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We introduce the concept of generalized fuzzy module of BCK-algebras and present some fundamental properties. Also, we
introduce the concept of generalized interval-valued fuzzy BCK-submodule and present some fundamental properties.

1. Introduction

In 1966, Iseki and Imai [1, 2] introduced BCK-algebra. This
notion was originated from two different ways: (1) set
theory and (2) classical and no classical propositional calculi.
Certain algebraic structures, for example, Boolean-algebra
and MV -algebras, are introduced as BCK-algebras [3]. Every
module is an action of ring on certain group. This is, indeed,
a source of motivation to study the action of certain algebraic
structures on groups. BCK-module is an action of BCK-
algebra on commutative group. In 1994, the notion of BCK-
module was introduced by Abujabal et al. [4]. They estab-
lished isomorphism theorems and studied some properties
of BCK-modules. The theory of BCK-modules was further
developed by Perveen et al. [5].

After the introduction of fuzzy sets by Zadeh [6], there
have been a number of generalizations of this fundamental
concept. In 1991, Xi [7] applied fuzzy set theory to BCK-
algebras and introduced the notion of fuzzy subalgebras
(ideals) of the BCK-algebras, and since then some authors
studied fuzzy subalgebras and fuzzy ideals. A new type of
fuzzy subgroup, that is, the (€, € Vgq)-fuzzy subgroup, was
introduced in an earlier paper of Bhakat and Das [8]. In
fact, the (&, € vgq)-fuzzy subgroup is an important generaliza-
tion of Rosenfeld’s fuzzy subgroup. It is now natural to
investigate similar type of generalizations of the existing fuzzy
subsystems with other algebraic structures. With this objec-
tive in view, Jun [9] introduced the concept of («, §)-fuzzy
ideals of a BCK/BCI-algebra and investigated related results.

In [10] Zadeh made an extension of the concept of fuzzy set by
an interval-valued fuzzy set. In 2000, Jun [11] applied interval-
valued fuzzy set theory to BCK-algebras and introduced the
notion of interval-valued fuzzy subalgebras (ideals) of the
BCK-algebras. In this paper, we introduce the concept of
generalized fuzzy BCK-submodules and some basic proper-
ties are obtained and we define the concept of generalized
interval-valued fuzzy BCK-submodules and some basic prop-
erties are obtained.

2. Preliminaries

Definition 1 (see [8]). By a BCK-algebra one means an algebra
(X, *,0) of type (2, 0) satistying the following axioms:
(BCK-1) ((x * y) x (x x 2)) * (z % y) =0,
(BCK-2) (x * (x * y)) * y =0,
(BCK-3) x * x = 0,
(BCK-4)0 % x =0,

(BCK-5) x % y =0and y = x = 0 imply x = y, for all
x, ¥,z € X.

A partial ordering “<” is defined on X by x < y & x =*
y = 0. A BCK-algebra X is said to be bounded if there is an
element 1 € X suchthatx < 1, forall x € X, commutative if it
satisfies the identity x A y = y Ax, where x A y = y # (y * x),
for all x, y € X, and implicative if x * (y * x) = x, for all
x,y € X.



Definition 2 (see [12]). Let X be a BCK-algebra. Then by a
left X-module (abbreviated X-module), one means that an
abelian group M with an operation X x M — M with
(x,m) — xm satisfies the following axioms for all x, y € X
and m,n € M:

(i) (x A y)m = x(ym),
(ii) x(m +n) = xm + xn,
(iii) Om = 0.
Moreover, if X is bounded and M satisfies 1m = m, for all
m € M, then M is said to be unitary.
A mapping p : X — [0, 1] is called a fuzzy set in a BCK-
algebra X. For any fuzzy set 4 in X and any ¢t € [0, 1], we

define set U(y;t) = ;f = {x € X | u(x) > t}, which is called
upper t-level cut of u.

