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This paper proposes and analyses a mathematical model for the transmission dynamics of malaria with four-time dependent
control measures in Kenya: insecticide treated bed nets (ITNs), treatment, indoor residual spray (IRS), and intermittent preventive
treatment of malaria in pregnancy (IPTp). We first considered constant control parameters and calculate the basic reproduction
number and investigate existence and stability of equilibria as well as stability analysis. We proved that if 𝑅

0
≤ 1, the disease-free

equilibrium is globally asymptotically stable in 𝐷. If 𝑅
0
> 1, the unique endemic equilibrium exists and is globally asymptotically

stable. The model also exhibits backward bifurcation at 𝑅
0
= 1. If 𝑅

0
> 1, the model admits a unique endemic equilibrium which is

globally asymptotically stable in the interior of feasible region 𝐷. The sensitivity results showed that the most sensitive parameters
are mosquito death rate and mosquito biting rates. We then consider the time-dependent control case and use Pontryagin’s
Maximum Principle to derive the necessary conditions for the optimal control of the disease using the proposed model. The
existence of optimal control problem is proved. Numerical simulations of the optimal control problem using a set of reasonable
parameter values suggest that the optimal control strategy for malaria control in endemic areas is the combined use of treatment
and IRS; for epidemic prone areas is the use of treatment and IRS; for seasonal areas is the use of treatment; and for low risk areas
is the use of ITNs and treatment. Control programs that follow these strategies can effectively reduce the spread of malaria disease
in different malaria transmission settings in Kenya.

1. Introduction

Malaria is a leading cause of mortality and morbidity among
the under-five group and the pregnant women in Sub-
Saharan Africa [1]. These groups are at high risk due to
weakened and immature immunity, respectively. With the
recent conversion of the Millennium Development Goals
(MDGs) to Sustainable Development Goals (SDGs) as part of
Global Malaria Action Plan for a malaria-free world by 2030,
reducingmalaria is critical to post-2015malaria strategies and
for achieving the SDGs such as ensuring healthy lives and
promoting well-being for all at all ages. Most Kenyans are
vulnerable to malaria because of poverty, inadequate health
care infrastructures, and low income of the country. Prompt
access to effective treatment for malaria is unacceptably low
in Kenya due to the socioeconomic barriers to accessing
health care. These challenges call for urgent development of
effective and optimal strategies for preventing and controlling
spread of malaria.

Malaria transmission is highly variable across Kenya
because of the different transmission intensities driven by
climate and temperature. Kenya has four malaria epidemi-
ological zones: the endemic areas, the seasonal malaria
transmission, the malaria epidemic prone areas, and the low
risk malaria areas [2]. Malaria is caused by Plasmodium
parasites and it is transmitted from one individual to another
by the bite of infected female anopheline mosquitoes [1].
Malaria is an entirely preventable and treatable disease,
provided the currently recommended interventions are prop-
erly implemented. Controlling malaria transmission involves
interrupting the malaria transmission for specific transmis-
sion settings and for themost at-risk groups ofmalaria.World
Health organization (WHO) recommended malaria inter-
vention strategies include the use of long-lasting insecticide-
treated bed nets (LLINs), indoor residual spray (IRS), chemo-
prevention for the most vulnerable such as intermittent pre-
ventive treatment for pregnant women (IPTp), confirmation
ofmalaria diagnostics through rapid diagnostics tests (RDTs)
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and microscopy for every suspected case, and timely treat-
ment with artemisinin-based combination therapies (ACTs)
[1, 3].

Mathematical modelling has become an important tool
in understanding the dynamics of disease transmission and
in decision making processes regarding intervention pro-
grams for disease control. Mathematical models provide a
framework for understanding the transmission dynamics for
malaria and can be used for the optimal allocation of different
interventions against malaria [4, 5]. Optimal control is a
branch of mathematics developed to find optimal ways of
controlling a dynamic system [6]. Application of optimal
control theory can be an important tool for estimating the
efficacy of various policies and control measures and the
cost of implementing them. Optimal control approaches
have been successfully previously used in decision making
for the infectious diseases such as tuberculosis [7, 8], HIV
[9], and influenza [10]. Optimal control theory has also
been applied in malaria control to assess the impact of
antimalarial control measures by formulating the model
as an optimal control problem. Most malaria models for
analyzing effect of interventions in optimal control used the
standard Susceptible-Exposed-Infectious-Recovered (SEIR)
model for humans and Susceptible-Exposed-Infectious (SEI)
model for mosquitoes. Okosun et al. [11] considered three
control variables in assessing the optimal control and cost
effectiveness of the interventions but not for different settings.
Mwamtobe et al. [12] used three control variables and for
only one region in Malawi. Kim et al. [13] used two control
efforts in the optimal control model for malaria transmission
in South Korea. Agusto et al. [14] used three system control
variables. Silva and Torres [15] used one control variable.

IPTp is one of the WHO recommended prevention ther-
apies for the pregnant women. IPTp has been shown to be
effective in reducing maternal and infant mortality that are
related to malaria for the most at-risk group for malaria [16–
19]. Very few studies have been carried out in applying opti-
mal control theory to malaria transmissionmodels for differ-
ent transmission settings. The combined effect of ITNs, IRS,
and natural death on reducing the mosquito population has
not been demonstrated in optimal control theory in malaria
control. The effect of IPTp which is WHO recommended
preventive therapy for the most at-risk group for malaria
(pregnant women) has not been studied in optimal control
theory. No optimal control model for malaria interventions
for different transmission settings exits for Kenya. No optimal
control model for four control variables incorporating the
IPTpmalaria intervention studies exits for Kenya. No optimal
control model has been stratified by the age group (under
five) and specific categories (pregnant women).

In this paper, a model for malaria transmission dynamics
with four control strategies is formulated and analyzed.
We then formulate an optimal control problem and derive
expressions for the optimal control for the malaria trans-
mission model with four control variables and then use the
optimal control theory to study the effectiveness of all possi-
ble combinations of four malaria preventive measures among
the pregnant women and children under five years of age.

2. Model Formulation

The model is formulated by considering the human and
mosquito subgroups. The considered model consists of
population of susceptible 𝑆

ℎ
, Exposed humans 𝐸

ℎ
, infected

humans 𝐼
ℎ
, recovered humans𝑅

ℎ
, susceptiblemosquitoes 𝑆

𝑚
,

exposed mosquitoes, 𝐸
𝑚

and infected mosquitoes 𝐼
𝑚
. The

total population sizes at time 𝑡 for humans and mosquitoes
are denoted by𝑁

ℎ
(𝑡) and𝑁

𝑚
(𝑡), respectively. We employ the

SEIRS type model for humans to describe a disease with
temporary immunity on recovery from infection.Mosquitoes
are assumed not to recover from the parasites so themosquito
population can be described by the SEI model. In the
model we incorporate four time-dependent control measures
simultaneously: (i) the use of treated bed nets 𝑢

1
(𝑡), (ii)

treatment of infective humans 𝑢
2
(𝑡), (iii) spray of insecticides

𝑢
3
(𝑡), and (iv) treatment to protect pregnant women and

their newborn children: intermittent preventive treatment for
pregnant women (IPTp) 𝑢

4
(𝑡). 𝑆
ℎ
(𝑡) represents the number

of individuals not yet infected with the malaria parasite at
time 𝑡, 𝐸

ℎ
(𝑡) represents individuals who are infected but not

yet infectious, 𝐼
ℎ
(𝑡) is the class representing those who are

infected with malaria and are capable of transmitting the
disease to susceptible mosquitoes, and 𝑅

ℎ
(𝑡) represents the

class of individuals who have temporarily recovered from the
disease.

Figure 1 describes the dynamics of malaria in human and
mosquito populations together with interventions.

The susceptible humans (pregnant women and children
under the age of five) (𝑆

ℎ
) are recruited at the rate Λ

ℎ
. They

either die from natural causes (at a rate 𝜇
ℎ
) or move to the

exposed class (𝐸
ℎ
) by acquiringmalaria through contact with

infectious mosquitoes at a rate (1 − 𝑢
1
)(𝛽𝜖𝜙𝐼

𝑚
/𝑁
ℎ
)𝑆
ℎ
or (1 −

𝑢
4
)(𝛽𝜖𝜙𝐼

𝑚
/𝑁
ℎ𝑤

)𝑆
ℎ
, where 𝛽 is the transmission probability

per bite, 𝜖 is the per capita biting rate of mosquitoes, 𝜙 is
the contact rate of vector per human per unit time, 𝑢

1
(𝑡) ∈

[0, 1] is the preventive measure using ITNs, 𝑢
4
(𝑡) ∈ [0, 1]

is the preventive measure using IPTp, 𝐼
𝑚
(𝑡) is the infectious

mosquitoes at time 𝑡,𝑁
ℎ
(𝑡) is the total number of individuals

(pregnant women and children under the age of five), and
𝑁
ℎ𝑤

(𝑡) is the total number of pregnant women. Susceptible
class 𝑆

ℎ
is divided into whole population (children under

the age of five and pregnant women) being exposed and the
population for the pregnant women being exposed. Exposed
individualsmove to the infectious class after the development
of clinical symptoms at the rate 𝛼

ℎ
. Infectious individuals are

assumed to recover at a rate 𝑏 + 𝜏𝑢
2
, where 𝑏 is the rate of

spontaneous recovery, 𝑢
2
(𝑡) ∈ [0, 1] is the control on treat-

ment of infected individuals, and 𝜏 ∈ [0, 1] is the efficacy of
treatment. Infectious individuals who do not recover die at
a rate 𝛿

ℎ
+ 𝜇
ℎ
. Individuals infected with malaria suffer a

disease induced death at rate of 𝛿
ℎ
and natural death 𝜇

ℎ
.

Infected individuals then progress to partially immune group
where upon recovery the partially immune individual loses
immunity at the rate 𝜓 and becomes susceptible again.

Susceptible mosquitoes (𝑆
𝑚
) are recruited at the rate

Λ
𝑚

and acquire malaria infection (following contact with
humans infected with malaria) at the rate 𝜆

𝑚
. They either die

fromnatural causes (at a rate𝜇
𝑚
) ormove to the exposed class
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Figure 1: Malaria model with interventions.

by acquiring malaria through contacts with infected humans
at a rate (1 − 𝑢

1
)(𝜆𝜖𝜙𝐼

ℎ
/𝑁
ℎ
)𝑆
𝑚
, where 𝜆 is the probability

for a vector to get infected after biting an infectious human
and 𝐼
ℎ
(𝑡) are individuals infected with malaria at time 𝑡. The

mosquito population is reduced, due to the use of insecticides
spray, at a rate 𝑝𝑢

3
, where 𝑢

3
(𝑡) ∈ [0, 1] represents the control

due to IRS and 𝑝 represents the efficacy of IRS. Mosquito
population is also reduced as a result of natural death (𝜇

𝑚
)

and at the rate 𝑎𝑢
1
, where 𝑢

1
(𝑡) represents the control due

to ITNs and 𝑎 is the efficacy due to ITNs. Newly infected
mosquitoes aremoved into the exposed class (𝐸

𝑚
) at a rate𝛼

𝑚

and progresses to the class of symptomatic mosquitoes (𝐼
𝑚
).

The state variables of the model are represented and
described in Table 1. Table 2 describes and shows parameters
of the model. Table 3 describes and represents malaria pre-
vention and control strategies practiced in Kenya.

The following assumptions have been used in the formu-
lation of the model:

(i) Population for human and mosquito being constant
(no immigrants).

(ii) No recovery for infected mosquitoes.
(iii) Mosquitoes not dying due to disease infection.
(iv) All parameters in the model being nonnegative.

Putting the above formulations and assumptions together
gives the following system of nonlinear differential equations
describing the dynamics of malaria in human and mosquito
populations together with interventions:

𝑑𝑆
ℎ

𝑑𝑡
= Λ
ℎ
+ 𝜓𝑅
ℎ
− (1 − 𝑢

1
) 𝜆
ℎ
𝑆
ℎ
− (1 − 𝑢

4
) 𝜆
ℎ𝑤

𝑆
ℎ

− 𝜇
ℎ
𝑆
ℎ
,

Table 1: State variables of the malaria model.

Variable Description

𝑆
ℎ
(𝑡)

Number of susceptible individuals (pregnant
and under 5) at time 𝑡

𝐸
ℎ
(𝑡)

Number of exposed individuals (pregnant and
under 5) at time 𝑡

𝐼
ℎ
(𝑡)

Number of infectious humans (pregnant and
under 5) at time 𝑡

𝑅
ℎ
(𝑡)

Number of recovered humans (pregnant and
under 5) at time 𝑡

𝑆
𝑚
(𝑡) Number of susceptible mosquitoes at time 𝑡

𝐸
𝑚
(𝑡) Number of exposed mosquitoes at time 𝑡

𝐼
𝑚
(𝑡) Number of infectious mosquitoes at time 𝑡

𝑁
ℎ
(𝑡)

Total number of individuals (pregnant and
under 5) at time 𝑡

𝑁
ℎ𝑤

(𝑡) Total number of pregnant individuals at time 𝑡
𝑁
𝑚
(𝑡) Total mosquito population at time 𝑡

𝑑𝐸
ℎ

𝑑𝑡
= (1 − 𝑢

1
) 𝜆
ℎ
𝑆
ℎ
+ (1 − 𝑢

4
) 𝜆
ℎ𝑤

𝑆
ℎ
− (𝛼
ℎ
+ 𝜇
ℎ
) 𝐸
ℎ
,

𝑑𝐼
ℎ

𝑑𝑡
= 𝛼
ℎ
𝐸
ℎ
− (𝛿
ℎ
+ 𝜇
ℎ
) 𝐼
ℎ
− (𝑏 + 𝜏𝑢

2
) 𝐼
ℎ
,

𝑑𝑅
ℎ

𝑑𝑡
= (𝑏 + 𝜏𝑢

2
) 𝐼
ℎ
− (𝜓 + 𝜇

ℎ
) 𝑅
ℎ
,

𝑑𝑆
𝑚

𝑑𝑡
= Λ
𝑚
− (1 − 𝑢

1
) 𝜆
𝑚
𝑆
𝑚
− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝑆
𝑚
,

𝑑𝐸
𝑚

𝑑𝑡
= (1 − 𝑢

1
) 𝜆
𝑚
𝑆
𝑚
− 𝛼
𝑚
𝐸
𝑚
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Table 2: Description of parameter variables of the malaria model.

Parameter Description
𝜙 Mosquito contact rate with human
𝜖 Mosquito biting rate

𝛽

Probability of human getting infected (the
probability of transmission of infection from an
infectious mosquito to a susceptible human provided
there is a bite)

𝜆

Probability of a mosquito getting infected (the
probability of transmission of infection from an
infectious human to a susceptible mosquito provided
there is a bite)

𝜇
ℎ Per capita natural death rate of humans

𝜇
𝑚 Per capita natural death rate of mosquitoes

𝜓
Per capita rate of loss of immunity by recovered
individuals

𝛼
ℎ Humans progression rate from exposed to infected

𝛼
𝑚

Mosquitoes progression rate from exposed to
infected

Λ
ℎ

Recruitment rate of human by birth and by getting
pregnant

Λ
𝑚 Recruitment of mosquitoes by birth

𝛿
ℎ

Per capita disease induced death rate for humans
(pregnant and under 5)

𝑏 Proportion of spontaneous individual recovery

𝜆
ℎ

Force of infection for susceptible humans (pregnant
and under 5) to exposed individuals

𝜆
ℎ𝑤

Force of infection for susceptible pregnant humans
to exposed individuals

𝜆
𝑚

Force of infection for susceptible mosquitoes to
exposed mosquitoes

Table 3: Prevention and control variables in the model.

Variable Description

𝑢
1
(𝑡)

Preventive measure using insecticide-treated
bed nets (ITNs)

𝑢
2
(𝑡)

The control effort on treatment of infectious
individuals

𝑢
3
(𝑡)

Preventing measure using indoor residual
spray (IRS)

𝑢
4
(𝑡)

Preventive measure using intermittent
preventive treatment for pregnant women
(IPTp)

𝑝
Rate constant due to use of indoor residual
spray

𝜏 Rate constant due to use of treatment effort

𝑎
Rate constant due to use of insecticide-treated
bed nets

− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝐸
𝑚
,

𝑑𝐼
𝑚

𝑑𝑡
= 𝛼
𝑚
𝐸
𝑚
− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝐼
𝑚
.

