙𝑡
𝑖
− 𝑙𝑡


𝑖
) is reserved to

cope with any unexpected travel time delay during practical
travel process of vehicles. In the formula 𝑟 × avgLen

𝑖
, 𝑟 is

a percentage of the average route length, avgLen
𝑖
, from all

the other nodes to customer 𝑖 and its value may be 0.1, 0.2,
and so forth. The rationale of the formula comes from the
observation that the longer the average route length is, the
more likely it is to have accidents during the travel process
of vehicles and thus the greater the expected penalty cost
is. Meanwhile, our heuristic is essentially a simulation-based
method, in which various percentages 𝑟 are tried and the one
that generates the solution with the least total cost will be
reported to decision-makers.

It should also be noted that we do not guarantee 𝑙𝑡
𝑖
must

be larger than 𝑒𝑡
𝑖
. There are possibilities that 𝑙𝑡

𝑖
≤ 𝑒𝑡
𝑖
. Once

𝑙𝑡


𝑖
≤ 𝑒𝑡
𝑖
, the vehicle that serves customer 𝑖 also needs to

arrive at customer 𝑖 before 𝑙𝑡
𝑖
in the original plan. And in

the practical travel process, if the vehicle arrives at customer
𝑖 earlier than 𝑒𝑡

𝑖
, the vehicle also needs to wait until the time

𝑒𝑡
𝑖
.

3.3. The Solution Construction Stage. In this subsection, a
new procedure is presented to construct an initial solution
to the transformed problem. The procedure is based on the
classical Clarke and Wright Savings (CWS) algorithm [10].
Algorithm 2 describes the procedure, which changes the
saving selection strategy of the classical CWS to a long-term
perspective.

The concept of saving in this paper expresses the saving of
the travel cost and penalty cost obtained by joining two routes
into one route.

There is a deficiency in the saving selection work of the
CWS, which prevents the CWS from generating high-quality

solutions. This is because the saving selection strategy of the
CWS is a greedy one, which suggests selecting customers
pairs in the descending order of saving values and hence
may not accurately identify the best customers pair in some
cases. To deal with this problem, a new saving value selection
strategy that can guide computers to high-quality solutions is
developed.

Different from the descending order of saving values
in CWS, our evaluation strategy is illustrated in Figure 2,
where a forestlike data structure is demonstrated. In the data
structure, each point represents a saving and may have its
child saving points, in which each customers pair can be
connected without violating any problem constraints if the
pair of customers of its father point has been connected. For
example, point 1 is the father point of point 1.1 and point 1.1
is its child point. The relationship of the two points indicates
that the two customers of point 1.1 are feasible to be connected
if the two customers of point 1 have been connected. As
illustrated in Figure 2, points in the same generation belong
to the same layer, for example, points 1, 2, and 3 in layer 1.

From the illustration of Figure 2, the evaluation values of
point 1 can be calculated based on the evaluation values of its
children whose evaluation values can be further calculated
based on their children. Therefore, the evaluation values of
the first layer’s points may be calculated layer by layer from
the bottom layer to the top layer, which can be called a “roll-
up evaluation strategy.”

However, the deeper the layer that the calculation begins
from is, the more complex the calculation procedure is. Even
for a small-scale problem with only hundreds of savings, the
number of points in the forest is extremely large and hence
it is very time-consuming and impossible to calculate the
evaluation values of the top-layer points from the bottom
layer. Furthermore, we do not exactly know the depth of the
forest.Therefore, calculating the evaluation values of the top-
layer points from an intermediate layer, for example, layer 2
or 3, not the bottom layer, becomes a feasible choice.

The evaluation values of a top-layer point and an
intermediate-layer point can be calculated by formula (5),
where EV

𝑖
, SV
𝑖
, and 𝑖𝑐 represent the evaluation value, the

saving value, and the children number of point 𝑖, respectively.
And 𝑝 in formula (5) represents the weight that the saving
value accounts for the evaluation value. The evaluation value
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(1) Set savingList = 0, Solution = 0;
(2) While at least one of customers has not been included in Solution, do:
(3) Calculate the savings for all pairs of customers that can be directly connected, insert

all the savings into savingList;
(4) Fetch a saving, denoted as Sav, from savingList according to the roll-up evaluation

strategy which is detailed in Section 3.3;
(5) Connect the two routes that are corresponding to the two customers in Sav, so that a

new route can be obtained;
(6) Insert the new combined route into Solution and delete the route that is

corresponding to the two customers in Sav from Solution if it has been included in Solution;
(7) Clear savingList;
(8) Endwhile;
(9) Return Solution.