Definition 3 (see [12]). A fuzzy subset y of M is said to be a
fuzzy BCK-submodule if for all m,m;,m, € M and x € X,
the following axioms hold:

(FBCKMLI) p(m, +m,) = min{u(m, ), u(m,)},
(FBCKM2) p(-m) = u(m),
(FBCKM3) p(xm) > p(m).

Definition 4 (see [13]). A fuzzy set p in a set X of the form

te(0,1], if y=x
#(J’)Z{ , o
0, it y #x,

is said to be a fuzzy point with support x and value t and is
denoted by x,; we say that a fuzzy point x, belongs to a fuzzy
set y and write x, € p, if u(x) > t. A fuzzy point x, is quasi-
coincident with a fuzzy set y, if u(x) + ¢ > 1. In this case we
write x,qu. x, € Vqu means that x, € y or x,qu,x, € Aqu
means that x, € py and x,qu.

Theorem 5 (see [12]). Let yu € F (M), where F (M) is the set
of all fuzzy subsets of BCK-module M. Then y is a fuzzy BCK-
submodule of M if and only if

(i) p(0) = pu(m),
(ii) u(xm — yn) > min{u(m), u(n)}.

3. (¢ , € Vq)-Fuzzy BCK-Submodules

Definition 6. A fuzzy subset y of M is said to be an (¢, € Vq)-
fuzzy BCK-submodule if for all m,m,, m, € M and x € X
the following axioms hold:

(i) p(my + my) > min{u(m,), u(m,), 0.5},
(ii) u(-m) = min{u(m), 0.5},
(iii) p(xm) > min{u(m),0.5}.
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Example 7. Let X = {0,a,b,c} and consider the following
equation:

2)
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Then (X, ) is a bounded implicative BCK-algebra and so is a
BCK-module over itself. Now let ¢, t,, ¢, € [0, 1] be such that
ty > t; > t,. Define y : X — [0,1] by u(0) = t,, u(a) = t,,
and pu(b) = u(c) = t,. Then u is an (€, € Vvq)-fuzzy BCK-
submodule of X.

Theorem 8. A fuzzy subset y of M is an (€, € Vq)-fuzzy BCK-
submodule if and only if
(i) p(xm) = min{u(m), 0.5},
(ii) p(m,; —m,) = min{u(m,), u(m,), 0.5}.
Proof. From the definition of (€,€ Vq)-fuzzy BCK-sub-
module,
(i) p(xm) > min{pu(m), 0.5},

(ii) p(m; —my) = pulm; + (-my)) > minfu(m,),
u(-m,), 0.5}.

But we know that yu(-m) = p(m).
Then u(m, —m,) > min{u(m,), u(m,), 0.5}.

Conversely, we have u(xm) =
min{u(m), u(0),0.5}.
Since ¢(0) > min{u(m), 0.5},

ulxm — y0) =

then y(xm) > min{u(m), 0.5}.
And u(m, —my,) = u(l-m; — 1-m,) > min{u(m,),
(4(m;), 0.5}

This proves that y is an (€, €
submodule.

vq)-fuzzy BCK-

O

Theorem 9. Let yu € F (M), where F (M) is the set of all fuzzy
subsets of BCK-module M. Then p is an (€, € Vq)-fuzzy BCK-
submodule of M if and only if
(i) u(0) = minf{u(m), 0.5},
(ii) u(xm — yn) > min{u(m), u(n), 0.5}.
Proof. Let ybe an (¢, € Vg)-fuzzy BCK-submodule:
(i) Consider p(xm) > min{u(m), 0.5}, put x = 0, and
then p(0) > minf{u(m), 0.5}.
Consider p(xm — yn) > min{u(xm), u(yn),0.5} >
min{u(m), u(n), 0.5}.
Hence, u(xm — yn) > min{u(m), u(n), 0.5}.

Conversely, we have y(xm — y0) > min{u(m), u(0),
0.5} > min{u(m), 0.5}
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and p(m—n) = u(1-m—1-n) > min{u(m), u(n), 0.5}.