(1)

With initial conditions

𝑆
ℎ
(0) ≥ 0,

𝐸
ℎ (0) ≥ 0,

𝐼
ℎ
(0) ≥ 0,

𝑅
ℎ
(0) ≥ 0,

𝑆
𝑚
(0) ≥ 0,

𝐸
𝑚
(0) ≥ 0,

𝐼
𝑚 (0) ≥ 0,

(2)

𝜆
𝑚

= 𝜆𝜖𝜙𝐼
ℎ
/𝑁
ℎ
is the per capita incidence rate among mos-

quitoes (force of infection for susceptible mosquitoes), 𝜆
ℎ
=

𝛽𝜖𝜙𝐼
𝑚
/𝑁
ℎ
is the force of infection for susceptible humans

(pregnant and under 5), and 𝜆
ℎ𝑤

= 𝛽𝜖𝜙𝐼
𝑚
/𝑁
ℎ𝑤

is the force of
infection for susceptible pregnant humans.

The total population size for the human is𝑁
ℎ
= 𝑆
ℎ
+𝐸
ℎ
+

𝐼
ℎ
+ 𝑅
ℎ
and for mosquito is 𝑁

𝑚
= 𝑆
𝑚

+ 𝐸
𝑚

+ 𝐼
𝑚
and their

differential equations are given by 𝑑𝑁
ℎ
/𝑑𝑡 = Λ

ℎ
−𝜇
ℎ
𝑁
ℎ
−𝛿
ℎ
𝐼
ℎ

and 𝑑𝑁
𝑚
/𝑑𝑡 = Λ

𝑚
− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)𝑁
𝑚
, respectively.

2.1.Mathematical Analysis of theMalariaModelwith Interven-
tion Strategies. We will assume that the control parameters
are constant so as to determine the basic reproduction num-
ber, steady states, and their stability as well as the bifurcation
analysis.

We describe the basic properties and analysis of the
formulated malaria model with control strategies through
mathematical analysis of the formulated model.

2.1.1. Basic Properties of the Model: Positivity and Invariant
Regions. All the state variables and parameters for model (1)
are nonnegative for all 𝑡 ≥ 0.

The feasible solutions set for model (1) given by

𝐷 = {(𝑆
ℎ
, 𝐸
ℎ
, 𝐼
ℎ
, 𝑅
ℎ
, 𝑆
𝑚
, 𝐸
𝑚
, 𝐼
𝑚
) ∈ 𝑅
7

+
: (𝑆
ℎ
, 𝑆
𝑚
)

> 0, (𝐸
ℎ
, 𝐼
ℎ
, 𝑅
ℎ
, 𝐸
𝑚
, 𝐼
𝑚
) ≥ 0; 𝑁

ℎ
≤

Λ
ℎ

𝜇
ℎ

; 𝑁
𝑚

≤
Λ
𝑚

𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3

}

(3)

is positively invariant and hence model (1) is biologically,
epidemiologicallymeaningful andmathematicallywell posed
in the domain𝐷.

System (1) has always a disease-free equilibrium given by

𝐸
0
= (𝑆
∗

ℎ
, 𝐸
∗

ℎ
, 𝐼
∗

ℎ
, 𝑅
∗

ℎ
, 𝑆
∗

𝑚
, 𝐸
∗

𝑚
, 𝐼
∗

𝑚
)

= (
Λ
ℎ

𝜇
ℎ

, 0, 0, 0,
Λ
𝑚

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)
, 0, 0) .

(4)

2.1.2. Basic Reproduction Number. The matrices 𝐹 and 𝑉 for
the new infection terms and the remaining transfer terms at
disease-free equilibrium [26], respectively, are given by
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𝐹 =

[
[
[
[
[
[
[

[

0 0 0 (1 − 𝑢
1
) 𝛽𝜖𝜙 + (1 − 𝑢

4
) 𝛽𝜖𝜙

0 0 0 0

0
(1 − 𝑢

1
) 𝜆𝜖𝜙𝜇

ℎ
Λ
𝑚

𝛼
ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)

0 0

0 0 0 0

]
]
]
]
]
]
]

]

,

𝑉 =

[
[
[
[
[

[

(𝜇
ℎ
+ 𝛼
ℎ
) 0 0 0

−𝛼
ℎ

(𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
) 0 0

0 0 𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3

0

0 0 −𝛼
𝑚

𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3

]
]
]
]
]

]

.

(5)

It follows that the basic reproduction of model (1), denoted
by 𝑅
0
, is given by

𝑅
0
= 𝜌 (𝐹𝑉

−1
) ,

𝑅
0
= √

𝛼
ℎ
(1 − 𝑢

1
) 𝜆𝜖𝜙Λ

𝑚
𝜇
ℎ
(1 − 𝑢

1
) 𝛽𝜖𝜙𝛼

𝑚
+ 𝛼
ℎ
(1 − 𝑢

1
) 𝜆𝜖𝜙Λ

𝑚
𝜇
ℎ
(1 − 𝑢

4
) 𝛽𝜖𝜙𝛼

𝑚

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝜇
ℎ
+ 𝛼
ℎ
) (𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
) Λ
ℎ
(𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)
.

(6)

2.1.3. Stability Analysis of Disease-Free Equilibrium Point

(1) Local Stability of Disease-Free Equilibrium Point

Theorem 1. The disease-free equilibrium point for system (1) is
locally asymptotically stable if 𝑅

0
< 1.

Proof. The Jacobian matrix (𝐽) of the malaria model (1) at the
disease-free equilibrium point is given by

[
[
[
[
[
[
[
[
[
[

[

− (𝛼
ℎ
+ 𝜇
ℎ
) 0 0 0 (1 − 𝑢

1
) 𝛽𝜖𝜙 + (1 − 𝑢

4
) 𝛽𝜖𝜙

𝛼
ℎ

− (𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
) 0 0 0

0 (𝑏 + 𝜏𝑢
2
) − (𝜓 + 𝜇

ℎ
) 0 0

0
(1 − 𝑢

1
) 𝜆𝜖𝜙Λ

𝑚
𝜇
ℎ

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) Λ
ℎ

0 − (𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 0

0 0 0 𝛼
𝑚

− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)

]
]
]
]
]
]
]
]
]
]

]

. (7)

The eigenvalues of the Jacobian matrix are the solutions of
the characteristic equation

|𝐽 − 𝜆𝐼| = 0,

[
[
[
[
[
[
[
[
[
[

[

− (𝛼
ℎ
+ 𝜇
ℎ
+ 𝜆) 0 0 0 (1 − 𝑢

1
) 𝛽𝜖𝜙 + (1 − 𝑢

4
) 𝛽𝜖𝜙

𝛼
ℎ

− (𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
+ 𝜆) 0 0 0

0 (𝑏 + 𝜏𝑢
2
) − (𝜓 + 𝜇

ℎ
+ 𝜆) 0 0

0
(1 − 𝑢

1
) 𝜆𝜖𝜙Λ

𝑚
𝜇
ℎ

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) Λ
ℎ

0 − (𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
+ 𝜆) 0

0 0 0 𝛼
𝑚

− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
+ 𝜆)

]
]
]
]
]
]
]
]
]
]

]

= 0.

(8)
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Expanding the determinant into a characteristic equation we
have

− (𝛿
ℎ
+ 𝜇
ℎ
) (𝛼
ℎ
+ 𝜇
ℎ
+ 𝜆) (𝛿

ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
+ 𝜆) (𝛼

𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
+ 𝜆) (𝜇

𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
+ 𝜆)

−
(1 − 𝑢

1
)
2
𝜆𝜖
2
𝜙
2
Λ
𝑚
𝜇
ℎ
𝛼
𝑚
𝛽𝛼
ℎ
+ (1 − 𝑢

4
) (1 − 𝑢

1
) 𝜆𝜖
2
𝜙
2
Λ
𝑚
𝜇
ℎ
𝛼
𝑚
𝛽𝛼
ℎ

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) Λ
𝑚

= 0.

(9)

Hence we have

𝐴
1
= (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) ,

𝐴
2
= (𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) ,

𝐴
3
= (𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
) ,

𝐴
4
= (𝛼
ℎ
+ 𝜇
ℎ
) ,

𝑄 = ((1 − 𝑢
1
)
2
𝜆𝜖
2
𝜙
2
Λ
𝑚
𝜇
ℎ
𝛼
𝑚
𝛽𝛼
ℎ

+ (1 − 𝑢
4
) (1 − 𝑢

1
) 𝜆𝜖
2
𝜙
2
Λ
𝑚
𝜇
ℎ
𝛼
𝑚
𝛽𝛼
ℎ
)

⋅ ((𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) Λ
𝑚
)
−1

,

(𝜆 + 𝐴
1
) (𝜆 + 𝐴

2
) (𝜆 + 𝐴

3
) (𝜆 + 𝐴

4
) − 𝑄 = 0,

𝜆
4
+ 𝐵
1
𝜆
3
+ 𝐵
2
𝜆
2
+ 𝐵
3
𝜆 + 𝐵
4
= 0,

(10)

where

𝐵
1
= 𝐴
4
+ 𝐴
3
+ 𝐴
2
+ 𝐴
1
,

𝐵
2
= 𝐴
4
(𝐴
3
+ 𝐴
2
+ 𝐴
1
) + 𝐴
3
(𝐴
2
+ 𝐴
1
) + 𝐴
1
𝐴
2
,

𝐵
3
= 𝐴
4
𝐴
3
𝐴
2
+ 𝐴
4
𝐴
3
𝐴
1
+ 𝐴
4
𝐴
2
𝐴
1
+ 𝐴
3
𝐴
2
𝐴
1
,

𝐵
4
= 𝐴
4
𝐴
3
𝐴
2
𝐴
1
− 𝑄.

(11)

Thus, applying the Routh-Hurwitz criteria [27] to polynomial
(10), we have that all determinants of the Hurwitz matrices
are positive. Hence all the eigenvalues of the Jacobian have

negative real part, implying that the DFE point is (at least)
locally asymptotically stable (𝑅

0
< 1).

Next, we study the global behavior of the disease-free
equilibrium for system (1).

(2) Global Stability of Disease-Free Equilibrium Point

Theorem 2. TheDFE, 𝐸
0
, of system of (1) is globally asymptot-

ically stable if 𝑅
0
< 1.

Proof. We consider the following Lyapunov function:

𝐿 = 𝑐
1
𝐸
ℎ
+ 𝑐
2
𝐼
ℎ
+ 𝑐
3
𝐸
𝑚
+ 𝑐
4
𝐼
𝑚
, (12)

where

𝑐
1
=

𝛼
ℎ

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝛼
ℎ
+ 𝜇
ℎ
) (𝑏 + 𝜏𝑢

2
+ 𝛿
ℎ
+ 𝜇
ℎ
)
,

𝑐
2
=

1

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝑏 + 𝜏𝑢

2
+ 𝛿
ℎ
+ 𝜇
ℎ
)
,

𝑐
3
=

1

(1 − 𝑢
1
) 𝜖𝜙𝜆Λ

𝑚

,

𝑐
4
=

𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3

(1 − 𝑢
1
) 𝜖𝜙𝜆Λ

𝑚
𝛼
𝑚

.

(13)

Computing the derivative of 𝐿 along the solution of the
system of differential equation (1),

𝐿̇ =
𝛼
ℎ

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝛼
ℎ
+ 𝜇
ℎ
) (𝑏 + 𝜏𝑢

2
+ 𝛿
ℎ
+ 𝜇
ℎ
)
[(1 − 𝑢

1
) 𝜆
ℎ
𝑆
ℎ
+ (1 − 𝑢

4
) 𝜆
ℎ𝑤

𝑆
ℎ
− (𝛼
ℎ
+ 𝜇
ℎ
) 𝐸
ℎ
]

+
1

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝑏 + 𝜏𝑢

2
+ 𝛿
ℎ
+ 𝜇
ℎ
)
[𝛼
ℎ
𝐸
ℎ
− (𝛿
ℎ
+ 𝜇
ℎ
) 𝐼
ℎ
− (𝑏 + 𝜏𝑢

2
) 𝐼
ℎ
] +

1

(1 − 𝑢
1
) 𝜖𝜙𝜆Λ

𝑚

[(1 − 𝑢
1
) 𝜆
𝑚
𝑆
𝑚
− 𝛼
𝑚
𝐸
𝑚

− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝐸
𝑚
] +

𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3

(1 − 𝑢
1
) 𝜖𝜙𝜆Λ

𝑚
𝛼
𝑚

[𝛼
𝑚
𝐸
𝑚
− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝐼
𝑚
] ,

𝐿̇ = [
𝛼
ℎ
[(1 − 𝑢

1
) 𝜆
ℎ
𝑆
ℎ
+ (1 − 𝑢

4
) 𝜆
ℎ𝑤

𝑆
ℎ
− (𝛼
ℎ
+ 𝜇
ℎ
)]

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝛼
ℎ
+ 𝜇
ℎ
) (𝑏 + 𝜏𝑢

2
+ 𝛿
ℎ
+ 𝜇
ℎ
)
] 𝐸
ℎ
+ [

[𝛼
ℎ
𝐸
ℎ
− (𝛿
ℎ
+ 𝜇
ℎ
) 𝐼
ℎ
− (𝑏 + 𝜏𝑢

2
)]

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝑏 + 𝜏𝑢

2
+ 𝛿
ℎ
+ 𝜇
ℎ
)
] 𝐼
ℎ

+ [
[(1 − 𝑢

1
) 𝜆
𝑚
𝑆
𝑚
− 𝛼
𝑚
𝐸
𝑚
− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)]

(1 − 𝑢
1
) 𝜖𝜙𝜆Λ

𝑚

]𝐸
𝑚
+ [

(𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)

(1 − 𝑢
1
) 𝜖𝜙𝜆Λ

𝑚
𝛼
𝑚

] 𝐼
𝑚
,

𝐿̇ =
(𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
+ 𝛿
ℎ
)

(1 − 𝑢
1
) 𝜖𝜙𝜆Λ

𝑚
𝛼
𝑚

[
𝛼
ℎ
(1 − 𝑢

1
) 𝜆𝜖𝜙Λ

𝑚
𝜇
ℎ
(1 − 𝑢

1
) 𝛽𝜖𝜙𝛼

𝑚
+ 𝛼
ℎ
(1 − 𝑢

1
) 𝜆𝜖𝜙Λ

𝑚
𝜇
ℎ
(1 − 𝑢

4
) 𝛽𝜖𝜙𝛼

𝑚

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝜇
ℎ
+ 𝛼
ℎ
) (𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
) Λ
ℎ
(𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)

− 1] 𝐼
ℎ
,

𝐿̇ =
(𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
+ 𝛿
ℎ
)

(1 − 𝑢
1
) 𝜖𝜙𝜆Λ

𝑚
𝛼
𝑚

[𝑅
0
− 1] 𝐼
ℎ
≤ 0 iff 𝑅

0
≤ 1.

(14)
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Thus we have established that 𝐿̇ ≤ 0 if 𝑅
0
< 1 and the equality

𝐿̇ = 0 holds if and only if 𝑅
0
= 1 and 𝐸

ℎ
= 𝐼
ℎ
= 𝐸
𝑚

= 𝐼
𝑚

= 0.
If 𝑅
0
> 1 then 𝐿̇ > 0 when 𝑆

ℎ
(𝑡) and 𝑆

𝑚
(𝑡) are sufficiently

close toΛ
ℎ
/𝜇
ℎ
andΛ

𝑚
/(𝜇
𝑚
+𝑎𝑢
1
+𝑝𝑢
3
), respectively, except

when 𝐸
ℎ
= 𝐼
ℎ
= 𝐸
𝑚

= 𝐼
𝑚

= 0.

On the boundary when 𝐸
ℎ
= 𝐼
ℎ
= 𝐸
𝑚

= 𝐼
𝑚

= 0, 𝑁̇
ℎ
(𝑡) =

Λ
ℎ
−𝜇
ℎ
𝑁
ℎ
and ̇𝑁

𝑚
(𝑡) = Λ

𝑚
− (𝜇
𝑚
+𝑎𝑢
1
+𝑝𝑢
3
) and𝑁

ℎ
(𝑡) →

Λ
ℎ
/𝜇
ℎ
,𝑁
𝑚
(𝑡) → Λ

𝑚
/(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) as 𝑡 → ∞.

Therefore the largest compact invariant 𝐷 = {(𝑆
ℎ
, 𝐸
ℎ
,

𝐼
ℎ
, 𝑅
ℎ
, 𝑆
𝑚
, 𝐸
𝑚
, 𝐼
𝑚
) ∈ 𝑅
7

+
: 𝐿̇ = 0} when 𝑅

0
< 1 is the singleton

{𝐸
0
} in 𝐷. By LaSalle’s invariant principle [28], 𝐸

0
is globally

asymptotically stable for 𝑅
0
< 1 in𝐷.

Next, we investigate the endemic equilibrium and its
stability of system (1).

2.1.4. Stability Analysis of Endemic Equilibrium Point. First
we determine the existence of the endemic equilibrium
points.

