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Seasonal component has been a key factor in time series modeling for medium-term electric load forecasting. In this paper, a
seasonal-ARIMAmodel is developed, but the parameters of the SAR and the SMA turn out to be quite nonsignificant in most cases
during the model order selection. To address this issue, the hybrid time series model based on the HP filter is utilized to extract
the spectrum sequences with different frequencies and analyze interactions among various factors. Finally, an integrative forecast is
made for the electricity consumption from January to November in 2014. The empirical results demonstrate that the method with
HP filter could reduce the relative error caused by the interaction between the trend component and the seasonal component.

1. Introduction

To a certain extent, the medium-term power consumption
is affected by the seasonal factors, the historical consump-
tion, and consumption peaks caused by unexpected events.
According to the current prediction techniques, these factors
are temporarily categorized into the long-term trend (𝐿), the
seasonal fluctuation (𝑆), the cycle volatility factors (𝐶), and
the irregular volatility factors (𝐼). The influences of these
factors superimpose on each other and thus that became a
difficult problem in model construction.

In recent years, many researches have been conducted
in the field of the above four fluctuation factors in power
load forecasting.The neural network method is often used to
make predictions on electric load [1, 2], whereas, considering
the data volume, the time sequence model is more in line
with the characteristics of the sequence than the neural
network model [3]. Azadeh et al. [4] combined the seasonal
fluctuation and the nonlinearity of forecasting with the fuzzy
system and data mining techniques to analyze the monthly
electricity demand in Iran. The SVM model can also be
exploited to analyze the effect of the seasonal fluctuation and
the long-term trend [5].The significant trend sequence can be
analyzed through the GM(1, 1)model combined with neural
networkmethod [6–8]. It follows that the characteristics such
as trend and seasonal ones are the key factors which affect

the accuracy of the load forecasting in the medium-term
load forecasting. The SARIMA model which could eliminate
the effects of seasonal factor and irregular change factors
is more suitable for the monthly electricity consumption
forecasting [9, 10]. The decomposition method of sequence
is often used to analyze the superimposed effect produced
by seasonal change tendency and the long-term growth and
decline trend [11]. Among them, the application of Hodrick-
Prescott (HP) filtering method has the certain superiority in
the series decomposition [12, 13].

The seasonal-ARIMA model is able to take all seasonal
fluctuation of sequence into full account. However, due to the
interaction of the four fluctuations, “𝐿”, “𝑆”, “𝐶,” and “𝐼”, and
the interaction between the seasonal factors and the nonsea-
sonal factors, the seasonal parameters are nonsignificant in
practical applications in most cases. HP filter is based on the
spectral analysis to separate the data sequences and relieve
the superimposed impact of the fluctuations. In this paper,
by using theHP filter we get the sequence {𝐺}with significant
trend and the sequence {𝐶} with significant periodicity. With
separated modeling and integrative analysis, the model can
successfully relieve the mutual influence of the changing
trend and improve the precision of prediction. Besides, to
copewith themodel order problems, the paper has conducted
a long-memory test on the original data sequence. The result
shows that the sequence does not meet the standard random
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walk process, which puts forward new ideas with the power
load forecasting.

The purpose of this paper is to design an accurate
prediction model. And the remaining parts of the paper are
organized as follows. Section 2 introduces the principle of the
method. Section 3 describes the process of the power load
forecasting by using the traditionalmethod and the improved
method anddiscusses the results.The last sectionmakes some
conclusions of this paper.