This proves that y is an (€,€ Vvgq)-fuzzy BCK-

submodule.

O

Theorem 10. A fuzzy set y in X is an (€, € Vq)-fuzzy BCK-
submodule if and only if y, # ¢, t € (0,0.5] is BCK-submodule.

Proof. Let u, # ¢, t € (0,05],t < 0.5, and p, = {x €
X ¢ oulx) = thlet myn € p,; then p(m),u(n) > t.
Since p is an (€, € vq)-fuzzy BCK-submodule, u(m — n) >
min{u(m), u(n),0.5} = t, and y(m —n) > t, thenm —n €
p — (i);letm € p,x € X; then u(m) > t; then pu(xm) >
min{u(m), 0.5} > min{t,0.5} = t; then u(xm) > t. Hence,
xm € y, — (ii) and from (i) and (ii) we get that y, is BCK-
submodule.

Conversely, let t = min{u(x),u(y),0.5,L,x,y € w,
p(x), u(y) = t; since y, is BCK-submodule, then x — y € 3
this implies that u(x — y) > t = min{u(x), u(y), 0.5}. Hence,
pulx — y) = min{u(x), u(y),0.5}; let s = min{u(m), 0.5}; let
X € W, m € ugthen xm € pg; this implies that u(xm) > s =
min{u(m), 0.5}. Hence, u(xm) > min{u(m), 0.5} proving y is
an (€, € Vq)-fuzzy BCK-submodule. O

Theorem 11. Let y be a fuzzy set in X. Then y, + ¢ is BCK-
submodule for all t € (0.5, 1] if and only if u satisfies

(i) Vx € X,m € M, max{u(xm), 0.5} > u(m),

(i) vx € X,mmn € M,max{u(m — n),05} =
min{u(m), p(n)}.

Proof. Assume that y, is BCK-submodule of X for all ¢ €
(0.5,1] if there is a € X such that condition (i) is not valid
implying that (3a € X) (max{u(xm),0.5} < wu(a)); then
p(a) € (0.5,1] and a € U(y, u(a)) = t,,- But ulxm) < p(a)
implies xm ¢ p, ,a contradiction. Hence, (i) is valid. Suppose
that max{p(a — b),0.5} < minf{u(a), u(b)} = s for some
a,b € X. Thens € (0.51] and a,b € y,buta-b ¢ pu
since p(a — b) < s. This is a contradiction, and therefore (ii)
is valid.

Conversely, assume that y satisfies conditions (i) and (ii).
Lett € (0.5,1] for any x € p,; we have max{u(xm), 0.5} >
pu(m) =t > 0.5, s0 u(xm) > t; thus, xm € y;letmmn € X
be such that m € y, and n € y,; then max{u(m — n),0.5} >
min{u(m), u(n)} >t > 0.5, and thus u(m —n) > t implies that
m —n € y,. Hence, p, is BCK-submodule. O

Theorem 12. Every fuzzy BCK-submodule is an (€,€ Vq)-
fuzzy BCK-submodule.

Proof. Let u be fuzzy BCK-submodule (m € M,x,y €
X,t € (0,1]); then we have pu(0) > u(m) > min{u(m),0.5};
hence, u(0) > min{u(m),0.5} (i) and u(xm — yn) =
min{u(m), w(n)} > min{u(m), u(n), 0.5}; then p(xm — yn) >
min{u(m), u(n), 0.5} (ii); from (i) and (ii) we get that g is an
(€, € vgq)-fuzzy BCK-submodule. O

The following example shows that the converse of
Theorem 12 is not true in general.

