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We have studied evolutionary ultimatum game with spatially arranged players, who have choice between the two kinds of strategies
(named greedy and altruist). The strategies in the ultimatum game here are described by 𝑝(𝑖) and 𝑎(𝑖), that is, the probability of
offering 𝑖 to himself and the accepting probability when receiving 𝑖. By using computer simulations with C++ builder, we have
provided the dynamics of the greedy and altruistic strategies and found that the proportion evolution of the “greedy” strategy for
different initial cases is approximately 60%. Furthermore, the explanations for the interesting phenomenon are presented from
different aspects. In addition, we illustrate that the factor of the expectation level (aspiration level) in the updating rule plays an
important role in the promotion of altruistic behaviors.

1. Introduction

The issues of altruism and selfishness are in the centre of
some of the most fundamental questions concerning our
evolutionary origins, our social relations, and the organiza-
tion of society. The investigation for the altruism is of great
interest across biology and social sciences [1, 2]. Moreover,
experimental evidence indicates that human altruism is a
powerful force in the animal world [3]. The ultimatum game
is such a prime showpiece of the altruistic behaviors, while
the rule of the ultimatum game is quite simple, which reads
that two players are asked to divide a certain sum of money.
One of the players, the proposer, suggests how to divide it,
and the other player, the responder, has two choices: one is to
agree to the division; the other one is to reject and thus both
get nothing.

For the division strategy of the ultimatum game, the past
decades have witnessed many theoretical investigations [4–
6]. Many factors have been found to influence the outcomes
of the ultimatum game, such as mutation [7], background
payoff [8], payoff-oriented mechanism [9], degree-based

assignation of roles [10], role preference [11], stochastic evo-
lutionary dynamics [12], and the empathy mechanism [13].
Several studies focus on analyzingmany types of connectivity
structures. For instance, investigations on square lattice [7],
small-world networks [14], scale-free networks [15], and
adaptive networks [16, 17] have been conducted to primarily
clarify the possible role of the topology.

Most of the abovementioned works have treated the
strategies of the ultimatum game as continuous ones. But
it can lead to some different and interesting outcomes by
considering the strategies as discrete ones [6]. Nowak et al.
[4] studied the four strategies of a minigame: 𝐺

1
= (ℎ, 𝑙),

𝐺
2
= (𝑙, 𝑙), 𝐺

3
= (𝑙, ℎ), and 𝐺

4
= (ℎ, ℎ), where 𝑙 represents the

low amount, while ℎ represents the high amout. They found
that the ration 𝐺

1
= (ℎ, 𝑙) dominated fairness 𝐺

3
= (𝑙, ℎ) in

the stochastic case; while introducing the “reputation” factor,
the fairness was favored. Szolnoki et al. [18] introduced a
spatial ultimatum game with a discrete set of strategies and
showed that this simple alteration could lead to fascinatingly
rich dynamical behaviors. They [19] further illustrated the
importance of discrete strategies in the ultimatum game
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Figure 1: The proportion evolution of the “greedy” strategy for the five different initial cases.

and found that fine-grained strategy intervals promote the
evolution of fairness in the spatial ultimatum game.

From a psychological perspective, models of social pref-
erences [20] have been provided to formally explain the
apparently irrational behavior [21] in the ultimatum game.
The typical theories of negative reciprocity [22] focus on the
intentions and describe rejection as a tool to punish the unfair
proposer. The theories of inequality aversion [23] focus on
the outcomes and claim that people are naturally averse to
unequal distributions, especially when disadvantageous. By
taking the prospect idea into considerations, Chen andWang
[24] introduced appropriate payoff aspirations in a small-
world networked game and found its profound effect on the
promotion for cooperation. Perc and Wang [25] also showed
that heterogeneous aspirations promoted cooperation in the
Prisoner’s Dilemma game.

Motivated by the above considerations, we follow [26]
and adopt the two strategies to study their evolution in the
spatial lattices [27, 28]. These two strategies, that is, greedy
and altruist, to some extent have some emotional significance,
especially from the emotional perspectives. Furthermore, by
introducing the expectation level into the updating rule, we
will focus on the role of the expectation level for the altruist.

The outline of this paper is as follows. Section 2 shows
the evolution of the greedy and altruistic strategies, from
the viewpoints of the payoff, the type links, and the trans-
form probabilities for illustration. Subsequently, by adding
the expectation level, the evolution of altruist is given in
Section 3. Finally, our conclusions are drawn in Section 4.