2. Forecasting Models

2.1. SARIMA Model. SARIMA (Seasonal Autoregressive
Integrated Moving Average), which is denoted as SARIMA(𝑝, 𝑑, 𝑞)(𝑃,𝐷,𝑄)𝑆, is based on the traditional ARIMA(𝑝, 𝑑, 𝑞)
model, and it can eliminate the periodicity influence in a
prediction process and thus is a widely applied model for
forecasting seasonal time series [14, 15]. The formula can be
described as follows:

𝜙𝑝 (𝐿)Φ𝑃 (𝐿𝑠) (1 − 𝐿)𝑑 (1 − 𝐿𝑠)𝐷 𝑦𝑡
= 𝜃𝑞 (𝐿)Θ𝑄 (𝐿𝑠) 𝜀𝑡, (1)

where 𝐿 is the backward shift operator. The integers 𝑝, 𝑞,𝑃, and 𝑄 are the order of 𝜙𝑝(𝐿), 𝜃𝑞(𝐿), Φ𝑃(𝐿𝑠), and Θ𝑄(𝐿𝑠),
respectively. The integers 𝑑 and 𝐷 are the number of regular
differences and seasonal differences, respectively, and, for a
nonstationary time series 𝑦𝑡, (1 − 𝐿)𝑑𝑦𝑡 could come to a
stationary series by using the difference operator 1 − 𝐿. 𝐿
satisfies the formula 𝐿𝑘𝑦𝑡 = 𝑦𝑡−𝑘. The formulas

𝜙𝑝 (𝐿) = 1 − 𝜙1𝐿 − 𝜙2𝐿2 − 𝜙3𝐿3 − ⋅ ⋅ ⋅ − 𝜙𝑝𝐿𝑝,
𝜃𝑞 (𝐿) = 1 − 𝜃1𝐿 − 𝜃2𝐿2 − 𝜃3𝐿3 − ⋅ ⋅ ⋅ − 𝜃𝑞𝐿𝑞 (2)

are polynomials in 𝐿 of degrees 𝑝 and 𝑞. And the formulas

Φ𝑃 (𝐿𝑠) = 1 − Φ1𝐿𝑠 − Φ2𝐿2𝑠 − Φ3𝐿3𝑠 − ⋅ ⋅ ⋅ − Φ𝑃𝐿𝑃𝑠,
Θ𝑄 (𝐿𝑠) = 1 − Θ1𝐿𝑠 − Φ2𝐿2𝑠 − Θ3𝐿3𝑠 − ⋅ ⋅ ⋅ − Θ𝑄𝐿𝑄𝑠 (3)

are polynomials in 𝐿 of degrees 𝑃 and 𝑄. And 𝜀𝑡 which
is a current interference with variance 𝜎2 and mean = 0 is
considered as the estimated residual at time 𝑡. At the same
time, 𝜀𝑡 is an independent and identically distributed normal
random variable.

In the process of the seasonal time series analysis, there
are three questions that need to be analyzed.

(1) StationaryTest.Thestationarity of the time series {𝑦𝑡} is the
premise for building the S-ARIMAmodel. When it meets the
condition that 𝜇, 𝜎2, and 𝛾𝑙 are constants in formula (4), we
can define {𝑦𝑡} as weakly stationary or covariance stationary:

𝐸 (𝑦𝑡) = 𝜇,
var (𝑦𝑡) = 𝜎2,

cov (𝑦𝑡, 𝑦𝑡−1) = 𝛾𝑙.
(4)

The ADF unit root test can be used to test whether
the sequence {𝑦𝑡} is stationary or not. If the sequence is
nonstationary, the difference transformation would be used
until the difference sequence is stationary. The stationary
sequence with differential transformation is defined as 𝑤𝑡 =Δ𝑑𝑦𝑡.
(2) Seasonal Analysis. Before we make the seasonal analysis,
the autocorrelation function should be defined. It can be
expressed as follows:

𝜌𝑘 = ∑𝑛𝑡=𝑘+1 (𝑤𝑡 − 𝑤) (𝑤𝑡−𝑘 − 𝑤)∑𝑛𝑡=1 (𝑤𝑡 − 𝑤)2 , (5)

where 𝑤𝑡 is a stationary sequence and 𝑤 is the average of the
sequence {𝑤𝑡}. By judging the autocorrelation function and
the confidence interval, the periodicity and the cycle 𝑆 of {𝑤𝑡}
could be obtained. According to the additive model which is
defined as (6), the sequence {𝑤𝑡} can be seasonally adjusted:

𝑤𝑡 = 𝑇𝐶𝑡 + 𝑆𝑡 + 𝐼𝑡, (6)

where 𝑇𝐶𝑡 means long-term trend and cycle volatility, 𝑆𝑡
means seasonal fluctuation, and 𝐼𝑡 means irregular volatility.