Example 13. Let X = {0,a,b,c,d, 1} be the set along with
binary operation * defined on it by (3); then (X, *,0) forms
a bounded commutative, nonimplicative BCK-algebra. Now
for the subset M = {0, a,c,d} of X, define an operation + as
x+y=(x*y)V(y=*x).By(4), it follows that (M, +) forms
a commutative group. Define scaler multiplication (X, M) —
M by xm =xAmforall x € X and m € M(see (5)):

* |0|alblcl|d]|1
0/0[{0[0]|0]|0|O0O
alal0]|0]|a|0]0
bibla|0|b|al|0 (3)
clc|c|c|0]|0]|0
d|d|clc|al0]0
1|(1|d|c|blal|0
+|0|alc|d
0|0falc|d
ala|0|d|c (4)
clc|d|0]a
did|clal|0
AlOlalcld
0/0|0]|0f0
a|l0la|0|a
bi0a|0|a (5)
c|0]|0fc|c
d|0|a|c|d
1|0|alc|d

Then (M, +) forms an X-module. Now let £, t,,¢, € [0,1] be
such that £, > t; > t,. Define y : M — [0, 1] by u(0) = ¢,
p(a) = t,, and p(c) = pu(d) = t,. Then p is an (¢, € vq)-fuzzy
BCK-submodule of X, but it is not fuzzy BCK-submodule of
Xif u < 0.5.

Theorem 14. Let u be an (€, € Vq)-fuzzy BCK-submodule of
X such that u(m), u(n) < 0.5 forallm,n € X. Then p is a fuzzy
BCK-submodule of X.

Proof. Since y is an (€, € Vq)-fuzzy BCK-submodule of X,
then it satisfies these two conditions:

(i) u(0) = min{u(m), 0.5},
(ii) p(xm — yn) > min{u(m), u(n), 0.5}.

Now we want to show that y is an (€, €)-fuzzy BCK-
submodule of X.

Since u(m) < 0.5,

then p(0) > min{u(m), 0.5} > u(m).
Hence, 1(0) > p(m),

and since u(m), u(n) < 0.5,

then p(xm— yn) > min{u(m), u(n), 0.5} > min{u(m),
u(n)}.



Hence, u(xm — yn) > min{u(m), u(n)}.
Then y is a fuzzy BCK-submodule of X.

O

Lemma 15. Let y be a (€,€ Vq)-fuzzy BCK-submodule of
module M. Let m,n € M, x,y € X such that u(m) < u(n);
then

(i) u(xm — yn) = u(m) if u(m) < 0.5,
(ii) u(xm), u(xn) = 0.5 if u(m) > 0.5.

Proof. Since y is a fuzzy submodule of M, we have pu(xm) >
min{u(m), 0.5}.

(i) Let u(m) < 0.5; then p(xm — yn) > min{u(m),
u(n),0.5} > min{u(m), 0.5} since u(m) < u(n) =
u(m), since u(m) < 0.5.

Then p(xm — yn) = u(m).

(ii) If u(m) > 0.5, then p(xm) > min{u(m),0.5} =
u(@m). But p(m) > 0.5.

This implies that p(xm) > 0.5.

If u(m) > 0.5, then u(xn) > minf{u(n),0.5}, but
u(m) < u(n) = u(m), and pu(m) > 0.5.

Then p(xn) > 0.5.
O

Definition 16. Let y and v be two (€,€ Vq)-fuzzy BCK-
submodules and the intersection of y and v is defined as
follows:

p(x)nv(x)=(pnv)(x)=min{u(x),v(x),0.5}. (6)

Proposition 17. Let {y; : i € A} be a nonempty family of an
(€, € Vq)-fuzzy BCK-submodule of M. Then N;cpp; is an (€, €
Vq)-fuzzy BCK-submodule of M.

Proof. Since y; is an (€,€ Vq)-fuzzy BCK-submodule of
M, then y; satisfies conditions of (€,€ Vq)-fuzzy BCK-
submodule. Let i = 1,2,...,n; let y; and p, be an (¢, € vq)-
fuzzy BCK-submodule; then p; and y, satisfy conditions of
(€, € vg)-fuzzy BCK-submodule.

Now we want to prove that (¢; N p,) is an (€, € Vq)-fuzzy
BCK-submodule.