The endemic equilibrium (𝐸
1
) of the model is given by

𝐸
1
= (𝑆
∗∗

ℎ
, 𝐸
∗∗

ℎ
, 𝐼
∗∗

ℎ
, 𝑅
∗∗

ℎ
, 𝑆
∗∗

𝑚
, 𝐸
∗∗

𝑚
, 𝐼
∗∗

𝑚
) . (15)

To derive 𝐸
1
, we solve model (1) by equating it to zero.

Substituting and solving for 𝐼
∗∗

ℎ
(as an expression of

parameters only) through some algebraic manipulation give

Λ
ℎ
+ 𝜓

(𝑏 + 𝜏𝑢
2
) 𝐼
∗∗

ℎ

(𝜓 + 𝜇
ℎ
)

+ [
(1 − 𝑢

1
) 𝛽𝜖𝜙

𝑁
ℎ

][
(1 − 𝑢

1
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝑅
0𝑚

𝐼
∗∗

ℎ

(1 − 𝑢
1
) 𝜆𝜖𝜙𝐼

∗∗

ℎ
+ 𝑁
ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)
]

⋅ [
𝑁
ℎ𝑤

𝜇
ℎ
(1 − 𝑢

1
) 𝜆𝜖𝜙𝐼

∗∗

ℎ
+ Λ
ℎ
𝑁
ℎ𝑤

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)

𝜇
ℎ
𝑁
ℎ𝑤

𝑅
2

0
(1 − 𝑢

1
)
2
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝛼
ℎ
+ 𝜇
ℎ
) (𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
) + 𝛼
ℎ
(1 − 𝑢

4
) (1 − 𝑢

1
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝛽𝜖𝜙𝑅

0𝑚
𝜇
ℎ

]

+ [
(1 − 𝑢

4
) 𝛽𝜖𝜙

𝑁
ℎ𝑤

][
(1 − 𝑢

4
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝑅
0𝑚

𝐼
∗∗

ℎ

(1 − 𝑢
4
) 𝜆𝜖𝜙𝐼

∗∗

ℎ
+ 𝑁
ℎ𝑤

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)
]

⋅ [
𝑁
ℎ𝑤

𝜇
ℎ
(1 − 𝑢

1
) 𝜆𝜖𝜙𝐼

∗∗

ℎ
+ Λ
ℎ
𝑁
ℎ𝑤

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)

𝜇
ℎ
𝑁
ℎ𝑤

𝑅
2

0
(1 − 𝑢

1
)
2
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝛼
ℎ
+ 𝜇
ℎ
) (𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
) + 𝛼
ℎ
(1 − 𝑢

4
) (1 − 𝑢

1
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝛽𝜖𝜙𝑅

0𝑚
𝜇
ℎ

]

− 𝜇
ℎ
[

𝑁
ℎ𝑤

𝜇
ℎ
(1 − 𝑢

1
) 𝜆𝜖𝜙𝐼

∗∗

ℎ
+ Λ
ℎ
𝑁
ℎ𝑤

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)

𝜇
ℎ
𝑁
ℎ𝑤

𝑅
2

0
(1 − 𝑢

1
)
2
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝛼
ℎ
+ 𝜇
ℎ
) (𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
) + 𝛼
ℎ
(1 − 𝑢

4
) (1 − 𝑢

1
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝛽𝜖𝜙𝑅

0𝑚
𝜇
ℎ

]

= 0

(16)

or

𝐴 (𝐼
∗∗

ℎ
)
2
+ 𝐵𝐼
∗∗

ℎ
+ 𝐶 = 0, (17)

where

𝐴 = (𝜓 + 𝜇
ℎ
) Λ
ℎ
[𝜇
ℎ
𝑁
ℎ𝑤

𝑅
2

0
(1 − 𝑢

1
)
2

⋅ (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝛼
ℎ
+ 𝜇
ℎ
) (𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
)

+ 𝛼
ℎ
(1 − 𝑢

4
) (1 − 𝑢

1
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝛽𝜖𝜙𝑅

0𝑚
𝜇
ℎ
]

⋅ [(1 − 𝑢
1
) 𝜆𝜖𝜙𝐼

∗∗

ℎ
+ 𝑁
ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)]𝑁
ℎ𝑤

𝑁
ℎ

+ 𝜓 (𝑏 + 𝜏𝑢
2
) 𝐼
∗∗

ℎ
[𝜇
ℎ
𝑁
ℎ𝑤

𝑅
2

0
(1 − 𝑢

1
)
2

⋅ (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝛼
ℎ
+ 𝜇
ℎ
) (𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
)

+ 𝛼
ℎ
(1 − 𝑢

4
) (1 − 𝑢

1
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝛽𝜖𝜙𝑅

0𝑚
𝜇
ℎ
]

⋅ [(1 − 𝑢
1
) 𝜆𝜖𝜙𝐼

∗∗

ℎ
+ 𝑁
ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)]

⋅ 𝑁
ℎ𝑤

𝑁
ℎ
,

𝐵 = (𝜓 + 𝜇
ℎ
) [(1 − 𝑢

1
) 𝛽𝜖𝜙] [(1 − 𝑢

1
)

⋅ (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝑅
0𝑚

𝐼
∗∗

ℎ
] [𝑁
ℎ𝑤

𝜇
ℎ
(1 − 𝑢

1
)

⋅ 𝜆𝜖𝜙𝐼
∗∗

ℎ
+ Λ
ℎ
𝑁
ℎ𝑤

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)]𝑁
ℎ𝑤

+ (𝜓

+ 𝜇
ℎ
) [(1 − 𝑢

4
) 𝛽𝜖𝜙] [(1 − 𝑢

4
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)

⋅ 𝑅
0𝑚

𝐼
∗∗

ℎ
] [𝑁
ℎ𝑤

𝜇
ℎ
(1 − 𝑢

1
) 𝜆𝜖𝜙𝐼

∗∗

ℎ

+ Λ
ℎ
𝑁
ℎ𝑤

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)]𝑁
ℎ
,

𝐶 = (𝜓 + 𝜇
ℎ
) 𝜇
ℎ
[𝑁
ℎ𝑤

𝜇
ℎ
(1 − 𝑢

1
) 𝜆𝜖𝜙𝐼

∗∗

ℎ

+ Λ
ℎ
𝑁
ℎ𝑤

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)] [(1 − 𝑢

1
) 𝜆𝜖𝜙𝐼

∗∗

ℎ

+ 𝑁
ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)]𝑁
ℎ𝑤

𝑁
ℎ
.

(18)

We use the quadratic formula to find the roots of (17); that is,

𝐼
∗

ℎ
=

−𝐵 ± √𝐵2 − 4𝐴𝐶

2𝐴

=
−𝐵 + √𝐵2 − 4𝐴𝐶

2𝐴
or −𝐵 − √𝐵2 − 4𝐴𝐶

2𝐴

𝐼
∗

ℎ
=

−𝐵 + √𝐵2 − 4𝐴𝐶

2𝐴
=

−𝐵 − √𝐵2 − 4𝐴𝐶

2𝐴
= Φ.

(19)
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Hence

𝑆
∗∗

ℎ
=

𝑁
ℎ𝑤

𝜇
ℎ
(1 − 𝑢

1
) 𝜆𝜖𝜙Φ + Λ

ℎ
𝑁
ℎ𝑤

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)

𝜇
ℎ
𝑁
ℎ𝑤

𝑅
2

0
(1 − 𝑢

1
)
2
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝛼
ℎ
+ 𝜇
ℎ
) (𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
) + 𝛼
ℎ
(1 − 𝑢

4
) (1 − 𝑢

1
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝛽𝜖𝜙𝑅

0𝑚
𝜇
ℎ

,

𝐸
∗∗

ℎ
= [

((1 − 𝑢
1
) 𝛽𝜖𝜙 + (1 − 𝑢

4
) 𝛽𝜖𝜙) (1 − 𝑢

1
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝑅
0𝑚

Φ

𝑁
ℎ𝑤

𝑁
ℎ
(𝜇
ℎ
+ 𝛼
ℎ
) ((1 − 𝑢

1
) 𝜆𝜖𝜙Φ + 𝑁

ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
))

]

⋅ [
𝑁
ℎ𝑤

𝜇
ℎ
(1 − 𝑢

1
) 𝜆𝜖𝜙Φ + Λ

ℎ
𝑁
ℎ𝑤

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)

𝜇
ℎ
𝑁
ℎ𝑤

𝑅
2

0
(1 − 𝑢

1
)
2
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝛼
ℎ
+ 𝜇
ℎ
) (𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
) + 𝛼
ℎ
(1 − 𝑢

4
) (1 − 𝑢

1
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝛽𝜖𝜙𝑅

0𝑚
𝜇
ℎ

] ,

𝐼
∗∗

ℎ
= Φ = [

𝛼
ℎ
((1 − 𝑢

1
) 𝛽𝜖𝜙 + (1 − 𝑢

4
) 𝛽𝜖𝜙) (1 − 𝑢

1
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝑅
0𝑚

Φ

(𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
)𝑁
ℎ𝑤

𝑁
ℎ
(𝜇
ℎ
+ 𝛼
ℎ
) ((1 − 𝑢

1
) 𝜆𝜖𝜙Φ + 𝑁

ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
))

]

⋅ [
𝑁
ℎ𝑤

𝜇
ℎ
(1 − 𝑢

1
) 𝜆𝜖𝜙Φ + Λ

ℎ
𝑁
ℎ𝑤

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)

𝜇
ℎ
𝑁
ℎ𝑤

𝑅
2

0
(1 − 𝑢

1
)
2
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝛼
ℎ
+ 𝜇
ℎ
) (𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
) + 𝛼
ℎ
(1 − 𝑢

4
) (1 − 𝑢

1
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝛽𝜖𝜙𝑅

0𝑚
𝜇
ℎ

]

≥ 0,

𝑅
∗∗

ℎ
= [

(𝑏 + 𝜏𝑢
2
) 𝛼
ℎ
((1 − 𝑢

1
) 𝛽𝜖𝜙 + (1 − 𝑢

4
) 𝛽𝜖𝜙) (1 − 𝑢

1
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝑅
0𝑚

Φ

(𝜇
ℎ
+ 𝜓) (𝛿

ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
)𝑁
ℎ𝑤

𝑁
ℎ
(𝜇
ℎ
+ 𝛼
ℎ
) ((1 − 𝑢

1
) 𝜆𝜖𝜙Φ + 𝑁

ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
))

]

⋅ [
𝑁
ℎ𝑤

𝜇
ℎ
(1 − 𝑢

1
) 𝜆𝜖𝜙Φ + Λ

ℎ
𝑁
ℎ𝑤

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)

𝜇
ℎ
𝑁
ℎ𝑤

𝑅
2

0
(1 − 𝑢

1
)
2
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝛼
ℎ
+ 𝜇
ℎ
) (𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
) + 𝛼
ℎ
(1 − 𝑢

4
) (1 − 𝑢

1
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝛽𝜖𝜙𝑅

0𝑚
𝜇
ℎ

] ,

𝑆
∗∗

𝑚
=

Λ
𝑚
𝑁
ℎ

(1 − 𝑢
1
) 𝜆𝜖𝜙Φ + (𝜇

𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)𝑁
ℎ

,

𝐸
∗∗

𝑚
= [

(1 − 𝑢
1
) 𝛼
ℎ
𝜆𝜖𝜙 ((1 − 𝑢

1
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝑅
0𝑚

Φ)Λ
𝑚
𝑁
ℎ

𝑁
ℎ
(𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) ((1 − 𝑢

1
) 𝜆𝜖𝜙Φ + 𝑁

ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)) ((1 − 𝑢

1
) 𝜆𝜖𝜙Φ + (𝜇

𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)𝑁
ℎ
)
] ,

𝐼
∗∗

𝑚
=

(1 − 𝑢
1
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝑅
0𝑚

Φ

(1 − 𝑢
1
) 𝜆𝜖𝜙Φ + 𝑁

ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)
.

(20)

From the quadratic equation (17) we analyze the possibility of
multiple endemic equilibria. It is important to note that the
coefficient 𝐴 is always positive with 𝐵 and 𝐶 having different
signs. All the negative terms in 𝐶 are in the form of (1 − 𝑢)

where 𝑢 is the control that is bounded by 1.
It follows that

(i) there is a unique endemic equilibrium if 𝐵 < 0 and
𝐶 = 0 or 𝐵2 − 4𝐴𝐶 = 0,

(ii) there is a unique endemic equilibrium if 𝐶 < 0 (i.e., if
𝑅
0
> 1),

(iii) there are two endemic equilibria if 𝐶 > 0, 𝐵 < 0, and
𝐵
2
− 4𝐴𝐶 > 0,

(iv) there are no endemic equilibria otherwise.

Note that the hypothesis 𝐶 > 0 is equivalent to 𝑅
0
< 1.

Thus the results of this section can be summarized in the
following theorem.

Theorem 3. If 𝑅
0

< 1, 𝐸
0
is an equilibrium of system (1)

and it is locally asymptotically stable. Furthermore, there exists
an endemic equilibrium if conditions in (i) are satisfied or
two endemic equilibria if conditions in (iii) are satisfied. If
𝑅
0
> 1, then 𝐸

0
is unstable and there exists a unique endemic

equilibrium.

Item (iii) indicates the possibility of backward bifurcation
in model (1) when 𝑅

0
< 1. In the next section we will prove

the occurrence of multiple equilibria for 𝑅
0
< 1 comes from

the backward bifurcation and this will give information on
the local stability of the endemic equilibrium.

(1) Local Stability Analysis of Endemic Equilibrium Point. We
use centre manifold theory [29] to investigate the stability
of the endemic equilibria for model (1) where we carry out
bifurcation analysis of system (1) at 𝑅

0
= 1. We consider a

transmission rate𝛽 as bifurcation parameterΨ so that𝑅
0
= 1.

To apply the theory, we introduce dimensionless state
variables into system (1).

The system of (1) can be written as

𝑑𝑆
ℎ

𝑑𝑡
= Λ
ℎ
+ 𝜓𝑅
ℎ
− 𝜇
ℎ
𝑆
ℎ
−

(1 − 𝑢
1
) 𝛽𝜖𝜙𝑆

ℎ
𝐼
𝑚

𝑁
ℎ

−
(1 − 𝑢

4
) 𝛽𝜖𝜙𝑆

ℎ
𝐼
𝑚

𝑁
ℎ𝑤

,

𝑑𝐸
ℎ

𝑑𝑡
=

(1 − 𝑢
1
) 𝛽𝜖𝜙𝑆

ℎ
𝐼
𝑚

𝑁
ℎ

+
(1 − 𝑢

4
) 𝛽𝜖𝜙𝑆

ℎ
𝐼
𝑚

𝑁
ℎ𝑤

− 𝜇
ℎ
𝐸
ℎ
− 𝛼
ℎ
𝐸
ℎ
,

𝑑𝐼
ℎ

𝑑𝑡
= 𝛼
ℎ
𝐸
ℎ
− (𝛿
ℎ
+ 𝜇
ℎ
) 𝐼
ℎ
− (𝑏 + 𝜏𝑢

2
) 𝐼
ℎ
,
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𝑑𝑅
ℎ

𝑑𝑡
= (𝑏 + 𝜏𝑢

2
) 𝐼
ℎ
− 𝜇
ℎ
𝑅
ℎ
− 𝜓𝑅
ℎ
,

𝑑𝑆
𝑚

𝑑𝑡
= Λ
𝑚
−

(1 − 𝑢
1
) 𝜆𝜖𝜙𝐼

ℎ
𝑆
𝑚

𝑁
ℎ

− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝑆
𝑚
,

𝑑𝐸
𝑚

𝑑𝑡
=

(1 − 𝑢
1
) 𝜆𝜖𝜙𝐼

ℎ
𝑆
𝑚

𝑁
ℎ

− 𝛼
𝑚
𝐸
𝑚

− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝐸
𝑚
,

𝑑𝐼
𝑚

𝑑𝑡
= 𝛼
𝑚
𝐸
𝑚
− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝐼
𝑚
.

(21)

We let 𝑥
1
= 𝑆
ℎ
, 𝑥
2
= 𝐸
ℎ
, 𝑥
3
= 𝐼
ℎ
, 𝑥
4
= 𝑅
ℎ
, 𝑥
5
= 𝑆
𝑚
, 𝑥
6
= 𝐸
𝑚
,

and 𝑥
7
= 𝐼
𝑚
.