(3) Model Order Selection and Model Prediction. Firstly,
the seasonally adjusted sequence is defined as {𝑤SA}. The
lag intervals for endogenous function and the confidence
interval of the autocorrelation function and the partial auto-
correlation function should be analyzed in order to determine
the order of AR(𝑝), MA(𝑞), SAR(𝑃), and SMA(𝑄) and build
the ARIMA(𝑝, 𝑑, 𝑞)(𝑃,𝐷, 𝑄)𝑆 model. Then, according to the
principle of minimum mean square error, the prediction is
the conditional expectation of 𝑦𝑇+1, and it can be expressed
as follows:

𝑦̂𝑇 (𝑙) = 𝐸 (𝑦𝑇+𝑙𝑦𝑇, 𝑦𝑇−1, . . . , 𝑦1) ; (7)

when the higher-order problem exists in the ARIMA(𝑝, 𝑑,𝑞)(𝑃,𝐷,𝑄)𝑆 model, we can make the long-memory test for
the stationary sequence {𝑤𝑡}.
2.2. 𝑅/𝑆Method of ARFIMAModel. The long-memory anal-
ysis, which is specific to the random walk process, is put
forward by H. E. Hurst in the research of the relationship
between the reservoir of water flow and the storage capacity
in 1951. And he puts forward the rescaled range analysis (𝑅/𝑆)
for the long-memory analysis. Then the researchers often
use this method for financial sequence analysis and build
the Autoregressive Fractionally Integrated Moving Average
(ARFIMA) model [16, 17]. The analysis procedure of 𝑅/𝑆
method is shown in the following paragraph.

Firstly, the sequence {𝑤𝑡} is divided into the infinite
number of intervals, and the length of each interval is 𝑛. Every
interval is defined as follows:

𝑤𝑡,𝑛 = 𝑡∑
𝑢=1

(𝑤𝑢 −𝑀𝑛) , (8)
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where 𝑀𝑛 is the average of the interval 𝑤𝑢 and 𝑤𝑡,𝑛 is the
cumulative deviation of the interval𝑤𝑢. Then the letter 𝑅 can
be used in denoting the difference between the maximum𝑤𝑡,𝑛 and the minimum 𝑤𝑡,𝑛, and the letter 𝑆 can be used in
denoting the standard deviation of the sequence {𝑤𝑢}, so the
formula of 𝑅/𝑆 analysis can be expressed as follows:

𝐾 (𝑛)𝐻 = 𝑅𝑆 = max (𝑤𝑡,𝑛) −min (𝑤𝑡,𝑛)√(1/𝑛)∑𝑛𝑡=1 (𝑤𝑡 − 𝑤)2 , (9)

where𝐻, which is the Hurst Index, is defined as the index of𝑛 and𝐾 is a constant.The logarithm should be taken on both
sides of the equation, and adjust the equation as follows:

𝐻 = (log (𝑅/𝑆) − log (𝐾))
log (𝑛) . (10)

Then the Hurst Index can be worked out by the OLS
method. Finally, the long memory can be judged by the
standard as follows [18]:

0 ≤ 𝐻 < 0.5 {𝑤𝑡} : mean reversion process

𝐻 = 0.5 {𝑤𝑡} : standard random walk process

0.5 < 𝐻 < 1 {𝑤𝑡} : long memory process;
(11)

when 0.5 < 𝐻 < 1, the original sequence is likely to have
a long memory [19]; however, whether there is an ARFIMA
model which is suitable for most of the medium-term load
forecasting cannot be guaranteed [20].