Algorithm 2: The procedure to construct an initial solution.

Calculate the evaluation 
values of the nodes in layer 2 

Calculate the evaluation 
values of the nodes in layer 3 

1 2 3

1.1

1.1.1

1.2

1.1.2

1.3

1.1.3

Calculate the evaluation 
values of the nodes in layer 1 

Layer 1

Layer 2

Layer 3

· · ·

· · ·

· · ·

· · ·

Figure 2: The illustration of the evaluation rule of savings.

of a point in the layer from which the calculation begins is
equal to its saving value:

EV
𝑖
= 𝑝 × SV

𝑖
+
(1 − 𝑝)

𝑖𝑐
×

𝑖𝑐

∑

𝑗=1

EV
𝑗
. (5)

The roll-up evaluation strategy uses a long-term perspec-
tive in that it can evaluate a pair of customers not only on
its saving value but also on the saving values of its feasible
subsequent connections if the pair of customers is connected,
while, differently, the CWS only suggests selecting customers
pairs in the descending order of their saving values, which
may be regarded as a greedy strategy.

The procedure which adopts the recursion idea to calcu-
late the evaluation values of a top-layer point is detailed in
Algorithm 3.

3.4. The Solution Improvement Stage. The solution obtained
from the solution construction stage can be improved
because we have found from a large number of observations
that the service start times of some customers in the obtained
solution are easily delayed due to occasional travel time delays
while others are relatively difficult. The reason that produces
the result of the imbalance can be explained in the following.
If avgLen

𝑖
is small but an edge (𝑗, 𝑖) that has a large length

is selected into the route of a solution, the reserved time
for customer 𝑖 is smaller than expected and customers like 𝑖
are prone to be delayed. On the contrary, if avgLen

𝑖
is large

but an edge (𝑗, 𝑖) that has a small length is selected into
the route of a solution, the reserved time for customer 𝑖 is

larger than expected and customers like 𝑖 are not prone to be
delayed. This imbalance can result in large penalty costs that
are mainly incurred by the customers prone to be delayed.
From a number of experiments, we find that the smaller the
number of the customers that are prone to be delayed, the
lower the penalty cost.

To reduce the number of the customers that are prone to
be delayed, we develop a method to balance the possibilities
of delaying service start time among multiple customers so
that the penalty cost and the associated total cost of a solution
could be reduced simultaneously. The key idea behind the
method is to iterate the process of deleting from a route a
customer node, which is prone to be delayed, inserting it
into a relatively idle route, and evaluating the new solution
by formula (4) until the total cost cannot be reduced. The
method is described in Algorithm 4.

In Algorithm 4, we apply a procedure to iteratively delete
a customer with the minimum reserved time and insert the
customer into the other routes or the other locations of the
same route in order to obtain a solution with less total cost.
In each iteration, this procedure can be repeated. Figure 3
gives an example of one iteration, where there are two routes
and each route has three customers. Customer 6 in Figure 3
has the minimum reserved time 0 and should be deleted for
reinsertion. The reserved time 0 indicates that the service of
customer 6 is very easy to be delayed once travel times are
larger than expected during the process of delivery. There
are 6 new insertion locations for customer 6 to be inserted,
among which location 4 is the best one because the new
solution obtained from inserting customer 4 into location 4
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(1) Function calculateEvaluationValue(Saving, Depth):
(2) Set Depth = Depth − 1;
(3) Connect the pair of customers in Saving;
(4) Set TotalValue = 0, TotalValueNumber = 0;
(5) While there is any saving in the saving list that has not been considered, do:
(6) Fetch a saving from saving list into Sav;
(7) If the pair of customers in Sav can be connected without violating any problem constraint, do:
(8) If depth > 0, do:
(9) Call function calculateEvaluationValue(Sav, depth) and get the evaluation value of Sav, denoted by SavEv;
(10) Set TotalValue = TotalValue + SavEv, TotalValueNumber = TotalValueNumber + 1;
(11) Elseif depth = 0, do:
(12) Set the evaluation value of Sav, denoted by SavEv, to its saving value;
(13) Set TotalValue = TotalValue + SavEv, TotalValueNumber = TotalValueNumber + 1;
(14) Endif;
(15) Endwhile;
(16) If TotalValueNumber > 0, set SavingEv = TotalValue/TotalValueNumber;
(17) Disconnect the pair of customers in Saving;
(18) Return SavingEv.