Therefore system (1) in vector form can be written as

𝑑𝑋
𝑖

𝑑𝑡
= 𝐻 (𝑋

𝑖
) , (22)

where 𝑋
𝑖
= (𝑥
1
, 𝑥
2
, . . . , 𝑥

7
)
𝑇 and 𝐻 = (ℎ

1
, ℎ
2
, . . . , ℎ

7
)
𝑇 are

transposed matrices and𝑁
ℎ
= Λ
ℎ
/𝜇
ℎ
with Ψ

∗
= 𝛽,

𝑑𝑥
1

𝑑𝑡
= Λ
ℎ
+ 𝜓𝑥
4
− 𝜇
ℎ
𝑆
ℎ
−

(1 − 𝑢
1
) Ψ
∗
𝜖𝜙𝑥
7
𝑥
1
𝜇
ℎ

Λ
ℎ

−
(1 − 𝑢

4
) Ψ
∗
𝜖𝜙𝑥
7
𝑥
1
𝜇
ℎ

Λ
ℎ

= ℎ
1
,

𝑑𝑥
2

𝑑𝑡
=

(1 − 𝑢
1
) Ψ
∗
𝜖𝜙𝑥
7
𝑥
1
𝜇
ℎ

Λ
ℎ

+
(1 − 𝑢

4
) Ψ
∗
𝜖𝜙𝑥
7
𝑥
1
𝜇
ℎ

Λ
ℎ

− (𝜇
ℎ
+ 𝛼
ℎ
) 𝑥
2
= ℎ
2
,

𝑑𝑥
3

𝑑𝑡
= 𝛼
ℎ
𝑥
2
− (𝛿
ℎ
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
) 𝑥
3
= ℎ
3
,

𝑑𝑥
4

𝑑𝑡
= (𝑏 + 𝜏𝑢

2
) 𝑥
3
− (𝜇
ℎ
+ 𝜓) 𝑥

4
= ℎ
4
,

𝑑𝑥
5

𝑑𝑡
= Λ
𝑚
−

(1 − 𝑢
1
) 𝜆𝜖𝜙𝑥

3
𝑥
5
𝜇
ℎ

Λ
ℎ

− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝑥
5
= ℎ
5
,

𝑑𝑥
6

𝑑𝑡
=

(1 − 𝑢
1
) 𝜆𝜖𝜙𝑥

3
𝑥
5
𝜇
ℎ

Λ
ℎ

− (𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝑥
6
= ℎ
6
,

𝑑𝑥
7

𝑑𝑡
= 𝛼
𝑚
𝑥
6
− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝑥
7
= ℎ
7
.

(23)

Let Ψ∗ be the bifurcation parameter; the system is linearized
at disease-free equilibrium point when 𝛽 = Ψ

∗ with 𝑅
0
= 1.

That is,

𝑅
0
= √

𝛼
ℎ
𝛼
𝑚
Λ
𝑚
𝜇
ℎ
(1 − 𝑢

1
)
2
𝜙
2
𝜖𝛽𝜆 + 𝛼

ℎ
𝛼
𝑚
Λ
𝑚
𝜇
ℎ
(1 − 𝑢

1
) (1 − 𝑢

4
) 𝜙
2
𝜖
2
𝛽

Λ
ℎ
(𝑝𝑢
3
+ 𝑎𝑢
1
+ 𝜇
𝑚
)
2
(𝜇
ℎ
+ 𝛼
1
) (𝑝𝑢
3
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝛼
𝑚
) (𝜇
ℎ
+ 𝛿
ℎ
+ 𝑏 + 𝜏𝑢

2
)

,

1
2
=

𝛼
ℎ
𝛼
𝑚
Λ
𝑚
𝜇
ℎ
(1 − 𝑢

1
)
2
𝜙
2
𝜖𝛽𝜆 + 𝛼

ℎ
𝛼
𝑚
Λ
𝑚
𝜇
ℎ
(1 − 𝑢

1
) (1 − 𝑢

4
) 𝜙
2
𝜖
2
𝛽

Λ
ℎ
(𝑝𝑢
3
+ 𝑎𝑢
1
+ 𝜇
𝑚
)
2
(𝜇
ℎ
+ 𝛼
1
) (𝑝𝑢
3
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝛼
𝑚
) (𝜇
ℎ
+ 𝛿
ℎ
+ 𝑏 + 𝜏𝑢

2
)

,

Ψ
∗
=

Λ
ℎ
(𝑝𝑢
3
+ 𝑎𝑢
1
+ 𝜇
𝑚
)
2
(𝜇
ℎ
+ 𝛼
1
) (𝑝𝑢
3
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝛼
𝑚
) (𝜇
ℎ
+ 𝛿
ℎ
+ 𝑏 + 𝜏𝑢

2
)

𝛼
ℎ
𝛼
𝑚
Λ
𝑚
𝜇
ℎ
(1 − 𝑢

1
)
2
𝜙2𝜖𝜆 + 𝛼

ℎ
𝛼
𝑚
Λ
𝑚
𝜇
ℎ
(1 − 𝑢

1
) (1 − 𝑢

4
) 𝜙2𝜖2

.

(24)

The Jacobian matrix of (1) calculated at Ψ∗ is given by

(
(
(
(
(
(
(
(
(
(
(

(

−𝜇
ℎ

0 0 𝜓 0 0 −Ψ
∗
𝜖𝜙

0 −𝛼
ℎ
− 𝜇
ℎ

0 0 0 0 Ψ
∗
𝜖𝜙

0 𝛼
ℎ

−𝛿
ℎ
− 𝜇
ℎ
− 𝑏 − 𝜏𝑢

2
0 0 0 0

0 0 𝑏 + 𝜏𝑢
2

−𝜇
ℎ
− 𝜓 0 0 0

0 0
− (1 − 𝑢

1
) 𝜆𝜖𝜙Λ

𝑚
𝜇
ℎ

Λ
ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)

0 − (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 0 0

0 0
(1 − 𝑢

1
) 𝜆𝜖𝜙Λ

𝑚
𝜇
ℎ

Λ
ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)

0 0 −𝛼
𝑚
− 𝜇
𝑚
− 𝑎𝑢
1
− 𝑝𝑢
3

0

0 0 0 0 0 −𝛼
𝑚

−𝜇
𝑚
− 𝑎𝑢
1
− 𝑝𝑢
3

)
)
)
)
)
)
)
)
)
)
)

)

. (25)

Centre manifold approach [29] is then applied.
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A right eigenvector associated with the eigenvalue zero is
𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

7
). Solving the system we have the follow-

ing right eigenvector:

𝑤
1
=

𝜓𝑤
4
− Ψ
∗
𝜖𝜙𝑤
7

𝜇
ℎ

,

𝑤
2
=

Ψ
∗
𝜖𝜙𝑤
7

𝛼
ℎ
+ 𝜇
ℎ

,

𝑤
3
=

𝛼
ℎ
𝑤
2

𝑏 + 𝜏𝑢
2
+ 𝜇
ℎ
+ 𝛿
ℎ

,

𝑤
4
=

(𝑏 + 𝜏𝑢
2
) 𝑤
3

𝜇
ℎ
+ 𝜓

,

𝑤
5
=

− (1 − 𝑢
1
) 𝜆𝜖𝜙Λ

𝑚
𝜇
ℎ
𝑤
3

Λ
ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)
2
,

𝑤
6
=

(1 − 𝑢
1
) 𝜆𝜖𝜙Λ

𝑚
𝜇
ℎ
𝑤
3

Λ
ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)
,

𝑤
7
=

𝛼
𝑚
𝑤
6

𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3

> 0.

(26)

The left eigenvectors satisfying V⋅𝑤 = 1 are V = (V
1
, V
2
, . . . , V

7
).

Solving the system, the left eigenvector will be given by

V
1
= 0,

V
2
=

𝛼
ℎ
V
3

𝛼
ℎ
+ 𝜇
ℎ

,

V
3
=

V
6
(1 − 𝑢

1
) 𝜆𝜖𝜙Λ

𝑚
𝜇
ℎ

Λ
ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (−𝛿
ℎ
− 𝑢
ℎ
− 𝑏 − 𝜏𝑢

2
)
,

V
4
= 0,

V
5
= 0,

V
6
=

𝛼
𝑚
V
7

−𝜇
𝑚
− 𝛼
𝑚
− 𝑎𝑢
1
− 𝑝𝑢
3

,

V
7
=

Ψ
∗
𝜖𝜙V
2

𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3

.

(27)

Computing for the sign of 𝑎 and 𝑏 as indicated in the theorem
gives

𝑎 = V
2
𝑤
7
[
− (1 − 𝑢

1
) Ψ
∗
𝜖𝜙𝜇
ℎ
− (1 − 𝑢

4
) Ψ
∗
𝜖𝜙𝜇
ℎ

Λ
ℎ

]

⋅ ([
Ψ
∗
𝜖𝑤
7

(𝛼
ℎ
+ 𝜇
ℎ
)
] + [

𝛼
ℎ
𝑤
2

(𝑏 + 𝜏𝑢
2
+ 𝜇
ℎ
+ 𝛿
ℎ
)
])

+ V
6
𝑤
3
[
− (1 − 𝑢

1
) 𝜆𝜖𝜙𝜇

ℎ

Λ
ℎ

]

⋅ ([
(1 − 𝑢

1
) 𝜆𝜖𝜙𝜇

ℎ
Λ
𝑚
𝑤
3

Λ
ℎ
(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)
]

+ [
𝛼
𝑚
𝑤
3

(𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)
])

𝑏 = V
2
𝑤
7
𝜖𝜙 > 0

(28)

so that 𝑏 is always positive.
Therefore the following result is established.

Theorem4. Model (1) exhibits backward bifurcation at𝑅
0
= 1

whenever 𝑎 > 0 and 𝑏 > 0 and 𝑅
0
< 1. Whenever 𝑎 < 0 and

𝑏 > 0, then model (1) exhibits a forward bifurcation at 𝑅
0
= 1.

Finally, we will investigate the global stability of the
endemic equilibrium in the feasible region.

(2) Global Stability Analysis of Endemic Equilibrium Point.
Global stability results for the endemic equilibrium can be
obtained when it is unique and whenever it exists. We have
established in Theorem 4 that if 𝑅

0
> 1 this implies the

existence and uniqueness of the endemic equilibrium.
The global behavior of the endemic equilibrium of model

(1) when it exists is explored by proving that such an
equilibrium is globally asymptotic stable in the interior of
the feasible region 𝐷. We will use the geometric approach to
global stability as described by Li and Muldowney [30]. The
following conditions are required for the global stability of
the endemic equilibrium, 𝐸

1
: (i) the uniqueness of 𝐸

1
in the

interior of𝐷 (condition𝐻
1
); (ii) the existence of an absorbing

compact set in the interior of 𝐷 (condition 𝐻
2
); and (iii) the

fulfillment of a Bendixson criterion (i.e., inequality (A.6)).

Theorem 5. If 𝑎 < 0 and 𝑏 > 0 and 𝑅
0
> 1, then the endemic

equilibrium of the malaria model (1) is globally asymptotically
stable in the interior of 𝐷.

Proof. Following Li and Muldowney [30], for system (1),
under the assumption of 𝑅

0
> 1, satisfies conditions

(𝐻
1
)-(𝐻
2
), the existence of the endemic equilibrium has also

been shown, and the instability of DFE implies the uniform
persistence [31]; that is, there exists a constant 𝑐 > 0 such that
any solutions (𝑆

ℎ
(𝑡), 𝐼
ℎ
(𝑡), 𝐼
𝑚
(𝑡)) with (𝑆

ℎ
(0), 𝐼
ℎ
(0), 𝐼
𝑚
(0)) in

the interior of𝐷 satisfy

min { lim
𝑡→∞

inf 𝑆
ℎ
(𝑡) , lim
𝑡→∞

inf 𝐼
ℎ
(𝑡) , lim
𝑡→∞

inf 𝐼
𝑚
(𝑡)} . (29)

The uniform persistence together with boundedness of 𝐷 is
equivalent to the existence of a compact set in the interior
of 𝐷 which is absorbing for (4) as described by Hutson and
Schmitt [32]. Thus, (𝐻

1
) is verified. Moreover, 𝐸

1
is the only

equilibrium in the interior of𝐷, so that (𝐻
2
) is also verified.

What remains is to find conditions for which the
Bendixson criterion given by (A.6) is verified. To this aim,
let us begin by observing that, from the Jacobian matrix
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associated with a general solution (𝑆
ℎ
, 𝐼
ℎ
, 𝐼
𝑚
) of reduced

system (1), we get the second additive compound matrix 𝐽
|2|:

𝐽
|2|

(𝑆
ℎ
, 𝐼
ℎ
, 𝐼
𝑚
)

= (

−𝑎
11

𝑎
12

(1 − 𝑢
1
) 𝜖𝜙𝛽𝑆

ℎ
+ (1 − 𝑢

4
) 𝜖𝜙𝛽𝑆

ℎ

(1 − 𝑢
1
) 𝜖𝜙𝜆 (𝑁

𝑚
− 𝐸
𝑚
− 𝐼
𝑚
) −𝑎

22
−𝛿
ℎ

0 (1 − 𝑢
1
) 𝜖𝜙𝛽𝐼

𝑚
+ (1 − 𝑢

4
) 𝜖𝜙𝛽𝐼

𝑚
−𝑎
33

),

(30)

where

𝑎
11

= 𝜇
ℎ
+ 𝛼
ℎ
+ (1 − 𝑢

1
) 𝜖𝜙𝛽𝐼

𝑚
+ (1 − 𝑢

4
) 𝜖𝜙𝛽𝐼

𝑚

+ 𝜇
ℎ
+ 𝛿
ℎ
+ 𝑏 + 𝜏𝑢

2
,

𝑎
12

= (1 − 𝑢
1
) 𝜖𝜙𝛽𝑆

ℎ
+ (1 − 𝑢

4
) 𝜖𝜙𝛽𝑆

ℎ
,

𝑎
22

= 𝜇
ℎ
+ 𝛿
ℎ
+ (1 − 𝑢

1
) 𝜖𝜙𝛽𝐼

𝑚
+ (1 − 𝑢

4
) 𝜖𝜙𝛽𝐼

𝑚

+ (1 − 𝑢
1
) 𝜖𝜙𝜆𝐼

ℎ
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
,

𝑎
33

= 𝑚 + 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
+ (1 − 𝑢

1
) 𝜖𝜙𝜆𝐼

ℎ

+ (1 − 𝑢
1
) 𝜖𝜙𝛽𝐼

𝑚
+ (1 − 𝑢

4
) 𝜖𝜙𝛽𝐼

𝑚
,

(31)

where𝑚 = (Λ
𝑚
/𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)/(Λ
ℎ
/𝜇
ℎ
).

Choose now matrix 𝑃(𝑥) = 𝑃(𝑆
ℎ
, 𝐼
ℎ
, 𝐼
𝑚
) = diag(1, 𝐼

ℎ
/𝐼
𝑚
,

𝐼
ℎ
/𝐼
𝑚
). Then 𝑃

𝑓
𝑃
−1

= diag(0, ̇𝐼
ℎ
/𝐼
ℎ
− ̇𝐼
𝑚
/𝐼
𝑚
, ̇𝐼
ℎ
/𝐼
ℎ
− ̇𝐼
𝑚
/𝐼
𝑚
),

and the matrix 𝐵 = 𝑃
𝑓
𝑃
−1

+ 𝑃𝐽
|2|
𝑃
−1 can be written in block

form as

𝐵 = [

𝐵
11

𝐵
12

𝐵
21

𝐵
22

] , (32)

where

𝐵
11

= − (𝜇
ℎ
+ 𝛼
ℎ
+ (1 − 𝑢

1
) 𝜖𝜙𝛽𝐼

𝑚
+ (1 − 𝑢

4
) 𝜖𝜙𝛽𝐼

𝑚
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
+ 𝛿
ℎ
) ,

𝐵
12

= [((1 − 𝑢
1
) 𝜖𝜙𝛽𝑆

ℎ
+ (1 − 𝑢

4
) 𝜖𝜙𝛽𝑆

ℎ
) ⋅

𝐼
𝑚

𝐼
ℎ

, (1 − 𝑢
1
) 𝜖𝜙𝛽𝑆

ℎ
⋅
𝐼
𝑚

𝐼
ℎ

+ (1 − 𝑢
4
) 𝜖𝜙𝛽𝑆

ℎ
⋅
𝐼
𝑚

𝐼
ℎ

] ,

𝐵
21

= [(1 − 𝑢
1
) 𝜖𝜆𝜙𝐼

𝑚
(𝑁
𝑚
− 𝐸
𝑚
+ 𝐼
𝑚
) (

𝐼
ℎ

𝐼
𝑚

)]

𝑇

,

𝐵
22

=
[
[
[

[

̇𝐼
ℎ

𝐼
ℎ

−

̇𝐼
𝑚

𝐼
𝑚

− 𝑎
22

0

(1 − 𝑢
1
) 𝜖𝜙𝛽𝐼

𝑚
− (1 − 𝑢

4
) 𝜖𝜙𝛽𝐼

𝑚
− (1 − 𝑢

1
) 𝜖𝜙𝜆𝐼

ℎ

̇𝐼
ℎ

𝐼
ℎ

−

̇𝐼
𝑚

𝐼
𝑚

− 𝑎
33

]
]
]

]

.