2.3. Orthogonal Polynomial Curve Fitting. Orthogonal poly-
nomial curve fitting is the improvement of the Ordinary
Least Square (OLS). There is a premise that the independent
variables must be accurate values before using the OLS
method, but it is not reasonable inmost cases.When the error
of the independent variables reaches a certain extent, the
prediction model with OLS method would produce a certain
error. In view of this situation, the orthogonal polynomial
curve fitting is proposed. And its basic principle is that the
square sum of the orthogonal distance from all points to
the fitting curve is minimum. In the OLS method the fitting
polynomial can be expressed as follows:

𝑦̂𝑡 = 𝑓 (𝑎, 𝑥𝑡) , 𝑡 = 1, 2, . . . , (12)

which is fitted by the least square criterion: the distance
square sum between the predicted value and actual value is
minimum, and it can be expressed as follows:

min∑𝑒2𝑡 = min∑(𝑦𝑡 − 𝑦̂𝑡)2
= min∑(𝑦𝑡 − 𝑎̂0 − 𝑎̂1𝑥𝑡 − ⋅ ⋅ ⋅ − 𝑎̂𝑛𝑥𝑛𝑡 )2 ; (13)

then the undetermined coefficients can be got by the mean
value theorem. This orthogonal polynomial curve fitting
method is improved on the basis of OLS method, and the
errors of the dependent variable and the independent variable

are considered to build forecasting model. And the fitting
polynomial can be expressed as follows:

𝑦̂𝑡 = 𝑓 (𝑎, 𝑥̂𝑡) , 𝑡 = 1, 2, . . . , (14)

where 𝑥̂𝑡 is the predicted value of the independent variable 𝑥𝑡.
The orthogonal distance error can be expressed as follows:

𝜀𝑡 = √𝛿2𝑡 + 𝜎2𝑡 , (15)

where𝛿𝑡 and𝜎𝑡 are the randomerror of𝑥𝑡 and𝑦𝑡, respectively.
Then the criterion of the orthogonal polynomial curve fitting
can be expressed as follows:

min∑𝜀2𝑡
= min∑[𝛿2𝑡 + (𝑦𝑡 − 𝑎̂0 − 𝑎̂1𝑥𝑡 − ⋅ ⋅ ⋅ − 𝑎̂𝑛𝑥𝑛𝑡 )2] . (16)

Combining the orthogonal polynomial with the OLS
method, the multinomial model can rise to the imitative
effect.

The objective function can be expressed as follows:

𝐷 = 𝑛∑
𝑖=1

𝑑 (𝑃𝑖, 𝐿)2 , (17)

where 𝑃𝑖 represents the real point, 𝐿 represents the fitted
curve, and 𝑑(𝑃𝑖, 𝐿) represents the orthogonal distance from
the real points to the fitted curve.

The parameter equation of fitted curve 𝐿 can be defined
as follows:

𝑥 (𝛾) = 𝛼 + 𝛾 cos 𝜃,
𝑦 (𝛾) = 𝛽 + 𝛾 sin 𝜃, (18)

where {𝛼, 𝛽} is a point of fitted curve 𝐿 and 𝜃 is the included
angle of the tangent to the abscissa axis, so the objective
function can be expressed as follows:

𝐷 = 𝑛∑
𝑖=1

((𝑥𝑖 − 𝛼) × sin 𝜃 − (𝑦𝑖 − 𝛽) cos 𝜃)2 . (19)

Then we should take its partial derivative with respect to𝛼, 𝛽, and 𝜃 in order to calculate the minimum error and the
fitted curve. The equation set can be expressed as follows:

𝜕𝐷𝜕𝛼 = −2𝑛 (𝑥 − 𝛼) sin2𝜃 + 𝑛 (𝑦 − 𝛽) sin 2𝜃 = 0
𝜕𝐷𝜕𝛽 = 𝑛 (𝑥 − 𝛼) sin 2𝜃 − 2𝑛 (𝑦 − 𝛽) cos2𝜃 = 0
𝜕𝐷𝜕𝜃 = ( 𝑛∑