(i) Consider (4; N u,)(0) = minfy, (0), u,(0),0.5} >
min{y, (m), pu,(m), 0.5} = (u; N p,)(m).

Hence,
(1 N ) (0) = (g N ) (m). (7)

(i) Consider (¢, N w,)(xm — yn) = min{y,(xm —
yn), y(xm — yn), 0.5} > min{min{y, (m), u,(n), 0.5},
minf{y,(m), u,(n),0.5},0.5} = min{min{y, (m),
U, (m), 0.5}, min{y, (n), u,(n),0.5},0.5} = min{(y;N
) (m), (g N py) (1), 0.5}
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Hence,
(11 N y) (xm — yn)
= min {(!41 n P‘z) (m), (P‘l n P‘z) (n), 0-5} .

(8)

From (i) and (ii) we get that (¢; N p,) is an (€, € vVg)-
fuzzy BCK-submodule.

Furthermore, N, p; is an (€, €
submodule.

vq)-fuzzy BCK-

O

Similarly, we can prove the generalization of previous
proposition.

Theorem 18. Let {y; : i € A} be a family of an (€, € Vq,)-
fuzzy BCK-submodule of M. Then Ny ; is an (€, € Vqy)-fuzzy
BCK-submodule of M.

The following example shows that the union of two (¢, €
vq)-fuzzy BCK-submodules of X may not be an (€, € vg)-
fuzzy BCK-submodule of X.

Example 19. Let X = {0,a,b,c} be BCK-algebra which is
given in Example 7 and let y be an (€, € Vvgq)-fuzzy BCK-
submodule of X which is 4(0) = 0.6, u(a) = 0.5, u(b) =
u(c) = 0.3. Let v be a fuzzy set in X defined by »(0) =
0.5,%(a) = 04,v() = v(c) = 0.2. Then v is an (€, € Vq)-
fuzzy BCK-submodule of X. The union of ¢ and v is given
by u(x) U v(x) = (U »)(x) = max{u(x),v(x)}. Hence,
(U)(0) = 0.6, (pUv)(a) = 0.5, (uUv)(b) = (uU»)(c) = 0.3.
Then

(uu») (m; +m,)

2 min {(uU9) (m), (uU9) (m),05).
Suppose that m, = 0 and m, = b; then 0 + b = b:
(pu») (®) = min{(pU»)(0),(pur)(®),0.5}
0.3 > min {max { (0), 4 (b)} , max {v (0),» (b)}, 0.5}
0.3 > min {max {0.6, 0.3}, max {0.5, 0.2}, 0.5} (10)

0.3 > min {0.6,0.5, 0.5}
0.3 > 0.5,

a contradiction; hence, (¢ U ) is not (€, € Vq)-fuzzy BCK-
submodule of X.

Definition 20. Let k € N; y; is an (€, € Vq)-fuzzy BCK-
submodule fori € N, = {1,2,...,k} and x € X. Then define
Yien, i as follows:

( Z Mi) (m)
= an

= sup min{p (@), (a),... i (@), 0.5}

m:ZieNk 9
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Proposition 21. Let y; be an (€, € Vq)-fuzzy BCK-submodule.
Then Yen, i + Lien, Hi < Dien, Hi-

Proof. One has

z.”i+ Z.”i: Z(Mz’"’."ti)

ieNy ieNy ieNy

= sup min{(y; +p) (@), (1 + )

m:ZieNk 9

(@), (e + i) (), 0.5} (12)

< sup min{y (a)), ()., i (@), 0.5}

m:ZieNk a;
< Z ;.
ieNg
O

Theorem 22. Let y; be an (€, € Vq)-fuzzy BCK-submodule, for
i € Ny then Yy, p; is an (€, € Vq)-fuzzy BCK-submodule.

Proof. Since y; is an (€, € Vq)-fuzzy BCK-submodule, then
the following conditions hold:

(i) 1;(0) = min{y;(m), 0.5}, for i € N,
(ii) p;(xm — yn) > min{y;(m), u;(n), 0.5}, for i € N.