(33)

The vector norm | ⋅ | in R3
+
is here chosen to be

󵄨󵄨󵄨󵄨(𝑥, 𝑦, 𝑧)
󵄨󵄨󵄨󵄨 = max {|𝑥| , 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 , |𝑧|} . (34)

Let 𝜎(⋅) denote the Lozinskii measure with respect to this
norm. Using the method of estimating 𝜎(⋅) in [29], we have

𝜎 (𝐵) ≤ sup {𝑔
1
, 𝑔
2
}

= sup {𝜎
1
(𝐵
11
) +

󵄨󵄨󵄨󵄨𝐵12
󵄨󵄨󵄨󵄨 , 𝜎
1
(𝐵
22
) +

󵄨󵄨󵄨󵄨𝐵21
󵄨󵄨󵄨󵄨} ,

(35)

where |𝐵
12
| and |𝐵

21
| are matrix norms with respect to the

𝐿 vector norm and 𝜎
1
denotes the Lozinskii measure with

respect to 𝐿 norm. Since 𝐵
11
is a scalar, its Lozinskii measure

with respect to any norm in R1 is equal to 𝐵
11
.

Therefore
𝜎
1
(𝐵
11
) = − (𝜇

ℎ
+ 𝛼
ℎ
+ (1 − 𝑢

1
) 𝜖𝜙𝛽𝐼

𝑚
+ (1 − 𝑢

4
)

⋅ 𝜖𝜙𝛽𝐼
𝑚
+ 𝜇
ℎ
+ 𝑏 + 𝜏𝑢

2
+ 𝛿
ℎ
) ,

𝜎
1
(𝐵
22
) = max{

̇𝐼
ℎ

𝐼
ℎ

−

̇𝐼
𝑚

𝐼
𝑚

− (𝜇
ℎ
+ 𝛼
ℎ

+ (1 − 𝑢
1
) 𝜖𝜙𝛽𝐼

𝑚
+ (1 − 𝑢

4
) 𝜖𝜙𝛽𝐼

𝑚

+ (1 − 𝑢
1
) 𝜖𝜙𝜆𝐼

ℎ
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) ,

̇𝐼
ℎ

𝐼
ℎ

−

̇𝐼
𝑚

𝐼
𝑚

− (1

− 𝑢
1
) 𝜖𝜙𝛽𝐼

𝑚
− (1 − 𝑢

4
) 𝜖𝜙𝛽𝐼

𝑚
− (1 − 𝑢

1
) 𝜖𝜙𝜆𝐼

ℎ

− 𝜇
ℎ
− 𝛿
ℎ
− 𝑏 − 𝜏𝑢

2
− 𝜇
𝑚
− 𝑎𝑢
1
− 𝑝𝑢
3
} ,
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𝜎
1
(𝐵
22
) =

̇𝐼
ℎ

𝐼
ℎ

−

̇𝐼
𝑚

𝐼
𝑚

− (𝜇
ℎ
+ 𝛼
ℎ
+ (1 − 𝑢

1
) 𝜖𝜙𝛽𝐼

𝑚
+ (1

− 𝑢
4
) 𝜖𝜙𝛽𝐼

𝑚
+ (1 − 𝑢

1
) 𝜖𝜙𝜆𝐼

ℎ
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) ,

󵄨󵄨󵄨󵄨𝐵12
󵄨󵄨󵄨󵄨 = ((1 − 𝑢

1
) 𝜖𝜙𝛽𝑆

ℎ
+ (1 − 𝑢

4
) 𝜖𝜙𝛽𝑆

ℎ
) ⋅

𝐼
𝑚

𝐼
ℎ

,

󵄨󵄨󵄨󵄨𝐵21
󵄨󵄨󵄨󵄨 = (1 − 𝑢

1
) 𝜖𝜙𝜆 (𝑁

𝑚
− 𝐸
𝑚
− 𝐼
𝑚
) ⋅

𝐼
ℎ

𝐼
𝑚

.

(36)

Therefore

𝑔
1
= − (𝜇

ℎ
+ 𝛼
ℎ
+ (1 − 𝑢

1
) 𝜖𝜙𝛽𝐼

𝑚
+ (1 − 𝑢

4
) 𝜖𝜙𝛽𝐼

𝑚

+ 𝜇
ℎ
+ 𝛿
ℎ
+ 𝑏 + 𝜏𝑢

2
) + ((1 − 𝑢

1
) 𝜖𝜙𝛽𝑆

ℎ

+ (1 − 𝑢
4
) 𝜖𝜙𝛽𝑆

ℎ
) ⋅

𝐼
𝑚

𝐼
ℎ

,

(37)

𝑔
2
= (1 − 𝑢

1
) 𝜖𝜙𝜆 (𝑁

𝑚
− 𝐸
𝑚
− 𝐼
𝑚
) ⋅

𝐼
ℎ

𝐼
𝑚

+

̇𝐼
ℎ

𝐼
ℎ

−

̇𝐼
𝑚

𝐼
𝑚

− (𝜇
ℎ
+ 𝛼
ℎ
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
+ (1 − 𝑢

1
) 𝜖𝜙𝜆𝐼

ℎ
) .

(38)

We rewrite the last two equations of system (1) for ̇𝐼
ℎ
and ̇𝐼
𝑚

as

̇𝐼
ℎ

𝐼
ℎ

= ((1 − 𝑢
1
) 𝜖𝜙𝛽𝑆

ℎ
+ (1 − 𝑢

4
) 𝜖𝜙𝛽𝑆

ℎ
) ⋅

𝐼
𝑚

𝐼
ℎ

− (𝜇
ℎ
+ 𝛿
ℎ
+ 𝑏 + 𝜏𝑢

2
) ,

(39)

̇𝐼
𝑚

𝐼
𝑚

= (1 − 𝑢
1
) 𝜖𝜙𝜆 (𝑁

𝑚
− 𝐸
𝑚
− 𝐼
𝑚
) ⋅

𝐼
ℎ

𝐼
𝑚

− 𝜇
𝑚
− 𝑎𝑢
1

− 𝑝𝑢
3
.

(40)

Substituting (39) into (37) and (40) into (38) we have

𝑔
1
(𝑡)

=

̇𝐼
ℎ

𝐼
ℎ

− (𝜇
ℎ
+ 𝛼
ℎ
+ (1 − 𝑢

1
) 𝜖𝜙𝛽𝐼

𝑚
+ (1 − 𝑢

4
) 𝜖𝜙𝛽𝐼

𝑚
) ,

𝑔
2 (𝑡) =

̇𝐼
ℎ

𝐼
ℎ

− (𝜇
ℎ
+ 𝛼
ℎ
+ (1 − 𝑢

1
) 𝜖𝜙𝜆𝐼

ℎ
) .

(41)

For the uniformpersistence constant 𝜀 > 0, there exists a time
𝑇
0
> 0 independent of 𝑥(0) ∈ 𝐾, the compact absorbing set,

such that

𝐼
ℎ
(𝑡) > 𝜀,

𝐼
𝑚
(𝑡) > 𝜀;

(42)

Table 4: Sensitivity indices (SI) of 𝑅
0
to parameters for the malaria

model.

Parameter Sensitivity indices
Endemic Seasonal Epidemic Low risk

𝜇 ℎ −0.0402531 −0.0402531 −0.0402531 −0.0402531
𝜇 𝑚 −1.07211 −1.07211 −1.07211 −1.07211
𝛼 ℎ 0.00038817 0.00038817 0.00038817 0.00038817
𝛼 𝑚 0.22445 0.22445 0.22445 0.22445
𝜆 0.5 0.5 0.5 0.5
𝛽 0.5 0.5 0.5 0.5
𝜖 1 1 1 1
Λ ℎ −0.4987 −0.4987 −0.4987 −0.4987
Λ 𝑚 0.5 0.5 0.5 0.5
𝑏 −0.01818 −0.02048 −0.01639 −0.02563
𝜏 −0.322497 −0.322497 −0.322497 −0.322497
𝛿 ℎ −0.13695 −0.10336 −0.11321 −0.03508
𝜙 1 1 1 1

for 𝑡 > 𝑇
0
we have

𝑔
1
(𝑡)

≤

̇𝐼
ℎ

𝐼
ℎ

− (𝜇
ℎ
+ 𝛼
ℎ
+ (1 − 𝑢

1
) 𝜖𝜙𝛽𝜀 + (1 − 𝑢

4
) 𝜖𝜙𝛽𝜀) ,

𝑔
2
(𝑡) ≤

̇𝐼
ℎ

𝐼
ℎ

− (𝜇
ℎ
+ 𝛼
ℎ
+ (1 − 𝑢

1
) 𝜖𝜙𝜆𝜀) .

(43)

Relations (41) imply

𝜎 (𝐵) ≤

̇𝐼
ℎ

𝐼
ℎ

− 𝜇 for 𝑡 > 𝑇
0
, (44)

where

𝜇 = min {𝜇
ℎ
+ 𝛼
ℎ
+ (1 − 𝑢

1
) 𝜖𝜙𝛽𝜀 + (1 − 𝑢

4
) 𝜖𝜙𝛽𝜀, 𝜇

ℎ

+ 𝛼
ℎ
+ (1 − 𝑢

1
) 𝜖𝜙𝜆𝜀} .

(45)

Along each solution (𝑆
ℎ
(𝑡), 𝐼
ℎ
(𝑡), 𝐼
𝑚
(𝑡)) to (1) with (𝑆

ℎ
(0),

𝐼
ℎ
(0), 𝐼
𝑚
(0)) ∈ 𝐾 where 𝐾 is the compact absorbing set, we

have, for 𝑡 > 𝑇
0
,

1

𝑡
∫

𝑡

0

𝜎 (𝐵) 𝑑𝑠 ≤
1

𝑡
∫

𝑇0

0

𝜎 (𝐵) 𝑑𝑠 +
1

𝑡
ln

𝐼
ℎ
(𝑡)

𝐼
ℎ
(𝑇
0
)

− 𝜇
𝑡 − 𝑇
0

𝑡
.

(46)

Which implies 𝑞
2

< 𝜇/2 < 0. This proves that the
unique endemic equilibrium is globally asymptotically stable
whenever it exist, thus completing the proof.

2.1.5. Sensitivity Analysis. Sensitivity analysis is to assess
the relative impact of each of the parameters of the basic
reproductive number. The normalized forward sensitivity
index of the reproduction number with respect to these
parameters given in Table 4 is computed.The indexmeasures
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Table 5: Parameter values for the full malaria model.

Parameter Estimated value Source
Endemic Epidemic Seasonal Low risk

𝜇
ℎ

0.00005447 0.00004644 0.00004281 0.00004566
KNBS (2009 Census estimates)
[20]

𝜇
𝑚

0.04 Estimated
𝛼
ℎ

0.07143 Estimated
𝛼
𝑚

0.0909 Chitnis et al. [21]
𝜆 0.42 Estimated
𝛽 0.0655 Estimated
𝜖 0.2 Blayneh et al. [22]
𝜓 0.01095 Estimated

Λ
ℎ

0.00000575 0.00000575 0.00000548 0.00000438
KNBS (estimates based on 2009
Census) [20]

Λ
𝑚

0.071 Niger and Gumel [23]
𝑏 0.005 Chiyaka et al. [24]
𝜏 0.5 Assumed
𝛿
ℎ

0.05 KNBS and ICF Macro [25]
𝑝 0.25 Assumed
𝑎 0.25 Assumed
𝜙 0.502 Blayneh et al. [22]
𝜆
ℎ

0.00000149 0.00000123 0.00000445 0.00000226 Estimated
𝜆
ℎ𝑤

0.00000247 0.00000203 0.00000693 0.00000328 Estimated
𝜆
𝑚

0.00000048 0.00000394 0.00000143 0.00000073 Estimated

𝑁
ℎ

440169 535093 147832 290703
KNBS (2009 Census estimate)
[20]

𝑁
ℎ𝑤

266343 324658 94857 200216
KNBS (2009 Census estimate)
[20]

𝑁
𝑚

4401690 5350930 1478320 2907030 Estimated

the relative change in a variable with respect to relative
changes in parameters.

Definition 6. Following Chitnis et al. [33], the normalized
forward sensitivity index of a variable, ℎ, that depends on a
parameter, 𝑙, is defined as 𝜉

𝑙
= (𝑙/ℎ) × (𝜕ℎ/𝜕𝑙).

The sensitivity index of the model parameters is given by

𝜉
𝑅0

𝛼ℎ
=

𝜇
ℎ

2 (𝛼
ℎ
+ 𝜇
ℎ
)
,

𝜉
𝑅0

𝛼𝑚
=

𝑝𝑢
3
+ 𝜇
𝑚
+ 𝑎𝑢
1

2 (𝛼
𝑚
+ 𝑝𝑢
3
+ 𝑎𝑢
1
+ 𝜇
𝑚
)
,

𝜉
𝑅0

𝜇𝑚
=

−𝜇
𝑚
(2𝛼
𝑚
+ 3 (𝜇

𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
))

2 (𝛼
𝑚
+ 𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
)
,

𝜉
𝑅0

𝛿ℎ
=

−𝛿
ℎ

2 (𝑏 + 𝜏𝑢
2
+ 𝛿
ℎ
+ 𝜇
ℎ
)
,

𝜉
𝑅0

𝑏
=

−𝑏

2 (𝑏 + 𝜏𝑢
2
+ 𝛿
ℎ
+ 𝜇
ℎ
)
,

𝜉
𝑅0

𝜇ℎ
=

−𝜇
2

ℎ
+ 𝛼
ℎ
𝛿
ℎ
+ 𝛼
ℎ
𝑏 + 𝛼
ℎ
𝜏𝑢
2

2 (𝜇
ℎ
+ 𝛿
ℎ
+ 𝑏 + 𝜏𝑢

2
) (𝜇
ℎ
+ 𝛼
ℎ
)
.

(47)

Sensitivity indices for the control parameters are given by

𝜉
𝑅0

𝑢1
=

−𝜇
1

1 − 𝜇
1

,

𝜉
𝑅0

𝑢2
=

−𝜏𝜇
2

2 (𝜇
ℎ
+ 𝜖 + 𝑏 + 𝜏𝜇

2
)
,

𝜉
𝑅0

𝑢3
=

−𝑝 (3𝑝𝑢
3
+ 3𝜇
𝑚
+ 𝑎𝑢
1
+ 2𝛼
𝑚
) 𝑢
3

2 (𝑝𝑢
3
+ 𝑎𝑢
1
+ 𝜇
𝑚
) (𝑝𝑢
3
+ 𝜇
𝑚
+ 𝛼
𝑚
)
,

𝜉
𝑅0

𝑢4
=

−𝑢
4

(1 − 𝑢
4
)
.

(48)

Through sensitivity analysis, it is observed that the most
sensitive parameters to 𝑅

0
across all the settings were the

mosquito’s natural death rate, 𝜇
𝑚
, and mosquito biting rate,

𝜖; this was followed by the by the mosquito contact rate
with humans, 𝜙, probability of mosquito getting infected,
𝜆, the probability of humans getting infected, 𝛽, and the
recruitment rate of mosquitoes and humans (see Table 4).

Sensitivity Indices of 𝑅
0
. Sensitivity indices are calculated

using parameters in Table 5.
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3. Analysis of Optimal Control

3.1. Analysis of Optimal Control of the Malaria Model
with Intervention Strategies. We consider the case of time-
dependent control variables. The malaria dynamics model is
extended and an optimal control problem is formulated. We
formulate an optimal control model for malaria disease in
order to determine optimal malaria control strategies (ITNs,
IRS, IPTp, and treatment) withminimal implementation cost.

For the optimal control problem of the given system, we
consider the control variables 𝑢(𝑡) = (𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
) ∈ 𝑈

relative to the state variables 𝑆
ℎ
, 𝐸
ℎ
, 𝐼
ℎ
, 𝑅
ℎ
, 𝑆
𝑚
, 𝐸
𝑚
, 𝐼
𝑚
where

control variables are bounded and measured with

𝑈 = {(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
)

∈ 𝑈 is Lebesgue measurable on [0, 1] , 0 ≤ 𝑢
𝑖
(𝑡)

≤ 1, 𝑡 ∈ [0, 𝑇] , 𝑖 = 1, 2, 3, 4} .