𝑡=1

(𝑥𝑖 − 𝛼)2 − 𝑛∑
𝑡=1

(𝑦𝑖 − 𝛽)2 sin 2𝜃)
− 2( 𝑛∑
𝑡=1

(𝑥𝑖 − 𝛼) (𝑦𝑖 − 𝛽)) cos 2𝜃 = 0,

(20)

where 𝑥 and 𝑦 are the mean values of the sequences {𝑥} and{𝑦}.
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2.4. Hodrick-Prescott Filter. Hodrick and Prescott first put
forward Hodrick-Prescott filter (HP filter) method in the
paper analyzing the economic cycle about postwar America.
The method regarded the time series as the spectrum for
analyzing [14, 15]. It divided the sequence into two groups,
and their relationship with the original sequence is counted
as

𝑦𝑡 = 𝑔𝑡 + 𝑐𝑡, (21)

where the sequence {𝐺} with long-term trend is denoted as𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝑛} and the sequence {𝐶} with short-term
volatility is denoted as 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}. The separation
process must satisfy the minimum loss function principle:

min{ 𝑛∑
𝑡=1

(𝑦𝑡 − 𝑔𝑡)2
+ 𝜆 𝑛∑
𝑡=1

[(𝑔𝑡+1 − 𝑔𝑡) − (𝑔𝑡 − 𝑔𝑡−1)]2} ,
(22)

where 𝜆 = 𝜎21/𝜎22 , where 𝜆 is the smoothing parameter and𝜎21 and 𝜎22 represent the standard deviation of the sequence{𝐺} and the sequence {𝐶}, respectively. When 𝜆 increases,
estimated total trend changes in relation to the change in the
sequence which is reduced. It means that 𝜆 takes the high
number, the estimated trend is more smooth, and when 𝜆
trends to infinity, estimated trend will be close to the linear
function. As a general rule of thumb, when we analyze the
monthly data, 𝜆 can be defined as 𝜆 = 14400.

In this paper, the HP filter is applied to the nonseasonally
adjusted series, and the original sequence is divided into
two sequences with the significant spectral frequency and
building themodel more accurately by weakening themutual
effect between the two sequences.

2.5. Error Estimation Methods. There are five basic error
estimation methods; simultaneously, the model can be eval-
uated by relative error (RE), mean absolute percentage error
(MAPE), rootmean square error (RMSE), andmean absolute
error (MAE), which can be expressed as follows:

RE𝑖 = 𝑦̂𝑖 − 𝑦𝑖𝑦𝑖 × 100%,
MAPE = 1𝑛

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑦̂𝑖 − 𝑦𝑖𝑦𝑖 × 100%󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,
RMSE = √ 1𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2,
MAE = 1𝑛

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦̂𝑖󵄨󵄨󵄨󵄨 .

(23)

2.6. Sequence Analysis and Combination Model Building. The
improvedmodel is based on separating the original sequence
by filtering analysis. Then according to the characteristics of

each sequence, the models can be established for forecasting.
The detailed process is as follows.

(1) According to the HP filtering principle, the original
sequence {𝑦𝑡}, defined as the superposition of the waves with
different frequencies, can be divided into the sequence {𝐺}
and the sequence {𝐶}.

(2) The sequence {𝐺} is defined as a function of time
“𝑇,” and its scatter-plot can be drawn. The error term from
each point to the fitting curve is denoted as 𝛿1, 𝛿2, . . . , 𝛿𝑛,𝜎1, 𝜎2, . . . , 𝜎𝑛. Then the orthogonal polynomial with the
OLS method is used for making polynomial curve fit-
ting to minimize the sum of squared errors min∑𝜀2𝑡 =
min∑[(√𝛿2𝑡 + 𝜎2𝑡 )2].

(3) According to the polynomial fitting in the previous
step, the sequences’ predictions can be got and defined as 𝑔̂𝑡.

(4) The stationary property of the sequence {𝐶} is tested.
If it was stationary, the correlation analysis can be used on the
sequence; otherwise, the differential transform is conducted
on the sequence {𝐶} until it is stationary. The stationary
sequence is denoted as {𝑤𝑐}.