Now we want to prove that },cy, #; satisfies condi-
tions (i) and (ii).

We know that

( Z P‘i) (m)
ieNy (13)

= sup  min{u (@), (). (a), 0.5}

m:ZieNk a;

Now we want to prove that .., ¢; is an (€, € Vq)-
fuzzy BCK-submodule.

Prove (i):

AV

ieN,

= sup min{p (0,),45(0,),. o4 (0f), 0.5} (14)

m=ZieNk 0;
> min {g; (x,), ¢ (%5) -+ piy (%) 0.5} .

Since ; is an (€, € Vq)-fuzzy BCK-submodule

then (i) holds.

Prove (ii):
Yuilxm—yn) = sup  minfu (@), p(a),
ieNy xm*}’”=2ieNk a;

o (a0),0.5} = min {an, (my) g (my) o1y (my), 1)

ty (1) s i () » i (1), 0.5}

Since y; is an (€, € vq)-fuzzy BCK-submodule, then
(ii) holds.

This implies that ., ¢; is an (€, € vg)-fuzzy BCK-
submodule.

O

4. Some Kinds of (¢ , € Vg)-Interval-Valued
Fuzzy BCK-Submodule

For any F(x) = [F (x),F"(x)] and t = [t7,t"] we define
F(x)+f = [F (x)+t,F"(x)+t"], forall x € X.In particular,
if F-(x) +t > 1, we write F(x) + > [1,1]. Let x € X and
t € D[0,1]. An interval-valued fuzzy set G of a BCK-algebra
X is said to be an interval-valued fuzzy point x;, with support
x and interval-valued ¢, if

if y=x

_ {?(# [0,0])
G (16)

[0, 0] if y+x

for all y € X; we say x; belongs to (resp., is quasi-coincident
with) an interval-valued fuzzy set F, written by x; € F (resp.,
x;qF), if F(x) > t (resp., F(x) + t > [1,1]); if x; € F or x;qF,
then we write x; € VgF.

Definition 23 (see [7]). An interval-valued fuzzy set of X is
F : X - DI[0, 1], where one denotes, for each x € X, F(x) =
[F~(x), F*(x)] € D[0,1].

Definition 24 (see [7]). Let F be an interval-valued fuzzy set
of X. Then for every [0,0] < f < [1, 1], the crisp set E ={xe
X | F(x) > 1} is called the level subset of F.

Definition 25. An interval-valued fuzzy subset F of M is said
to be an (€, € Vq)-interval-valued fuzzy BCK-submodule of
X for all [0,0] < £ < [1,1] and for all m,m,;, m, € M and
x € X the following axioms hold:

(i) 1?(m1 +m,) > rmin{ﬁ(ml),ﬁ(mz), [0.5,0.5]},
(ii) F(—=m) > r min{F(m), [0.5,0.5]},
(iii) F(xm) > r min{F(m), [0.5,0.5]}.
Example 26. Consider the BCK-algebra X = {0,a,b,c} as
in Example 7. Define an interval-valued fuzzy set F of X by
F(0) = [0.4,0.5], F(a) = [0.3,0.2], and F(b) = F(c) =

[0.1,0.2]. Hence, Fisan (¢, € Vq)-interval-valued fuzzy BCK-
submodule of X.

Theorem 27. Let F € F(M), where (M) is the set of all
interval-valued fuzzy subsets of BCK-module M. Then F is an
(e, € vq)-interval-valued fuzzy BCK-submodule of M if and

only if
(i) F(0) > r min{F(m), [0.5,0.5]},
(i) F(xm — yn) > r min{F(m), F(n), [0.5,0.5]}.



Proof. Let F be an (€,€ Vgq)-interval-valued fuzzy BCK-
submodule:

(i) F(xm) = r min{F(m), [0.5,0.5]},and x = 0 implies
that
F(0) > r min{F(m), [0.5,0.5]},

F(xm — yn) > rmin{F(xm),F(yn),[0.5,0.5]} >
r min{F(m), F(n), [0.5,0.5]}.