(49)

We define the objective function as

𝐽 (𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
) = ∫

𝑇

0

(𝐴
1
𝑁
𝑚
+ 𝐴
2
𝐼
ℎ
+ 𝐴
3
𝐸
ℎ

+
1

2
(𝐵
1
𝑢
2

1
+ 𝐵
2
𝑢
2

2
+ 𝐵
3
𝑢
2

3
+ 𝐵
4
𝑢
2

4
)) 𝑑𝑡

(50)

subject to

𝑑𝑆
ℎ

𝑑𝑡
= Λ
ℎ
+ 𝜓𝑅
ℎ
− (1 − 𝑢

1
) 𝜆
ℎ
𝑆
ℎ
− (1 − 𝑢

4
) 𝜆
ℎ𝑤

𝑆
ℎ

− 𝜇
ℎ
𝑆
ℎ
,

𝑑𝐸
ℎ

𝑑𝑡
= (1 − 𝑢

1
) 𝜆
ℎ
𝑆
ℎ
+ (1 − 𝑢

4
) 𝜆
ℎ𝑤

𝑆
ℎ

− (𝛼
ℎ
+ 𝜇
ℎ
) 𝐸
ℎ
,

𝑑𝐼
ℎ

𝑑𝑡
= 𝛼
ℎ
𝐸
ℎ
− (𝛿
ℎ
+ 𝜇
ℎ
) 𝐼
ℎ
− (𝑏 + 𝜏𝑢

2
) 𝐼
ℎ
,

𝑑𝑅
ℎ

𝑑𝑡
= (𝑏 + 𝜏𝑢

2
) 𝐼
ℎ
− (𝜓 + 𝜇

ℎ
) 𝑅
ℎ
,

𝑑𝑆
𝑚

𝑑𝑡
= Λ
𝑚
− (1 − 𝑢

1
) 𝜆
𝑚
𝑆
𝑚

− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝑆
𝑚
,

𝑑𝐸
𝑚

𝑑𝑡
= (1 − 𝑢

1
) 𝜆
𝑚
𝑆
𝑚
− 𝛼
𝑚
𝐸
𝑚

− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝐸
𝑚
,

𝑑𝐼
𝑚

𝑑𝑡
= 𝛼
𝑚
𝐸
𝑚
− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝐼
𝑚
,

𝑆
ℎ
(0) ≥ 0,

𝐸
ℎ (0) ≥ 0,

𝐼
ℎ
(0) ≥ 0,

𝑅
ℎ
(0) ≥ 0,

𝑆
𝑚
(0) ≥ 0,

𝐸
𝑚
(0) ≥ 0,

𝐼
𝑚
(0) ≥ 0.

(51)

In the objective function 𝑇 is the final time and quantities
𝐴
1
, 𝐴
2
, and 𝐴

3
are weights constants of the total mosquito

population, infected individuals, and exposed individuals,
respectively, while 𝐵

1
, 𝐵
2
, 𝐵
3
, and 𝐵

4
are weight constants

for use with ITNs, treatment effort, IRS, and IPTp efforts,
respectively.The total mosquito population (𝑁

𝑚
= 𝑆
𝑚
+𝐸
𝑚
+

𝐼
𝑚
) is part of the objective function because it is affected by

the use of IRS and ITNs. In addition,𝐸
ℎ
and 𝐼
ℎ
are included in

the objective function because individuals in these classes are
affected by the use of ITNs, IPTps, and treatment, respectively.
A quadratic cost on the controls was chosen in line with what
is known in the literature on epidemic optimal controls for
malaria [11, 12].The cost of implementing personal protection
using ITNs is 𝐵

1
𝑢
2

1
, treatment of infected individuals is 𝐵

2
𝑢
2

2
,

spraying of houses with IRS is 𝐵
3
𝑢
2

3
, and preventive method

of IPTp is𝐵
4
𝑢
2

4
. A linear function has been chosen for the cost

incurred by exposed individuals 𝐴
3
𝐸
ℎ
, infected individuals,

𝐴
2
𝐼
ℎ
, and themosquito population,𝐴

1
𝑁
𝑚
. A quadratic form

is used for the cost on the controls 𝐵
1
𝑢
2

1
, 𝐵
2
𝑢
2

2
, 𝐵
3
𝑢
2

3
, and

𝐵
4
𝑢
2

4
, such that the terms (1/2)𝐵

1
𝑢
2

1
, (1/2)𝐵

2
𝑢
2

2
, (1/2)𝐵

3
𝑢
2

3
,

and (1/2)𝐵
4
𝑢
2

4
describe the cost associated with the ITNs,

treatment, mosquito control (IRS), and chemoprevention
(IPTp), respectively.

Our aim with the given objective function is to minimize
total number of mosquito population 𝑁

𝑚
, the number of

exposed humans 𝐸
ℎ
(𝑡), and infected humans 𝐼

ℎ
(𝑡) while

minimizing the cost of control 𝑢
1
(𝑡), 𝑢
2
(𝑡), 𝑢
3
(𝑡), and 𝑢

4
(𝑡).

We select tomodel the control efforts via a linear combination
of quadratic terms and the constants which represents a
measure of the relative cost of the interventions over [0, 1].

We seek an optimal control 𝑢∗
1
, 𝑢∗
2
, 𝑢∗
3
, and 𝑢

∗

4
such that

𝐽 (𝑢
∗

1
, 𝑢
∗

2
, 𝑢
∗

3
, 𝑢
∗

4
) = min
𝑢1 ,𝑢2,𝑢3,𝑢4∈𝑈

𝐽 (𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
) . (52)

Pontryagin’s Maximum Principle is used to solve this optimal
control problem and the derivation of necessary conditions
that an optimal control must satisfy [6]. Pontryagin’s Max-
imum Principle converts the state system (1) and objective
function (51) into a problem of minimizing pointwise the
Lagrangian, 𝐿, and Hamiltonian, 𝐻, with respect to 𝑢

1
, 𝑢
2
,

𝑢
3
, and 𝑢

4
.

3.2. Existence of Optimal Control Problem. The existence of
an optimal control can be proved by using the theorem given
in Fleming and Rishel [34]. It can be clearly seen that the
system of equations given by (1) is bounded from above by a
linear system. According to the result in Fleming and Rishel
[34], the solution exists if the following hypotheses are met:

(H
1
): the set of controls and corresponding state variables
is nonempty.

(H
2
): the control set 𝑈 is convex and closed.
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(H
3
): right hand side of each equation of the state system
in (1) is continuous, bounded by a linear functional
in the state and control, and can be written as a linear
function of 𝑢with coefficients depending on time and
state.

(H
4
): there exist constants 𝑐

1
, 𝑐
2
> 0 and 𝛽 > 1 such that

the integrand 𝐿(𝑦, 𝑢, 𝑡) of the objective functional 𝐽 is
convex and satisfies

𝐿 (𝑦, 𝑢, 𝑡) ≥ 𝑐
1
(
󵄨󵄨󵄨󵄨𝑢1

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑢2

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑢3

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑢4

󵄨󵄨󵄨󵄨

2
)
𝛽/2

− 𝑐
2
. (53)

In order to confirm the above hypotheses, a result given by
Lukes [35] is used to establish the existence of solutions of
state system (1). Since the coefficients are bounded, (𝐻

1
) is

satisfied.The solutions are bounded and hence the control set
satisfies (𝐻

2
) as well. The system is bilinear in 𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4

and hence the right hand side of state system (1) satisfies
condition (𝐻

3
) (since the solutions are bounded). Note that

the integrand of the objective functional is convex. The last
condition is also satisfied.

The state and the control variables of system (1) are
nonnegative values and nonempty.The control set𝑈 is closed
and convex. The integrand of the objective cost function 𝐽

expressed by (51) is a convex function of (𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
) on

the control set 𝑈. The Lipschitz property of the state system
with respect to the state variables is satisfied since the state
solutions are bounded. It can easily be shown that there exist
positive numbers 𝜉

1
, 𝜉
2
and a constant 𝜀 > 1 such that

𝐴
1
𝑁
𝑚
+ 𝐴
2
𝐼
ℎ
+ 𝐴
3
𝐸
ℎ

+
1

2
(𝐵
1
𝑢
2

1
+ 𝐵
2
𝑢
2

2
+ 𝐵
3
𝑢
2

3
+ 𝐵
4
𝑢
2

4
)

≥ 𝜉
1
(
󵄨󵄨󵄨󵄨𝑢1

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑢2

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑢3

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑢4

󵄨󵄨󵄨󵄨

2
)
𝜀/2

− 𝜉
2
,

(54)

where 𝜉
1
, 𝜉
2
> 0, 𝐴

1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐵
3
, 𝐵
4
> 0, and 𝜀 > 1.

This concludes existence of an optimal control since the
state variables are bounded. Hence we have the following
theorem.

Theorem 7. Given the objective functional 𝐽(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
) =

∫
𝑇

0
(𝐴
1
𝑁
𝑚
+𝐴
2
𝐼
ℎ
+𝐴
3
𝐸
ℎ
+(1/2)(𝐵

1
𝑢
2

1
+𝐵
2
𝑢
2

2
+𝐵
3
𝑢
2

3
+𝐵
4
𝑢
2

4
))𝑑𝑡,

where𝑈 = {(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
) | 0 ≤ 𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
≤ 1, 0 ≤ 𝑢

𝑖
(𝑡) ≤

1, 𝑡 ∈ [0, 𝑇], 𝑖 = 1, 2, 3, 4} subject to (1) with initial conditions,
then there exists an optimal control 𝑢∗ = (𝑢

∗

1
, 𝑢
∗

2
, 𝑢
∗

3
, 𝑢
∗

4
) such

that 𝐽(𝑢∗
1
, 𝑢
∗

2
, 𝑢
∗

3
, 𝑢
∗

4
) = min

𝑈
𝐽(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
).

Lagrangian for a problem discusses how the techniques
come and Hamiltonian helps in solving for the adjoint
variable. In order to find an optimal solution, first we find the
Lagrangian andHamiltonian for the optimal control problem
(51). The Lagrangian of the optimal problem is given by

𝐿 (𝐼
ℎ
, 𝐸
ℎ
, 𝑁
𝑚
, 𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
)

= 𝐴
1
𝑁
𝑚
+ 𝐴
2
𝐼
ℎ
+ 𝐴
3
𝐸
ℎ

+
1

2
(𝐵
1
𝑢
2

1
+ 𝐵
2
𝑢
2

2
+ 𝐵
3
𝑢
2

3
+ 𝐵
4
𝑢
2

4
) .

(55)

We seek to find the minimal value of the Lagrangian. To do
this, we define the Hamiltonian 𝐻 for the control problem
which consists of the integrand of the objective functional
(Lagrangian, 𝐿) and the inner product of the right hand sides
of the state equations and the costate variables or adjoint
variables (𝜆

1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
, 𝜆
7
) as

𝐻 = 𝐿 + 𝜆
1

𝑑𝑆
ℎ

𝑑𝑡
+ 𝜆
2

𝑑𝐸
ℎ

𝑑𝑡
+ 𝜆
3

𝑑𝐼
ℎ

𝑑𝑡
+ 𝜆
4

𝑑𝑅
ℎ

𝑑𝑡

+ 𝜆
5

𝑑𝑆
𝑚

𝑑𝑡
+ 𝜆
6

𝑑𝐸
𝑚

𝑑𝑡
+ 𝜆
7

𝑑𝐼
𝑚

𝑑𝑡
.

(56)

Taking 𝑋 = (𝑆
ℎ
, 𝐸
ℎ
, 𝐼
ℎ
, 𝑅
ℎ
, 𝑆
𝑚
, 𝐸
𝑚
, 𝐼
𝑚
), 𝑈 = (𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
),

and 𝜆 = (𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
, 𝜆
7
)we obtain theHamiltonian

given by

𝐻(𝑋,𝑈, 𝜆) = 𝐿 (𝐼
ℎ
, 𝐸
ℎ
, 𝑁
𝑚
, 𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
) + 𝜆
1
[Λ
ℎ

+ 𝜓𝑅
ℎ
− (1 − 𝑢

1
) 𝜆
ℎ
𝑆
ℎ
− (1 − 𝑢

4
) 𝜆
ℎ𝑤

𝑆
ℎ
− 𝜇
ℎ
𝑆
ℎ
]

+ 𝜆
2
[(1 − 𝑢

1
) 𝜆
ℎ
𝑆
ℎ
+ (1 − 𝑢

4
) 𝜆
ℎ𝑤

𝑆
ℎ

− (𝛼
ℎ
+ 𝜇
ℎ
) 𝐸
ℎ
] + 𝜆
3
[𝛼
ℎ
𝐸
ℎ
− (𝛿
ℎ
+ 𝜇
ℎ
) 𝐼
ℎ

− (𝑏 + 𝜏𝑢
2
) 𝐼
ℎ
] + 𝜆
4
[(𝑏 + 𝜏𝑢

2
) 𝐼
ℎ
− (𝜓 + 𝜇

ℎ
) 𝑅
ℎ
]

+ 𝜆
5
[Λ
ℎ
− (1 − 𝑢

1
) 𝜆
𝑚
𝑆
𝑚

− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝑆
𝑚
] + 𝜆
6
[(1 − 𝑢

1
) 𝜆
𝑚
𝑆
𝑚

− 𝛼
𝑚
𝐸
𝑚
− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝐸
𝑚
] + 𝜆
7
[𝛼
𝑚
𝐸
𝑚

− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝐼
𝑚
] .

(57)

3.3. The Optimality System. In order to find the necessary
conditions for this optimal control, we apply Pontryagin’s
Maximum Principle [6] as described by Lenhart and Work-
man [36] as follows.

If 𝑢∗
1
, 𝑢
∗

2
, 𝑢
∗

3
, 𝑢
∗

4
are optimal solution of an optimal control

problem, then there exists a nontrivial vector function 𝜆(𝑡) =

(𝜆
1
(𝑡), 𝜆
2
(𝑡), . . . , 𝜆

𝑛
(𝑡)) satisfying the following conditions.

The state equation is

𝑑𝑥

𝑑𝑡
=

𝜕𝐻 (𝑡, 𝑢
∗

1
, 𝑢
∗

2
, 𝑢
∗

3
, 𝑢
∗

4
, 𝜆 (𝑡))

𝜕𝜆
. (58)

The optimality condition is

0 =
𝜕𝐻 (𝑡, 𝑢

∗

1
, 𝑢
∗

2
, 𝑢
∗

3
, 𝑢
∗

4
, 𝜆 (𝑡))

𝜕𝑢

(59)

and the adjoint equation is

𝑑𝜆

𝑑𝑡
=

𝜕𝐻 (𝑡, 𝑢
∗

1
, 𝑢
∗

2
, 𝑢
∗

3
, 𝑢
∗

4
, 𝜆 (𝑡))

𝜕𝑥
. (60)

Now, we apply the necessary conditions to the Hamiltonian.

Theorem 8. Given the optimal controls 𝑢
∗

1
, 𝑢∗
2
, 𝑢∗
3
, 𝑢∗
4
and

solutions 𝑆∗
ℎ
, 𝐸∗
ℎ
, 𝐼∗
ℎ
, 𝑅∗
ℎ
, 𝑆∗
𝑚
, 𝐸∗
𝑚
, 𝐼∗
𝑚
of the corresponding state
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system (1), there exist adjoint variables 𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
,

𝜆
7
satisfying

−
𝑑𝜆
1

𝑑𝑡
=

𝜕𝐻

𝜕𝑆
ℎ

= (1 − 𝑢
1
) 𝜆
ℎ
(𝜆
2
− 𝜆
1
)

+ (1 − 𝑢
4
) 𝜆
ℎ𝑤

(𝜆
2
− 𝜆
1
) − 𝜇
ℎ
𝜆
1
,

−
𝑑𝜆
2

𝑑𝑡
=

𝜕𝐻

𝜕𝐸
ℎ

= 𝛼
ℎ
(𝜆
3
− 𝜆
2
) − 𝜇
ℎ
𝜆
2
+ 𝐴
3
,

−
𝑑𝜆
3

𝑑𝑡
=

𝜕𝐻

𝜕𝐼
ℎ

= (𝑏 + 𝜏𝑢
2
) 𝜆
4
− (𝑏 + 𝜏𝑢

2
+ 𝜇
ℎ
+ 𝛿
ℎ
) 𝜆
3
+ 𝐴
2

− (
(1 − 𝑢

1
) 𝜆𝜖𝜙𝑆

𝑚

𝑁
ℎ

)𝜆
5

+ (
(1 − 𝑢

1
) 𝜆𝜖𝜙𝑆

𝑚

𝑁
ℎ

)𝜆
6
,

−
𝑑𝜆
4

𝑑𝑡
=

𝜕𝐻

𝜕𝑅
ℎ

= 𝜓𝜆
1
− (𝜇
ℎ
+ 𝜓) 𝜆

4
,

−
𝑑𝜆
5

𝑑𝑡
=

𝜕𝐻

𝜕𝑆
𝑚

= (1 − 𝑢
1
) (𝜆
6
− 𝜆
5
) 𝜆
𝑚

− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝜆
5
+ 𝐴
1
,

−
𝑑𝜆
6

𝑑𝑡
=

𝜕𝐻

𝜕𝐸
𝑚

= 𝛼
𝑚
(𝜆
7
− 𝜆
6
) − (𝜇

𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝜆
6
+ 𝐴
1
,

−
𝑑𝜆
7

𝑑𝑡
=

𝜕𝐻

𝜕𝐼
𝑚

= − (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝜆
7
+ 𝐴
1

+ (−
(1 − 𝑢

1
) 𝛽𝜖𝜙𝑆

ℎ

𝑁
ℎ

−
(1 − 𝑢

4
) 𝛽𝜖𝜙𝑆

ℎ

𝑁
ℎ𝑤

)𝜆
1

+ (
(1 − 𝑢

1
) 𝛽𝜖𝜙𝑆

ℎ

𝑁
ℎ

+
(1 − 𝑢

4
) 𝛽𝜖𝜙𝑆

ℎ

𝑁
ℎ𝑤

)𝜆
2

(61)

with transversality conditions

𝜆
1
(𝑇) = 𝜆

2
(𝑇) = 𝜆

3
(𝑇) = 𝜆

4
(𝑇) = 𝜆

5
(𝑇) = 𝜆

6
(𝑇)

= 𝜆
7 (𝑇) = 0.