(5) Through the correlation analysis of the seasonal
fluctuation, the autocorrelation and moving average items
can be acquired [18, 20]. According to the result, the ARIMA
model can be defined as

𝑦𝑐 = 𝜙−1𝑝 (𝐿) 𝜙−1𝑃 (𝐿) (1 − 𝐿)−𝑑 (1 − 𝐿𝑠)−𝐷 𝜃𝑞 (𝐿)Θ𝑄 (𝐿)
⋅ 𝜀𝑐. (24)

(6) The rationality of the ARIMA model is tested by the
residual sequence.

(7) According to the ARIMA model, the sequences’
predictions can be got and denoted as 𝑐̂𝑡.

(8) The final prediction result can be obtained based on
the principle of HP filter:

𝑦̂𝑡 = 𝑔̂𝑡 + 𝑐̂𝑡. (25)

The improved model will produce twice prediction error
in the analysis. In theory, there is the possibility of increasing
the errors and reducing the prediction accuracy. But in the
actual analysis, the HP filter method weakens the mutual
influence of factors (including the long-term trend and the
seasonal fluctuation) and utilizes integrative forecasting for
models with the different characteristics of the sequence {𝐺}
and the sequence {𝐶}. In this way, the trend of the sequence
can be effectively fitted and the influence on the seasonal
trend can be reduced. Finally higher prediction accuracy can
be achieved.

According to the above steps, the specific process of the
improved model is shown in Figure 1.

3. Empirical Analysis

The example chooses the research data about electric power
consumption from January 2004 to November 2014 in China,
the data in January 2004 to December 2013 for model
building, and the data in January 2014 to November 2014 for
testing the prediction error.
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Figure 1: Model flow chart based on HP filter.
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Figure 2: Monthly electricity consumption of China from January
2004 to December 2013.

3.1. The Forecasting of the Seasonal-ARIMA Model. Figure 2
plots the monthly electricity consumption data from January

2004 to December 2013; as we can see, the intercept and
the trend exist in the original sequence, and the sequence
is nonstationary. The result of the ADF unit root test with
intercept and trend on the sequence is shown in Table 1.

The ADF unit root test demonstrates that the original
sequence is nonstationary and the first-order difference of
the original sequence is stationary under the 5% significant
level. Through observation of the autocorrelation function
of the first-order difference sequence, we discover that the
sequence’s seasonal cycle is 12. Therefore, the additive model
is used to adjust the seasonal trend of the sequence. The
analysis of the partial autocorrelation and the autocorrelation
is shown in Figure 3.

On the basis of the 95% confidence level, the confidence
interval of the correlation coefficient is
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Autocorrelation Prob.Q-StatPACACPartial correlation

−0.411 −0.411 20.593 0.000
−0.004 −0.208 0.000
−0.001 −0.111 20.595 0.000
−0.011 −0.075 20.611 0.000
0.016 −0.028 0.001
−0.090 −0.124 21.670 0.001
0.069 −0.036 0.002
−0.059 −0.082 0.00422.727
−0.008 −0.090 22.735 0.007
0.018 −0.056 22.778
0.185 0.207 27.320 0.004
−0.340 −0.230 42.834 0.000
0.207 −0.002 0.000
−0.037 −0.019 0.000
−0.030 −0.051 0.000
0.054 0.020 49.371 0.000
−0.097 −0.065 50.704 0.000
0.088 −0.042 51.809 0.000
−0.073 −0.032 52.586 0.000
0.016 −0.075 52.622 0.000
−0.005 −0.085 52.626 0.000
0.020 −0.021 0.000
0.051 0.136 53.082 0.000
−0.069 −0.128 0.000
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Figure 3: Autocorrelation figure and partial autocorrelation figure.

Table 1: Augmented Dickey-Fuller unit root test on d(ele).

Augmented Dickey-Fuller test statistic 𝑡-statistic Prob. ∗−3.726070 0.0248
Test critical values:
1% level −4.046925
5% level −3.452764
10% level −3.151911

Prob. is the 𝑃 value; the smaller the 𝑃 value, the larger the significance. ∗
indicates to reject the original hypothesis under the confidence level of 95%.