2. Evolution of Greedy and Altruist Strategies

The rule for the ultimatum game has been described above.
Suppose that the total sum is 𝑤, and in the simulations
the value for 𝑤 is set to be equal to 100. And the players
participating in the game have the equal opportunity to be
proposer or responder.

The strategy is generally denoted by 𝑆 = (𝑝, 𝑎), where 𝑝
represents the amount given to the proposer per se and thus

Table 1: The descriptions for greedy and altruist strategies.

Strategy 𝑝(𝑖) 𝑎(𝑖)

Greedy 2(𝑖 + 1)/(𝑤 + 1)(𝑤 + 2) (𝑖 + 1)/(𝑤 + 1)

Altruist 2(𝑤 − 𝑖 + 1)/(𝑤 + 1)(𝑤 + 2) 1

the amount 𝑤 − 𝑝 offered to the responder and the corre-
sponding acceptance probability for the responder is denoted
by 𝑎. Following [26], here, we consider the two particular
forms for (𝑝, 𝑎) in the square lattices and the strategies are
described as probability distributions:

(i) Greedy strategy: higher values are more probable to
be accepted but lower amount is more probable to be
proposed to others.

(ii) Altruist strategy: higher values are more probable to
be proposed to others.

The quantitative description for the two strategies is provided
in Table 1, where 𝑖 ∈ {0, 1, 2, . . . , 𝑤}.

We first study the spatial and the temporal evolution of
the two strategies in the square lattices. Firstly, each player is
denoted by one site in two-dimensional square lattices, and
this system size 𝐿 = 𝑛 × 𝑛 in simulations has been set to be
𝐿 = 100 × 100. Initially, each site is occupied by any one of
the two strategies. In each round of games, each player plays
the game with its immediate eight neighbors in the square
lattice with periodic boundary. The score for each one is the
sum of the payoff in these eight encounters. At the start of the
next generation, each lattice-site is occupied either by one of
the neighbors or by its previous owner, depending on who
obtains the highest payoff in that round and so to next round
[27, 28]. One run of the model consists of 1000 generations.
Each experimental condition is replicated 30 runs and all the
data, other than the snap, is the average of these 30 runs.

The average proportion of “greedy” strategy in the
population only with “greedy” and “altruist” strategy is
shown in Figure 1, with the different ratios of greedy sites
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Figure 2: The evolution for payoff of (a) greedy and (b) altruist.

(G) : altruist ones (A): 1 : 100, 1 : 10, 1 : 1, 10 : 1, and 100 : 1,
respectively. From Figure 1, it is obvious that the final
situations are quite similar and the “greedy” population is
about 60 percent in the whole population, almost indepen-
dent of the initial conditions. The result of the simulation
reveals that the “altruist” and “greedy” strategies could
coexist.

Combining with the average payoff for greedy popu-
lation and the altruist ones, shown in Figure 2, one can
quantitatively compare that the payoff of the altruist (about
320) is much bigger than those of the greedy population
(about 240). But the fraction of the greedy population (about
60%) is bigger than that of altruist (about 40%). Naturally,
one may wonder what causes this to happen.

To give an intuitional illustration, we show the asymptotic
pattern in Figure 3. Here, it is worth stating that the same
asymptotic results arise with other initial cases. The color
coding is as follows: yellow represents an altruist (A) site
following A in the preceding generation; aqua is a greedy (G)
site followingG; red is A followingG; and black is G following
A. From Figure 3, one can easily see that yellow and aqua
cluster together, while red and black lie in between yellow and
aqua.

From the perspective of the type of links, Figure 4 further
shows the evolution of different link types, whereA-Adenotes
a link connecting nodes with both altruist strategies; G-
G represents a link connecting nodes with both greedy
strategies; and A-G is a link connecting nodes with the two
different strategies. We further show that the asymptotic
results are the same for the different G : A ratios. Clearly,

the asymptotic results show that, among all the links, the G-
G occupies the first place; A-A comes second; and A-G is the
last.