(62)

Furthermore 𝑢∗
1
, 𝑢∗
2
, 𝑢∗
3
, 𝑢∗
4
are represented by

𝑢
∗

1
= max{0,min(1,

(𝜆
2
− 𝜆
1
) 𝜆
ℎ
𝑆
∗

ℎ
+ (𝜆
6
− 𝜆
5
) 𝜆
𝑚
𝑆
∗

𝑚
+ 𝑎𝑆
∗

𝑚
𝜆
5
+ 𝑎𝐸
∗

𝑚
𝜆
6
+ 𝑎𝐼
∗

𝑚
𝜆
7

𝐵
1

)} ,

𝑢
∗

2
= max{0,min(1,

𝜏 (𝜆
3
− 𝜆
4
) 𝐼
∗

ℎ

𝐵
2

)} ,

𝑢
∗

3
= max{0,min(1,

𝑝 (𝜆
5
𝑆
∗

𝑚
+ 𝜆
6
𝐸
∗

𝑚
+ 𝜆
7
𝐼
∗

𝑚
)

𝐵
3

)} ,

𝑢
∗

4
= max{0,min(1,

(𝜆
2
− 𝜆
1
) 𝜆
ℎ𝑤

𝑆
∗

ℎ

𝐵
4

)} .

(63)

Proof. To determine the adjoint equations and the transver-
sality conditionswe use theHamiltonian𝐻.TheHamiltonian
function,𝐻, is differentiated with respect to 𝑆

ℎ
,𝐸
ℎ
, 𝐼
ℎ
,𝑅
ℎ
, 𝑆
𝑚
,

𝐸
𝑚
, and 𝐼

𝑚
. The adjoint/costate equation is given by

−
𝑑𝜆
1

𝑑𝑡
=

𝜕𝐻

𝜕𝑆
ℎ

= (1 − 𝑢
1
) 𝜆
ℎ
(𝜆
2
− 𝜆
1
)

+ (1 − 𝑢
4
) 𝜆
ℎ𝑤

(𝜆
2
− 𝜆
1
) − 𝜇
ℎ
𝜆
1
,

−
𝑑𝜆
2

𝑑𝑡
=

𝜕𝐻

𝜕𝐸
ℎ

= 𝛼
ℎ
(𝜆
3
− 𝜆
2
) − 𝜇
ℎ
𝜆
2
+ 𝐴
3
,

−
𝑑𝜆
3

𝑑𝑡
=

𝜕𝐻

𝜕𝐼
ℎ

= (𝑏 + 𝜏𝑢
2
) 𝜆
4
− (𝑏 + 𝜏𝑢

2
+ 𝜇
ℎ
+ 𝛿
ℎ
) 𝜆
3
+ 𝐴
2

− (
(1 − 𝑢

1
) 𝜆𝜖𝜙𝑆

𝑚

𝑁
ℎ

)𝜆
5

+ (
(1 − 𝑢

1
) 𝜆𝜖𝜙𝑆

𝑚

𝑁
ℎ

)𝜆
6
,

−
𝑑𝜆
4

𝑑𝑡
=

𝜕𝐻

𝜕𝑅
ℎ

= 𝜓𝜆
1
− (𝜇
ℎ
+ 𝜓) 𝜆

4
,

−
𝑑𝜆
5

𝑑𝑡
=

𝜕𝐻

𝜕𝑆
𝑚

= (1 − 𝑢
1
) (𝜆
6
− 𝜆
5
) 𝜆
𝑚

− (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝜆
5
+ 𝐴
1
,
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−
𝑑𝜆
6

𝑑𝑡
=

𝜕𝐻

𝜕𝐸
𝑚

= 𝛼
𝑚
(𝜆
7
− 𝜆
6
) − (𝜇

𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝜆
6
+ 𝐴
1
,

−
𝑑𝜆
7

𝑑𝑡
=

𝜕𝐻

𝜕𝐼
𝑚

= − (𝜇
𝑚
+ 𝑎𝑢
1
+ 𝑝𝑢
3
) 𝜆
7
+ 𝐴
1

+ (−
(1 − 𝑢

1
) 𝛽𝜖𝜙𝑆

ℎ

𝑁
ℎ

−
(1 − 𝑢

4
) 𝛽𝜖𝜙𝑆

ℎ

𝑁
ℎ𝑤

)𝜆
1

+ (
(1 − 𝑢

1
) 𝛽𝜖𝜙𝑆

ℎ

𝑁
ℎ

+
(1 − 𝑢

4
) 𝛽𝜖𝜙𝑆

ℎ

𝑁
ℎ𝑤

)𝜆
2

(64)

with transversality conditions

𝜆
1
(𝑇) = 𝜆

2
(𝑇) = 𝜆

3
(𝑇) = 𝜆

4
(𝑇) = 𝜆

5
(𝑇) = 𝜆

6
(𝑇)

= 𝜆
7
(𝑇) = 0.

(65)

In order to minimize Hamiltonian, 𝐻, with respect to
the controls at the optimal controls, 𝐻 is differentiated with
respect to 𝑢

1
, 𝑢
2
, 𝑢
3
, and 𝑢

4
on the set𝑈, and the solution for

the optimal control point is obtained after equating to zero.
This is the optimality condition.

Solving 𝜕𝐻/𝜕𝑢
1

= 0, 𝜕𝐻/𝜕𝑢
2

= 0, 𝜕𝐻/𝜕𝑢
3

= 0, and
𝜕𝐻/𝜕𝑢

4
= 0, evaluating at the optimal control on the interior

of the control set, where 0 < 𝑢
𝑖
< 1, for 𝑖 = 1, 2, 3, 4, and

letting 𝑆
ℎ

= 𝑆
∗

ℎ
, 𝐸
ℎ

= 𝐸
∗

ℎ
, 𝐼
ℎ

= 𝐼
∗

ℎ
, 𝑅
ℎ

= 𝑅
∗

ℎ
, 𝑆
𝑚

= 𝑆
∗

𝑚
,

𝐸
𝑚

= 𝐸
∗

𝑚
, and 𝐼

𝑚
= 𝐼
∗

𝑚
yield

𝜕𝐻

𝜕𝑢
1

= 𝐵
1
𝑢
∗

1
+ 𝜆
1
𝜆
ℎ
𝑆
∗

ℎ
− 𝜆
2
𝜆
ℎ
𝑆
∗

ℎ
+ 𝜆
5
𝜆
𝑚
𝑆
∗

𝑚
− 𝑎𝑆
∗

𝑚
𝜆
5

− 𝑎𝐸
∗

𝑚
𝜆
6
− 𝑎𝐼
∗

𝑚
𝜆
7
= 0,

𝜕𝐻

𝜕𝑢
2

= 𝐵
2
𝑢
∗

2
− 𝜏𝜆
3
𝐼
∗

ℎ
+ 𝜏𝜆
4
𝐼
∗

ℎ
= 0,

𝜕𝐻

𝜕𝑢
3

= 𝐵
3
𝑢
∗

3
− 𝑝𝜆
5
𝑆
∗

𝑚
− 𝑝𝜆
6
𝐸
∗

𝑚
− 𝑝𝜆
7
𝐼
∗

𝑚
= 0,

𝜕𝐻

𝜕𝑢
4

= 𝐵
4
𝑢
∗

4
+ 𝜆
ℎ𝑤

𝜆
2
𝑆
∗

ℎ
− 𝜆
1
𝜆
ℎ𝑤

𝑆
∗

ℎ
= 0

(66)

for which

𝑢
∗

1

=
(𝜆
2
− 𝜆
1
) 𝜆
ℎ
𝑆
∗

ℎ
+ (𝜆
6
− 𝜆
5
) 𝜆
𝑚
𝑆
∗

𝑚
+ 𝑎𝑆
∗

𝑚
𝜆
5
+ 𝑎𝐸
∗

𝑚
𝜆
6
+ 𝑎𝐼
∗

𝑚
𝜆
7

𝐵
1

,

𝑢
∗

2
=

𝜏 (𝜆
3
− 𝜆
4
) 𝐼
∗

ℎ

𝐵
2

,

𝑢
∗

3
=

𝑝 (𝜆
5
𝑆
∗

𝑚
+ 𝜆
6
𝐸
∗

𝑚
+ 𝜆
7
𝐼
∗

𝑚
)

𝐵
3

,

𝑢
∗

4
=

(𝜆
2
− 𝜆
1
) 𝜆
ℎ𝑤

𝑆
∗

ℎ

𝐵
4

.

(67)

By applying the boundary condition of each control, the
solution of (67) becomes

𝑢
∗

1
= max{0,min(1,

(𝜆
2
− 𝜆
1
) 𝜆
ℎ
𝑆
∗

ℎ
+ (𝜆
6
− 𝜆
5
) 𝜆
𝑚
𝑆
∗

𝑚
+ 𝑎𝑆
∗

𝑚
𝜆
5
+ 𝑎𝐸
∗

𝑚
𝜆
6
+ 𝑎𝐼
∗

𝑚
𝜆
7

𝐵
1

)} ,

𝑢
∗

2
= max{0,min(1,

𝜏 (𝜆
3
− 𝜆
4
) 𝐼
∗

ℎ

𝐵
2

)} ,

𝑢
∗

3
= max{0,min(1,

𝑝 (𝜆
5
𝑆
∗

𝑚
+ 𝜆
6
𝐸
∗

𝑚
+ 𝜆
7
𝐼
∗

𝑚
)

𝐵
3

)} ,

𝑢
∗

4
= max{0,min(1,

(𝜆
2
− 𝜆
1
) 𝜆
ℎ𝑤

𝑆
∗

ℎ

𝐵
4

)} .

(68)

The optimality system is comprised of state system (1), adjoint
system (61), initial conditions at 𝑡 = 0, boundary conditions
(62), and the characterization of the optimal control (63).
Hence the state and optimal control can be calculated using
the optimality system. Hence using the fact that the second
derivatives of the Lagrangianwith respect to𝑢

1
,𝑢
2
,𝑢
3
, and𝑢

4
,

respectively, are positive indicates that the optimal problem is
a minimum at controls 𝑢∗

1
, 𝑢∗
2
, 𝑢∗
3
, and 𝑢

∗

4
.

The optimality system is solved using the forward-
backward fourth-order Runge-Kutta scheme in 𝑅 statistical
computing platform [37].The optimal strategy is obtained by

solving the state and adjoint systems and the transversality
conditions. First we start to solve state (1) using the Runge-
Kutta fourth-order forward in time with a guess for the
controls 𝑢

1
, 𝑢
2
, 𝑢
3
, and 𝑢

4
over the simulated time. Then,

using the current iteration of the state equations with the
initial guess for the controls, the adjoint equations in system
(57) are solved by a backward method with the transversality
conditions (62). Then the controls are updated by using a
convex combination of the previous controls and the value
from characterizations (63). This process is repeated and
iterations stopped if the values of the unknowns at the
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previous iterations are very close to the ones at the present
iterations [36].

4. Numerical Results on Optimal Control
Analysis and Discussion

The parameters in model (1) were estimated using clinical
malaria data and demographics statistics of Kenya. Those
that were not available were obtained from literature pub-
lished by researchers in malaria endemic countries which
have similar environmental conditions compared to Kenya.
Table 5 provides a summary of the estimated values of
all parameters of the malaria model. Data was collected
from the literature, Division of Malaria Control (DOMC),
Kenya National Bureau of Statistics, Malaria Indicator Survey
for Kenya, Demographic Health Survey (DHS) for Kenya,
WHO websites, and hospital records (from Kisumu, Kisii,
Chuka (Tharake-Nithi), and Nyeri counties representing the
four different transmission settings/epidemiological zones in
Kenya). The rates are per day.

In addition the effect of the different intervention strate-
gies is estimated as 𝑢

1
= 0.0904, 𝑢

2
= 0.165, 𝑢

3
= 0.076, and

𝑢
4
= 0.035 and the cost of intervention is for 𝑢

1
= $2.5 − 5,

𝑢
2
= $2.5, 𝑢

3
= $1.5, and 𝑢

4
= $2.5 (White et al. [38] and

Hansen et al. [39]). The initial state variables are constant
across all the epidemiological zones and are chosen as 𝑆

ℎ
(0) =

700, 𝐸
ℎ
(0) = 250, 𝐼

ℎ
(0) = 30, 𝑅

ℎ
(0) = 30, 𝑆

𝑚
(0) = 5000,

𝐸
𝑚
(0) = 500, and 𝐼

𝑚
(0) = 100. The following weight factors

were also fixed for the different epidemiological scenarios as
𝐵
1
= 20, 𝐵

2
= 65, 𝐵

3
= 10, 𝐵

4
= 10, 𝐴

3
= 100, 𝐴

2
= 92, and

𝐴
1
= 20.

4.1. Dynamics of Human Population with Intervention Strate-
gies. We simulated malaria model with intervention strate-
gies to find the dynamics of human and mosquito popula-
tions. It is observed that the control strategy leads to decrease
in the number of infected human (𝐼

ℎ
) as shown in Figure 2.

The figure shows steady decrease in susceptible human
population at the initial period as the exposure of humans
to disease increases. Thereafter graph of susceptible humans
increases as the exposed and infected human population
decreases due to positive effect of the intervention strategies
being implemented.

4.2. Numerical Results on Optimal Control Analysis. In this
section, we investigate numerically the effect of the several
optimal control strategies on the spread of malaria. We
compare the numerical results from the simulation using
one control and various combinations of two, three, and
four control strategies. This was done by comparing when
there were not any intervention strategies and when there
were intervention strategies. There are 15 different control
strategies for each of the four different epidemiological zones
in Kenya that are explored. We use the case of endemic zone
with the case of one control variable, two control variables,
three control variables, and all the four control variables being
in use for the illustration purpose.

The results in Figures 3–6 show a significant difference
in 𝐼
ℎ
and 𝐼

𝑚
with the control strategy compared to 𝐼

ℎ

and 𝐼
𝑚
without the control strategy. It is observed that the

control strategy leads to decrease in the number of infected
humans (𝐼

ℎ
). The uncontrollable case leads to a decrease in

the number of infected mosquitoes (𝐼
𝑚
), while the control

strategy leads to decrease in the infected number.The control
profiles show the upper bound time for each strategy for each
setting before dropping to the lower bound.

There are several combinations for the different settings
as described below.

Results of only one intervention strategy for the endemic
epidemiological zones is as follows.

(a) Optimal Protection Using ITN. Only the control (𝑢
1
) on

ITNs is used to optimize the objective function 𝐽, while the
control on treatment (𝑢

2
), the control on IRS (𝑢

3
), and control

on IPTp (𝑢
4
) are set to zero.

(b) Optimal Treatment. Only the control (𝑢
2
) on treatment is

used to optimize the objective function 𝐽, while the control
on ITNs (𝑢

1
), the control on IRS (𝑢

3
), and control on IPTp

(𝑢
4
) are set to zero.

(c) Optimal IRS. Only the control (𝑢
3
) on IRS is used to

optimize the objective function 𝐽, while the control on
treatment (𝑢

2
), the control on ITNs (𝑢

1
), and control on IPTp

(𝑢
4
) are set to zero.

(d) Optimal IPTp. Only the control (𝑢
4
) on IPTp is used

to optimize the objective function 𝐽, while the control on
treatment (𝑢

2
), the control on IRS (𝑢

3
), and control on ITNs

(𝑢
1
) are set to zero.
Results of combining 2 intervention strategies for the

endemic epidemiological zones are as follows.