[− 2√𝑛 , 2√𝑛] = [−0.183, 0.183] . (26)

Combined with Figure 3, we can find that partial autocor-
relation coefficient in 1, 2, 11 and the autocorrelation coeffi-
cient in 1, 11, 13 are not in the confidence interval. Based on
the autocorrelation diagram and the partial autocorrelation
diagram, OLS method is adopted to establish the seasonal-
ARIMA model, and the adjustment of model parameters
is based on the significance of correlation coefficient. The
estimation of parameter is shown in Table 2.

After determining the model order through parameter
significance testing, the time series model we obtain is
ARIMA(2, 1, 11)(1, 1, 0)12. In this model, the nonseasonal
autoregressive items are AR(1) and AR(2), the nonseasonal
moving average items are MA(1) and MA(11), and the
seasonal autoregressive items are SAR(1). According to this

model, the electricity consumption from January to Novem-
ber in 2014 could be forecasted and the result is shown in
Table 6.

3.2. The Forecasting of the Seasonal-ARFIMA Model. In the
process of model order selection, MA(11) has significant
influence on modeling and predicting. This phenomenon
shows that the error caused by the long-term observations
still influences the current monthly electricity consumption
to some extent. We infer that the monthly electricity con-
sumption may have the long-term memory characteristics,
and this conjecture is confirmed by the long-term memory
test using 𝑅/𝑆method which shows the Hurst exponent:

𝐻 = (log (𝑅/𝑆) − log (𝐾))
log (𝑛) ,

𝐻 = 0.837. (27)

According to the criteria, 0.5 < 0.837 < 1, we know
that the monthly electricity consumption has the long-term
memory characteristic. Therefore the current forecast is
influenced by the distant observations.

3.3. Integrative Model. The HP filter is applied to analyze the
original sequence and the smoothing parameter 𝜆 is assigned
values as 14400. And the decomposition results are shown in
Figure 4. The blue curve means the original sequence. The
red curve means the long-term trend, and we can find that
the growth rate of the power consumption is mainly constant
from 2004 to 2013. The green curve means the cyclical and
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Table 2: The parameters estimate of the ARIMA model.

ARIMA model AR(1) AR(2) AR(11) SAR(1)
ARIMA(11, 1, 13)(1, 1, 1)12 Coefficient (𝑡-statistic) −0.742 (−3.265) −0.225 (−1.699) 0.345 (4.954) 0.543 (4.956)
ARIMA(2, 1, 11)(1, 1, 0)12 Coefficient (𝑡-statistic) −0.368 (−2.353) −0.277 (−2.488) — −0.660 (−3.991)

MA(1) MA(11) MA(13) SMA(1)
ARIMA(11, 1, 13)(1, 1, 1)12 Coefficient (𝑡-statistic) −1.148 (−17.508) −0.421 (−6.468) 0.536 (7.110) 0.401 (1.638)
ARIMA(2, 1, 11)(1, 1, 0)12 Coefficient (𝑡-statistic) 0.614 (5.127) 0.341 (3.251) — —𝑅2 AIC SC
ARIMA(11, 1, 13)(1, 1, 1)12 0.677 12.991 13.206
ARIMA(2, 1, 11)(1, 1, 0)12 0.397 13.460 13.588
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Figure 4: HP filter diagram of the power consumption.

irregular change. And as time goes on, the fluctuation range
is more significant.

According to HP filter, the original sequence can be
separated into the sequence {𝐺}with the long-term trend and
the sequence {𝐶} with other fluctuation properties.

The data separation result using HP filter is shown in
Figure 5.We can see the sequence {𝐺} approximates a smooth
curve, in which the curve of the sequence {𝐶} fluctuates up
and down around the zero.