Algorithm 3:The procedure to calculate the evaluation value of a top-layer point denoted by saving from the depth layer of the data structure.

(1) Set the incumbent solution IS to the solution obtained from the solution construction stage;
(2) Fabricate a solution IS whose expected total cost is set to an infinite value that cannot be

exceeded by the total cost of any solution;
(3) While the expected total cost of IS is less than that of IS, do:
(4) Set IS = IS, Solutions = 0;
(5) Fetch the customer denoted by 𝑗 that has the minimum reserved time under the expected travel times;
(6) For each route ro, do:
(7) For each position ep of ro, into which a customer node can be inserted, do:
(8) Delete customer 𝑗 from its original route and insert it into ro at the position ep;
(9) Insert the solution obtained from the above step into Solutions;
(10) Next ep;
(11) Next ro;
(12) Fetch a solution with the least expected total cost E(z) from Solutions into IS;
(13) Endwhile;
(14) Return the solution IS.

Algorithm 4: The procedure of improving a solution generated by the solution construction stage.
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Figure 3: An example of deleting a customer from a route and inserting them to another route.
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has the minimum total cost. Therefore, customer 6 should be
moved from their route to another and the new solution can
be illustrated in Figure 3(b).

4. Computational Results

In this section, we present the computational results of the
TSH, which has been coded in Java and run on a laptop with
an Intel® Core™ 2 Duo CPU T7100 at 1.8 GHz and 2GB RAM.

4.1. Test Instances and Parameter Setting. Because there are
no standard benchmarks for SVRP, different sets of instances
have been presented in the papers of the SVRP literature [3, 4,
6], which makes it difficult to compare the different method-
ologies that have been presented for SVRP. Therefore, we
generalized the well-known Solomon instances and obtained
49 VRPTWSTT instances by replacing the fixed travel time
of each pair of customers in VRPTW with a random travel
time for VRPTWSTT.These generalized instances are solved
by the method presented in this paper and compared with
the best-known results of VRPTW. The details of Solomon
instances and their best-known solutions can be found at
the website http://neo.lcc.uma.es/vrp and the method used
to randomly generate travel times is given in the following
paragraphs.

Since the travel times in VRPTWSTT can follow any
distribution and our heuristic does not have any limitation
as long as its mean value is known, we choose the log-normal
distribution to model the travel time for each edge as a result
of its nonnegative values.The two parameters of the distribu-
tion, the location parameter 𝜇

𝑖
and the scale parameter 𝜎

𝑖
, are

formulated by the following two expressions, respectively:

𝜇
𝑖
= ln (𝐸 [𝑡

𝑖𝑗
]) −

1

2
ln(1 +

Var [𝑡
𝑖𝑗
]

𝐸 [𝑡
𝑖𝑗
]
2
) ,

𝜎
2

𝑖
= ln(1 +

Var [𝑡
𝑖𝑗
]

𝐸 [𝑡
𝑖𝑗
]
2
) .

(6)

For each instance, we changed the travel time of an
edge (𝑖, 𝑗) (V

𝑖
, V
𝑗
∈ 𝑉, 𝑖 ̸= 𝑗) in VRPTW instances to a

random value 𝑡
𝑖𝑗
by setting 𝐸[𝑡

𝑖𝑗
] to the Euclidean distance

between the two nodes according to their coordinates. The
original VRPTW instances can be particularly defined with
Var[𝑡
𝑖𝑗
] = 0. But for VRPTWSTT instances, we have the

inequation Var[𝑡
𝑖𝑗
] > 0. A larger variance of an edge indicates

a higher uncertainty when traveling the edge. Our heuristic
is tested under three different variance levels, the relatively
low variances, the medium variances, and the relatively high
variances. And these variance levels are further illustrated in
Table 1, in which the relationship between the variance and
the mean value for each variance level is given.