(a) Optimal ITNs and Treatment. With this strategy, the
control on ITNs (𝑢

1
) and the treatment (𝑢

2
) are used to

optimize the objective function 𝐽while setting the control on
IRS (𝑢

3
) and control on IPTp (𝑢

4
) to zero.

(b) Optimal ITN and IRS. With this strategy, the control on
ITNs (𝑢

1
) and the IRS (𝑢

3
) are used to optimize the objective

function 𝐽 while setting the control on treatment (𝑢
2
) and

control on IPTp (𝑢
4
) to zero.

(c) Optimal ITN and IPTp. With this strategy, the control on
ITNs (𝑢

1
) and IPTp (𝑢

4
) are used to optimize the objective

function 𝐽 while setting the control on treatment (𝑢
2
) and

control on IRS (𝑢
3
) to zero.

(d) Optimal Treatment and IRS.With this strategy, the control
on treatment (𝑢

2
) and the IRS (𝑢

3
) are used to optimize the

objective function 𝐽 while setting the control on ITNs (𝑢
1
)

and control on IPTp (𝑢
4
) to zero.

(e) Optimal Treatment and IPTp. With this strategy, the
control on treatment (𝑢

2
) and the IPTp (𝑢

4
) are used to

optimize the objective function 𝐽while setting the control on
IRS (𝑢

3
) and control on ITNs (𝑢

1
) to zero.

(f) Optimal IRS and IPTp. With this strategy, the control on
IRS (𝑢

3
) and the IPTp (𝑢

4
) are used to optimize the objective
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Figure 2: Simulations showing the dynamics of human population with intervention strategies for the endemic setting.

function 𝐽 while setting the control on treatment (𝑢
2
) and

control on ITNs (𝑢
1
) to zero.

Results of combining three intervention strategies for the
endemic epidemiological zones are as follows.

(a) Optimal ITN, Treatment, and IRS. In this case ITN control
(𝑢
1
), treatment control (𝑢

2
), and IRS control (𝑢

3
) are used to

optimize the objective function 𝐽, while IPTp control (𝑢
4
) is

set to zero.

(b) Optimal ITN, Treatment, and IPTp. In this case ITNs
control (𝑢

1
), treatment control (𝑢

2
), and IPTp control (𝑢

4
) are

used to optimize the objective function 𝐽, while IRS control
(𝑢
3
) is set to zero.

(c) Optimal ITN, IRS, and IPTp. In this case ITNs control (𝑢
1
),

IRS control (𝑢
3
), and IPTp control (𝑢

4
) are used to optimize

the objective function 𝐽, while treatment control (𝑢
2
) is set to

zero.

(d) Optimal Treatment, IRS, and IPTp. In this case treatment
control (𝑢

2
), IRS control (𝑢

3
), and IPTp control (𝑢

4
) are used

to optimize the objective function 𝐽, while ITNs control (𝑢
1
)

is set to zero.
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Figure 3: Simulations of the model showing the effect of treatment on the spread of malaria for the endemic setting.

Results of combining the four intervention strategies for
the endemic epidemiological zones are as follows.

Optimal ITN, Treatment, IRS, and IPTp. In this case all the
control function ITNs control (𝑢

1
), treatment control (𝑢

2
),

IRS control (𝑢
3
), and IPTp control (𝑢

4
) are used to optimize

the objective function 𝐽.

The same procedure is repeated for other combination
for strategies and for other epidemiological zones (epidemic,
seasonal, and low). Based on the simulation findings for the
highest number of infections being inverted at a lower cost,
the combined use of treatment and IRS reduces the infected
human and mosquito population faster at a lower cost for
the endemic settings (105 infections at $368.258). For the
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Figure 4: Simulations of the model showing the effect of ITNs and treatment on the spread of malaria for the endemic setting.

epidemic prone settings the use of treatment and IRS (111.03
infections at $388.6051) has more impact in reducing the
infected human andmosquito population. For seasonal areas
much impact will be felt when treatment is used (115.6983
infections at $231.3967). For the low risk areas, just the
use of ITNs and treatment (119.0659 infections at 595.32)
will be sufficient to reduce infected human and mosquito
population. This is deduced from the intervention which

takes shorter time to start reducing the number of infected
mosquitoes and humans.

5. Discussion

In this paper, we formulated a mathematical model for the
transmission dynamics of malaria with four time-dependent
control measures in Kenya. We first consider control
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Figure 5: Simulations of the model showing the effect of ITNs, treatment, and IRS on the spread of malaria for the endemic setting.

parameters to be constant and performmathematical analysis
of the model. The analysis showed that there exists a domain
where the model is epidemiologically and mathematically
well posed. Stability analysis of the model showed that the
disease-free equilibrium is globally asymptotically stable if
𝑅
0

≤ 1 in 𝐷. If 𝑅
0

> 1, the unique endemic equilibrium

exists and is globally asymptotically stable in 𝐷. The model
exhibited backward bifurcation backward bifurcation at 𝑅

0
=

1 implying the existence of multiple endemic equilibria for
𝑅
0
< 1. The existence of multiple endemic equilibria empha-

sizes the fact that 𝑅
0
< 1 is not sufficient to eradicate disease

from the population and the need to lower 𝑅
0
much below
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Figure 6: Simulations of the model showing the effect of ITNs, treatment, IRS, and IPTp on the spread of malaria for the endemic setting.

one to make the disease-free equilibrium stable globally. This
behavior has important public health implications because it
means that bringing 𝑅

0
below 1 is not enough to eradicate

malaria.
We then consider the case of time-dependent control

variable from where we formulated an optimal control
problem and derived expressions for the optimal control for

the malaria model with four control variables with an aim
of minimizing the number of malaria infections in humans
(derive optimal prevention and treatment strategies) while
keeping the cost low. In the optimal control problem, use
of one control at a time and the different combination of
interventions can be explored to investigate and compare
the effects of the control strategies on malaria eradication
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for different transmission settings. The analysis of the model
showed that the state and optimal control can be calculated
using the optimality system. The optimality system is com-
prised of the state system, the adjoint/costate system, initial
conditions at 𝑡 = 0, boundary conditions (transversality), and
the characterization of the optimal control [11, 12, 14].

The results of the optimal control problem will be able
to show which intervention or combination of the different
intervention strategies has the highest impact on the control
of the disease especially for different transmission settings.
Our results shows that an effective IRS use and treatment
will be beneficial to the community for the control of malaria
disease (infected human and mosquito population) faster
at a lower cost for the endemic settings. This is slightly
different from the findings of Agusto et al. [14] who found
that the combination of the personal protection, treatment,
and insecticides spray had the highest impact on the control
of the disease. This could be in endemic settings where
both preventive and treatment measures work better which
implies that the effect of protection using IRS is better.
Griffin et al. [40] found that use of treatment, long-lasting
insecticides treated bed nets (LLITNs), and IRS with high
levels coverage would result in reducingmalaria transmission
for high settings though the study did not consider the cost
aspect.

The findings show that, for the epidemic prone areas,
the optimal control strategy for reducing the infected human
and mosquito population was the use of treatment and IRS.
This is slightly different from Agusto et al. [14] findings on
resource limited settings in which the study recommended
the use of personal protection and insecticides. This was
further different from the findings of Mwamtobe et al. [12]
who noted that the prevention strategies (use of ITNs and
IRS) lead to the reduction of both the mosquito popula-
tion and infected human individuals. This is because in
epidemic areas emphasis is usuallymore placed on preventive
strategies.

The results show that for seasonal areas much impact
will be felt when treatment is used which is different from
Mwamtobe et al. [12] who recommended IRS and ITNs. This
is also comparable to Kim et al. [13] findings that mosquito-
reduction strategies are more effective than personal protec-
tion. This is because in seasonal areas malaria transmission
is usually not so high and hence if the mosquito-reduction
strategies can be implemented thenmalaria transmission can
be reduced. Griffin et al. [40] found that for the high seasonal
transmission settings the use of LLITNs, IRS, and treatment
would help reduce the transmission of malaria.

The results show that, for the low risk areas, just the use
of ITNs and treatment will be sufficient to reduce infected
human and mosquito population.This is comparable to Silva
and Torres [15] who found the optimal use of ITNS would
prevent malaria transmission the same as Kim et al. [13]. The
findings are comparable to those by Griffin et al. [40]. In low
transmission areas prevention strategies seem to be better
because the population is not infected.

These findings support the WHO concerns on the capa-
bility of only one intervention strategy in reducing malaria
transmission. The findings are however applicable to the

designing of intervention strategies for malaria especially
when costs aspects are of concern. This modelling approach
also addresses effectiveness of the recommended intervention
for at-risk group of malaria (pregnant women) by the WHO.
The modelling approach has also been implemented in the
𝑅 statistical computing platform which is free statistical
software.

To the best of our knowledge, this is the first ever optimal
control modelling and simulation of malaria intervention
strategies in free 𝑅 statistical computing platform; future
testing and refinement of the model together with simulation
with data fromother representative settings should be done to
improve the results and themodel.These findings were based
on the use of secondary data; a more designed study may be
needed to ascertain the findings of these studies. Regardless,
it does not invalidate the findings.

6. Conclusion

In this paper, we derived and analyzed a deterministic model
for the transmission of malaria disease which incorporated
the use of insecticide-treated bed nets (ITNs), treatment,
indoor residual spray (IRS), and intermittent preventive treat-
ment for pregnant women (IPTp) and performed optimal
control analysis of the model. We first consider constant
control parameters from where we investigate existence and
stability of equilibria as well as stability analysis. We proved
that if 𝑅

0
≤ 1, the disease-free equilibrium is globally

asymptotically stable in 𝐷. If 𝑅
0

> 1, the unique endemic
equilibrium exists and is globally asymptotically stable. The
model also exhibits backward bifurcation at 𝑅

0
= 1.

We then consider the time-dependent control case from
where we derived and analyzed the necessary conditions for
the optimal control of the disease. There were 15 different
control strategies for each of the four different epidemi-
ological zones in Kenya that were explored using control
plots (numerical simulations) which compared when there
were not any intervention strategies and when there were
intervention strategies. Using the optimal control approach
we found that the combined use of treatment and IRS
would reduce the highest number of infected human and
mosquito population faster at a lower cost for the endemic
settings. For the epidemic prone settings the use of treat-
ment and IRS has more impact in reducing the infected
human and mosquito population. For seasonal areas much
impact will be felt when treatment is used. For the low risk
areas, just the use of ITNs and treatment will be sufficient
to reduce infected human and mosquito population. This
was deduced from the intervention which takes shorter
time to start reducing the number of infected mosquitoes
and humans.

We conclude that, according to our model, the optimal
control strategy for malaria control in endemic areas was the
combined use of treatment and IRS; in epidemic prone areas
it was the use of treatment and IRS; in seasonal areas it was the
use of treatment; and in low risk areas was the use of ITNs and
treatment. Control programs that follow these strategies can
effectively reduce the spread of malaria disease in different
malaria transmission settings in Kenya.
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Appendix

The geometric approach to global stability is as described by
Li and Muldowney for provingTheorem 4.

The general method considered is the one developed by
Li & Muldowney [30]. Consider the autonomous dynamical
system:

𝑥̇ = 𝑓 (𝑥) , (A.1)

where𝑓 : 𝐷 → R𝑛, 𝐷 ⊂ R𝑛, is open set and simply connected
and 𝑓 ∈ 𝐶

1
𝐷. Let 𝑥∗ be an equilibrium of (A.1); that is,

𝑓(𝑥
∗
) = 0. We recall that 𝑥∗ is said to be globally stable in

𝐷 if it is locally stable and all trajectories in𝐷 converge to 𝑥
∗.

Assume that the following hypotheses hold

(𝐻
1
): there exists a compact absorbing set𝐾 ⊂ 𝐷;

(𝐻
2
): equation (A.1) has a unique equilibrium 𝑥

∗ in
𝐷.

The basic idea of this method is that if equilibrium 𝑥
∗ is

(locally) stable, then the global stability is assured provided
that (𝐻

1
)-(𝐻
2
) hold and no nonconstant periodic solution of

(A.1) exists.

Bendixson Criterion. Li and Muldowney showed that if
(𝐻
1
)-(𝐻
2
) hold and (A.1) satisfies a Bendixson criterion

that is robust under 𝐶
1 local 𝜖-perturbations of 𝑓 at all

nonequilibrium nonwandering points for (A.1), then 𝑥
∗ is

globally stable in 𝐷 provided it is stable. Then, a new
Bendixson criterion robust under𝐶1 local 𝜖-perturbation and
based on the use of the Lozinskǐı measure is introduced.

Function 𝑔 ∈ 𝐶
1
(𝐷 → R𝑛) is called 𝐶

1 local 𝜖-
perturbations of 𝑓 at 𝑥

0
∈ 𝐷, if there exists an open

neighbourhood𝑈 of 𝑥
0
in𝐷 such that support supp(𝑓−𝑔) ⊂

𝑈 and |𝑓 − 𝑔|
𝐶
1 < 𝜖, where |𝑓 − 𝑔|

𝐶
1 = sup{|𝑓(𝑥) − 𝑔(𝑥)| +

|𝑓
𝑥
(𝑥) − 𝑔

𝑥
(𝑥)| : 𝑥 ∈ 𝐷}.

Point 𝑥
0
∈ 𝐷 is said to be nonwondering for (A.1) for any

neighborhood 𝑈 of 𝑥
0
in 𝐷 and there exists arbitrary large 𝑡

such that 𝑈 ∩ 𝑥(𝑡, 𝑈) ̸= 𝜙.
Let 𝑃(𝑥) be a ( 𝑛2 ) × (

𝑛

2 )matrix-valued function that is 𝐶1
on𝐷 and consider

𝐵 = 𝑃
𝑓
𝑃
−1

+ 𝑃𝐽
|2|
𝑃
−1
, (A.2)

where matrix 𝑃
𝑓
is

(𝑝
𝑖𝑗
(𝑥))
𝑓
= (

𝜕𝑝
𝑖𝑗
(𝑥)

𝜕𝑥
)

𝑇

⋅ 𝑓 (𝑥) = ∇𝑝
𝑖𝑗
⋅ 𝑓 (𝑥) . (A.3)

And 𝐽
|2| is the second additive compound matrix of the

Jacobian matrix, 𝐽; that is, 𝐽(𝑥) = 𝐷𝑓(𝑥). Generally speaking,
for 𝑛×𝑛matrix, 𝐽 = (𝐽

𝑖𝑗
), 𝐽|2| is ( 𝑛2 ) × (

𝑛

2 )matrix (for a survey
on compound matrices) and their relations to differential
equations as described by Muldowney [41] and in the special
case 𝑛 = 3, one has

𝐽
|2|

=
[
[

[

𝐽
11

+ 𝐽
22

𝐽
23

−𝐽
13

𝐽
23

𝐽
11

+ 𝐽
33

𝐽
12

−𝐽
31

𝐽
21

𝐽
22

+ 𝐽
33

]
]

]

. (A.4)

Consider Lozinskii measure L of 𝐵 with respect to vector
norm | ⋅ | in R𝑛,𝑁 = 𝑛/2 [42]:

L (𝐵) = lim
ℎ→0
+

|1 + ℎ𝐵| − 1

ℎ
. (A.5)

It is proved in [30] that if (𝐻
1
) and (𝐻

2
) hold, condition

lim supsup
𝑡→∞𝑥0∈𝐷

1

𝑡
∫

𝑡

0

L (𝐵 (𝑥 (𝑠, 𝑥
0
))) 𝑑𝑠 < 0 (A.6)

guarantees that there are no orbits giving rise to a simple
closed rectifiable curve in 𝐷 which is invariant for (A.1),
that is, periodic orbits, homoclinic orbits, and heteroclinic
cycles. In particular, condition (A.6) is proved to be a robust
Bendixson criterion for (A.1). Besides, it is remarked that
under assumptions (𝐻

1
)-(𝐻
2
), condition (A.6) also implies

the local stability of 𝑥∗.
As a consequence, the following theorem holds [30].

Theorem A.1. Assume that conditions (𝐻
1
)-(𝐻
2
) hold. Then

𝑥
∗ is globally asymptotically stable in𝐷 provided that function

𝑃(𝑥) and Lozinskǐı measureL exist such that condition (A.6)
is satisfied.

Additional Points

Recommendation: in order to reduce malaria transmission
in Kenya, the National Malaria Control Programme should
tailor-make different intervention strategies for different
epidemiological zones since some strategies work better
than others in a resource limited setting. In addition the
designed interventions that are preventive in nature should be
implemented across all the different settings. There will be a
need for theNational Control Programme to create awareness
on the malaria preventive measures.
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