Then F(xm — yn) >r min{F(m), F(n), [0.5,0.5]}.

F(xm — y0) >
r min{F(m), [0.5,

Conversely, we have F(xm) =
r min{F(m), F(0), [0.5,0.5]} >

0.5]}.

Consider Fm—-n) = F1-m—1-n) > rmin{F(m),
F(n),[0.5,0.5]}.

Hence, F is an (€, € Vq)-interval-valued fuzzy BCK-
submodule.

O

Theorem 28. An interval-valued fuzzy subset F of M is an
(e, € vq)-interval-valued fuzzy BCK-submodule if and only if
(i) F(xm) = r min{F(m), [0.5,0.5]},
(ii) ?(m1 —-m,) > rmin{ﬁ(ml),ﬁ(mz), [0.5,0.5]}.
Proof. From the definition of (¢, € Vg)-interval-valued fuzzy
BCK-submodule,
(i) F(xm) > r min{F(m), [0.5,0.5]},
(i) F(m, - my) = F(m, + (-m,)) = rmin{F(m,),
F(-m,), [0.5,0.5]}.
But we know that F(—m) = F(mn).
Then F(m, — m,) > r min{F(m,), F(m,), [0.5, 0.5]}.

F(xm - y0) >
r min{F(m), [0.5,

Conversely, we have F(xm) =
r min{F(m), F(0), [0.5,0.5]}, >
0.5]}.

Use Theorem 27, since F(0) > r min{F(m), [0.5,0.5]},

and 1_3(m1 -m,) = F(1- my—1-my,) > rmin{ﬁ(ml),
F(m,),[0.5,0.5]}.

Hence, F is an (€, € Vg)-interval-valued fuzzy BCK-
submodule.

O

Theorem 29. An interval-valued fuzzy subset F of M is an
(€, € vq)-interval-valued fuzzy BCK-submodule if and only if
1_3;(9& ¢) is BCK-submodule of X for all [0,0] < t < [0.5,0.5].

Proof. Let F be an (¢, € Vvq)-interval-valued fuzzy BCK-
submodule of X and [0,0] < ¢ < [0.50.5] for any
m,n € F;; then F(m),F(n) > t. Since F is an (¢, € vq)-
interval-valued fuzzy BCK-submodule, then Fm — n) >
r min{F(m), F(n), [0.5,0.5]} = £, which implies that F(m —

n) > t. Hence, m —n € Fyletm € Fp x € X;then
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F(m) > t. FurthermPre, I_J(xm)_z r min{_l_J(m), [0.5,0.5]} >
r min{t, [0.5,0.5]} = ¢, and then F(xm) > t. Hence, xm € Fg
hence 1_3; is BCK-submodule.

Conversely, let f = rmin{F(m), F(n), [0.5,0.5]},m,n €
E; then F(m), F(n) > t; since F; is BCK-submodule, then
m —n € F; implies that Fm — n) > t = rmin{F(m),
F(n), 0.5, 0.5]} then F(m—n) > r min{l_?(m),_l_?(n), [0.5,0.5]};
let s = r min{F(m), [0.5,0.5]}, and let x € F;,m € Fg then
xm € Fg implies that F(xm) > s = rmin{F(m), [0.5,0.5]};
then F(xm) > r min{F(m), [0.5,0.5]}.

Hence, F is an (e,€ vg)-interval-valued fuzzy BCK-
submodule. O

5. Conclusions

In this paper, we introduced the concept of generalized fuzzy
BCK-submodules and some basic properties were obtained
and we defined the concept of generalized interval-valued
fuzzy BCK-submodules and some basic properties were
obtained. Other topics in this area which could be a further
research are (€, € vVg)-fuzzy BCK-submodules, translations of
(e, € vg)-fuzzy BCK-submodule, and other generalizations
of fuzzy set theory to BCK-submodules.
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