Note that there are 56 Solomon VRPTW instances,
among which only 49 ones are selected. Some instances
are not selected because penalty costs of solutions to these
instances are almost close to 0. We test the penalty costs
of all the best-known VRPTW solutions under the medium

Table 1: The relationship between the variance and the mean value
for each variance level.

Variance level The relationship between the
variance and the mean value

The relatively low variances Var[𝑡
𝑖𝑗
] = 0.05𝐸 [𝑡

𝑖𝑗
]
2

Themedium variances Var[𝑡
𝑖𝑗
] = 0.5𝐸 [𝑡

𝑖𝑗
]
2

The relatively high variances Var[𝑡
𝑖𝑗
] = 1.5𝐸 [𝑡

𝑖𝑗
]
2

variance level and filter out 7 instances (C109, C201, C202,
C203, C204, C205, and C208) by using the condition
penalty cost/travel cost < 0.005, which indicates time
windows of customers in these instances are wide enough
to tolerate travel time delays and hence the time window
limitations of these instances are greatly weakened.

In order to decide the parameter values of our heuristic,
preliminary experiments were performed on some instances
with different parameter configurations to determine which
configuration would be effective in solving the VRPTWSTT.
The preliminary experiments showed a satisfactory perfor-
mance when the parameter values were set to 𝑟

0
= 0, 𝑟step =

0.05, 𝑟max = 0.5, 𝑝 = 0.5, 𝑐 = 10, and depth = 3, where depth
represents the number of the layer fromwhich the calculation
of the evaluation of savings begins.

4.2. Detailed Results for One Instance. In this subsection, we
present the numerical results for only one of the 49 instances
in order to better illustrate our heuristic. Take the generalized
version of the classical RC101 instance under the medium
variance level (Var[𝑡

𝑖𝑗
] = 0.5𝐸[𝑡

𝑖𝑗
]
2) for an example, and

we run our heuristic 11 ((0.5 − 0)/0.05 + 1 = 11) times
in which different runs have different 𝑟

0
and 𝑟max values.

But in one run we set 𝑟max = 𝑟
0
in order to make the

heuristic generate a solution for only one percentage of the
reserved time. Table 2 shows the alternative solutions (for
the generalized instance with medium variances) that we
obtained for different values of 𝑟

0
and 𝑟max. For each of

the obtained solutions, the following data is provided: travel
costs, penalty costs, total costs, and reliabilities.

In order to better demonstrate the character of alternative
solutions to the generalizedRC101 instance, a graphical repre-
sentation is given in Figure 4 to illustrate the changing trends
of travel costs, penalty costs, total costs, and reliabilities for
all values of 𝑟. Definitions and solving procedures of these
four indexes are given in Sections 2 and 3, respectively.
From Figure 4, the following five points can be observed and
discussed.

(1) The index of travel costs shows a continuously grow-
ing trend. This is mainly because, with the growth of
the 𝑟 value, time windows of customers are contin-
uously tightened in order to reserve more time for
vehicles to cope with unexpected travel time delays,
but generally there may be some customers whose
time window constraints are violated after it has been
tightened. Therefore, a vehicle cannot complete the
tasks that have been assigned when the time windows
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Table 2: Results of alternative solutions to the RC101 instance with
medium variances.

𝑟
0
and 𝑟max Travel cost Penalty cost Total cost Reliability

0 1770.00 104.57 2815.69 0.94
0.05 1776.48 103.49 2811.36 0.94
0.1 1789.21 90.59 2695.07 0.96
0.15 1806.70 78.37 2590.42 0.97
0.2 1822.58 72.36 2546.20 0.97
0.25 1869.71 72.09 2590.58 0.97
0.3 1895.62 64.68 2542.45 0.98
0.35 1947.98 62.44 2572.35 0.98
0.4 1952.90 56.83 2521.21 0.98
0.45 2007.21 48.12 2488.41 0.99
0.5 2126.60 48.08 2614.35 0.99

are not tightened, and hence some good routes with
more tasks have to be modified.

(2) On the contrary to the trend of travel costs, the index
of penalty costs shows a continuously decreasing
trend. This also conforms to the common sense that
the more the time reserved is, the less likely it is to
violate time window limitations.