The amounts of red and black in Figure 3 imply howmany
sites are varying from one generation to the next, which is
correspondingly shown in Figure 5. Figure 5(a) shows the
conditional probability, where Pr(𝑆

𝑡
= G | 𝑆

𝑡−1
= G) +

Pr(𝑆
𝑡
= A | 𝑆

𝑡−1
= G) = 1 means that the G players in the

preceding (𝑡 − 1)th generation either remain as G or change
into A in the 𝑡th generation and so to Pr(𝑆

𝑡
= A | 𝑆

𝑡−1
=

A)+Pr(𝑆
𝑡
= G | 𝑆

𝑡−1
= A) = 1. Figure 5(b) directly shows the

proportions of the four different colors at the 𝑡th generation
(𝑡 = 0, 1, 2, . . . , 100). One can easily see that the proportions
of A → G and G → A are the same during the asymptotic
patterns after few generations.

3. Expectation Effect on the
Evolution of Altruist

In this section, we proceed to the exploration of the greedy
and altruist by introducing the expectation level.The strategy
updating relies on the difference between player’s actual
payoff and the expectation level. Following previous works
[24], we define a parameter 𝐸 ∈ [0, 𝑤] as the average
expectation level of the players, and each player calculates its
expectation payoff 𝑃

𝐸
= 𝑘𝐸, where 𝑘 denotes the number

of neighbors and in this square lattice each is identical as
𝑘 = 8. During the evolutionary process, player 𝑗will compare
the sum of payoff (denoted by 𝑃

𝑗
) from neighbors with
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Figure 3: The snap after 20 generations for the greedy (G) and altruist (A) strategies, initially with 50% altruist and 50% greedy players.
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Figure 4: The evolution for the proportion of links (G-G, G-A, and A-A) with initially different G : A ratios (a) 1 : 100, (b) 1 : 1, and (c) 100 : 1.

the expectation level 𝑃
𝑗𝐸

and change its current strategy to
its opposite strategy with a probability depending on the
difference (𝑃

𝑗
− 𝑃
𝑗𝐸
) as

𝑊
𝑗
=

1

1 + exp [(𝑃
𝑗
− 𝑃
𝑗𝐸
) /𝜅]
, (1)

where 𝜅 characterizes the noise effects in the strategy adop-
tion process.The aspiration level𝑃

𝑗𝐸
provides the benchmark

which is used to evaluate whether player 𝑗 satisfies its current
strategy. This evolutionary rule is stochastic. The rationale is
that players can make use of their own payoff information
efficiently and evaluate their satisfaction levels toward their
current strategies more accurately. This probability charac-
terizes the exact extent of changing their current strategies.
Herein, we simply set 𝜅 = 1 in this section and concentrate
on how the expectation payoff affects the evolution of altruist
on this square lattice.
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Figure 5: The (a) conditional probability and the (b) proportion of the strategy changing.
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Figure 6: The proportion for (a) greedy and (b) altruist.

From Figure 6, one can see that the evolution of altruist
to some extent is related to the expectation level. Figure 6(b)
clearly shows the altruist fraction increases with 𝐸. The
tendency is quite similar to that of payoff shown in Figure 7.

Figure 8 shows the evolution of strategy types for different
𝐸. Similarly, after few generations (𝑡 < 20), the proportion
of A → G is identical with that of G → A. With increasing
𝐸, the fractions of G → G and A → A are reduced, while
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Figure 7: The payoff for (a) greedy and (b) altruist.
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Figure 8: The proportion of strategy changing: (a) 𝐸 = 20, (b) 𝐸 = 30, and (c) 𝐸 = 50.

the fractions of A→ G and G→ A increase simultaneously.
Intuitively speaking, it is quite reasonable that the higher the
expectation, the bigger the difference between expectation
and the actual payoff, and thus the higher the probability
changing.

As for the strategy pairs, Figure 9 shows the fraction
that the player with G (A) connecting with G (A) or A has
G neighbor. As 𝐸 increases, both A-A link and A-G link
increase, while G-G link decreases. This thus implies that
expectation promotes altruist.
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Figure 9: The proportion evolution of link: (a) 𝐸 = 20, (b) 𝐸 = 30, and (c) 𝐸 = 50.

4. Conclusion

The competition between the “greedy” and “altruist” strate-
gies is studied by numerical simulations and the results of
evolutionary processes are plotted for some relevant cases.
From the perspectives of payoff evolution, snaps, the trans-
form probability, and the link type, we give the intuitional
illustrations. Furthermore, to make full use of one’s own
information, the expectation level is introduced into the
strategy updating mechanism. The simulation results show
that the expectation level can to some extent promote the
fraction of altruist.
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