(3) As the weighted sum of travel costs and penalty costs,
the trend of total costs is not particularly obvious.
The trend of the total costs can be divided into three
stages: when 𝑟 value is less than 0.2, the total costs
demonstrate a decreasing trend, which indicates the
penalty costs play a greater role in the contribution to
total costs; when 𝑟 value is between 0.25 and 0.45, the
total costs fluctuate; when 𝑟 value is greater than 0.45,
the total costs grow as a result of the rapid growing
trend of travel costs and a relatively stable reduction
in penalty costs in this range of 𝑟 values. Note that
when 𝑟 is 0.45, neither the travel cost, 2007.21, nor
the penalty cost, 48.12, is the minimum, but their
weighted sum, the total cost, reaches the minimum
value of 2488.41.

(4) The two indices of both penalty costs and reliabilities
can illustrate the level of a solution’s probability of
suffering deficient routes. As is expected, the index
of reliabilities shows a stable growing trend, which
is just the opposite to the overall trend of penalty
costs. This is because the index of reliabilities denotes
the percentage of the total number of poorly serviced
customers while the penalty cost is the sum of penalty
costs of these customers. As the 𝑟 value grows, the
reserved time and the reliabilities increase simultane-
ously.When the reliability reaches itsmaximumvalue
(0.99), there are two solutions of different 𝑟 values
(0.45 and 0.5). Relative to the penalty cost index,
a solution’s reliability provides decision-makers with
another index to evaluate the reliability of a solution.
If a decision-maker cares about the cost of penalties,
he can consider the index of penalty cost; and oth-
erwise, if a decision-maker wants to minimize the

number of poorly serviced customers, the index of
reliabilities may come in handy.

(5) As for the running time of our heuristic, the process
of generating the results for one alternative solution
to the generalized RC101 instance can be completed
in just fourteen seconds (average 14359 milliseconds
on our laptop whose configuration is relatively low).
Therefore, it seems completely feasible to implement
the process for most real cases.

4.3. Results for 49 Instances. The average results obtained
for all instance sets (c1, c2, r1, r2, rc1, and rc2) under three
variance levels are given in Table 3. The meaning of each
column is as follows:

(1) BKS expected total cost: the expected total cost of
best-known solution (BKS) obtained from thewebsite
http://neo.lcc.uma.es/vrp/, calculated according to
formula (4).

(2) TSH expected total cost: the expected total cost of the
solution generated by the TSH formulated by (4).

(3) Gap: the gaps in expected total costs between BKS and
TSH, calculated as ((BKS−TSH)/TSH)×100%,where
BKS and TSH stand for the values of their expected
total costs.

The results of each generalized instance under any of the
three uncertainty levels have similar statistical characteristics
to those of the generalized RC101 instance discussed in
Section 4.2.

From Table 3, the following four points can be observed
and discussed.

(1) In a low-variability level defined by Var[𝑡
𝑖𝑗
] =

0.05𝐸[𝑡
𝑖𝑗
]
2, results show that the expected total costs

of TSH tend to provide a better average reliability
level of 0.9929 when applied to the VRPTWSTT.
As is discussed before, higher reliability levels imply
fewer numbers of poorly serviced customers and thus
less expected penalty costs. The average gap is 2.07%
between expected total costs of BKS and TSH. The
expected total costs of BKS are the costs when travel
times are deterministic instead of stochastic. From the
table, the average 𝑟 value is 0.292; that is, averagely,
the latest service start time of each customer can be
advanced by 29.2% of its average routing time from all
the other nodes to it to attend unexpected congestion.

(2) As for the case of the medium-variability level with
Var[𝑡
𝑖𝑗
] = 0.5𝐸[𝑡

𝑖𝑗
]
2, the average reliability level of

the BKS is about 0.9923, which is lower than that of
the low-variability level, indicating a higher degree
of uncertainty. And the average gap in expected total
costs between BKS and TSH is about 63.04%, which
is much larger than 2.07% of the low-variance level.
Important information about all positive gaps is also
given, implying an absolute advantage for TSH over
BKS under this level.
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Table 3: Average results for each instance set under three variance levels.

Instance
set

Results of best-known VRPTW solutions Results of TSH Gap Variance level
BKS expected total cost Reliability TSH expected total cost Reliability 𝑟

c1 831.83 0.999 830.85 0.999 0.369 0.12%

The relatively low variances

c2 601.37 0.997 603.34 1.000 0.025 −0.32%
r1 1363.81 0.962 1351.26 0.985 0.383 0.90%
r2 1072.93 0.983 1028.65 0.998 0.323 4.14%
rc1 1651.61 0.952 1601.59 0.978 0.338 3.19%
rc2 1269.20 0.980 1215.64 0.998 0.313 4.37%
Avg. 1131.79 0.979 1105.22 0.9929 0.292 2.07%
c1 1332.58 0.980 1062.00 0.993 0.419 24.17%

The medium variances

c2 653.11 0.996 630.26 1.000 0.300 3.62%
r1 3009.56 0.892 1640.47 0.985 0.413 81.73%
r2 2083.48 0.954 1138.65 0.998 0.336 80.16%
rc1 3959.32 0.881 2016.18 0.980 0.375 91.06%
rc2 2630.62 0.945 1312.55 0.998 0.344 97.50%
Avg. 2278.11 0.941 1300.02 0.9923 0.364 63.04%
c1 2580.59 0.961 1091.76 0.993 0.425 132.27%

The relatively high variances

c2 757.45 0.995 660.64 1.000 0.450 14.89%
r1 5630.55 0.863 1656.88 0.986 0.421 238.48%
r2 4493.30 0.930 1156.05 0.998 0.327 280.99%
rc1 7279.30 0.854 2108.23 0.977 0.338 238.74%
rc2 5920.61 0.916 1356.47 0.998 0.363 319.61%
Avg. 4443.63 0.920 1338.34 0.9920 0.387 204.16%
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Figure 4: The changing trends of travel costs, penalty costs, total costs, and reliabilities for all values of 𝑟.

(3) The average reliability is only 0.920 for BKS under the
high-variability level and a big average gap of 204.16%
exists in expected total costs between BKS and TSH.
The average reliability index is 0.9920 for TSH. Also,
the average 𝑟 value is 0.387, which is larger than the
previous levels.

(4) From the table, we can also observe that all reliabilities
of TSH are higher than those of BKS. A histogram

is given in Figure 5 to graphically demonstrate and
compare the average reliabilities of BKS and TSH
solutions under three uncertainty levels.

5. Conclusions

In this paper, we present a three-stage heuristic for the vehicle
routing problem with time window and stochastic travel
time (VRPTWSTT). The heuristic, which does not require
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Figure 5: Average reliabilities of solutions under different uncer-
tainty levels.

complex fine-tuning processes, solves VRPTWSTT by trans-
forming it into multiple VRPTW, solving the VRPTW, and
selecting the best one from the solutions of the VRPTW.The
main contributions of this paper include the following.

(1) The heuristic reduces a complex VRPTWSTT, where
no efficient heuristics have been developed yet, to a
set of VRPTW,which can be solved bymany excellent
heuristics, by advancing the latest service start time
of each customer ahead of its schedule. The time
reserved for a customer is used for vehicles to cope
with any unexpected travel time delay during their
real delivery process. This idea can be applied to any
variant of vehicle routing problems with stochastic
travel times after it is appropriately adjusted.

(2) The heuristic is designed as a three-stage procedure
to enhance the probability of generating high-quality
solutions. The three stages are devoted to transform-
ing the problem, constructing its initial solution, and
improving the solution, respectively, so that a good
balance between the travel cost and the penalty cost
of a solution can be achieved and the total cost of a
solution can be minimized. A number of conducted
experiments show that the results produced by the
heuristic for the generalized instances are better
than the best-known solutions of the corresponding
VRPTW in which the travel time between any pair of
nodes is regarded as its expected value.

(3) The heuristic is flexible in that it can apply to a
VRPTWSTT with any distribution of travel times
with a known mean and the travel times of different
edges can have different distributions and even possi-
ble dependence. Moreover, our heuristic can provide
decision-makers with various solutions to practical
problems, each of which considers a different period
of time by which the latest service start time of each
customer is advanced, indicating different levels of
risk or reliability.
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