In the perspective of statistics, the sequence {𝐺} can be
transformed into a sequence relating to 𝑇. Let the indepen-
dent variable 𝑇 (𝑇 = 1, 2, . . . , 120) represent time and let the
sequence {𝐺} represent the dependent variable of the system.
A curve is fitted to describe the sequence {𝐺} as a function of𝑇. It turns out that the best fitting is achieved when the order
of curve fitting is four and the relative error of curve fitting is
shown in Figure 6.

The fitting polynomial is

𝐺 = −0.0000151864 62 × 𝑡4 + 0.0036289851 14 × 𝑡3
− 0.2397875288 44 × 𝑡2 + 28.1561788880 8 × 𝑡
+ 1564.2922985572 36.

(28)
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Figure 5: Data separation based on HP filter.

According to the fitting polynomial, the sequence from
January to November 2014 can be forecasted and the results
are shown in Table 3.

The sequence {𝐶} is analyzed based on the time series
model. And according to the significance we can adjust
the parameters and record in Table 4. Finally, the model is
ARIMA(11, 1, 1)(0, 1, 0)12.

According toARIMA(11, 1, 1)(0, 1, 0)12, the sequence {𝐶}
is forecasted and the prediction results from January to
November 2014 are shown in Table 5.

Finally, according to the HP filter principle, 𝑦̂𝑡 = 𝑔̂𝑡 + 𝑐̂𝑡,
we get the prediction of electric consumption from January
to November 2014, as shown in Table 6.

3.4. Model Error Analysis. According to Table 6, we make
a line chart about the absolute value of the relative error
as shown in Figure 7. Except for March, May, and June,
the relative errors of the integrative model are smaller than
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Table 3: Forecasting of {𝐺}.
Time Predictions
Jan. 2014 4634.08
Feb. 2014 4655.72
Mar. 2014 4676.84
Apr. 2014 4697.49
May 2014 4717.36
June 2014 4736.73
Jul. 2014 4755.47
Aug. 2014 4773.55
Sep. 2014 4790.96
Oct. 2014 4807.66
Nov. 2014 4823.63

Table 4: The parameters estimate of the ARIMA model.

Variable Coefficient 𝑡-statistic
AR(1) −0.967 −6.212
AR(2) −0.389 −3.973
AR(11) 0.330 3.834
MA(1) 0.513 2.939𝑅2 = 0.394 AIC = 13.527 SC = 13.570

Table 5: Forecasting of {𝐶}.
Time Predictions
Jan. 2014 −326.44
Feb. 2014 −834.04
Mar. 2014 −394.18
Apr. 2014 −378.59
May 2014 −258.20
June 2014 −208.90
Jul. 2014 418.57
Aug. 2014 402.21
Sep. 2014 −186.52
Oct. 2014 −336.92
Nov. 2014 −263.55
the SARIMA model. From the long-term forecast in July to
November, the forecasting results of integrative model are
superior to the forecasting results of SARIMA model. In
March, May, and June, the optimization models of fitting
values are not optimized. On the one hand, this is the
objective result of the experimental data; on the other hand,
the improved method is not perfect enough. The predicted
data is in the large floating inMarch; this fluctuation is caused
by the prediction of sequence {𝐶}.

According to the prediction result, we make analysis for
the prediction error and fill the result in Table 7.Through the
comparative analysis, it can be discovered that the prediction
accuracy of the improved model is significantly improved.

As shown in Table 7, the MSE of the improved model
is the minimum, and it means the predictive ability of the
improved model is the most stable. By observing the MAPE,
the improved model is 1.817%, which is less than 2.643% of
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Figure 6: Relative error of the curve fitting about sequence {𝐺} in
January 2004 to December 2013.
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Figure 7: Prediction andoriginal data of the line graph from January
to November in 2014.

the SARIMA model, and it shows that the predictive results
of the improved model are close to the real value. The MAE
error measurement also shows the same result.

4. Conclusions

In this paper, HP filter is utilized for adjusting the time
sequence data. Thus the original sequence is decomposed
into the sequences with different trend, and the mutual
interference between the different fluctuation items can be
relieved. Moreover the relative error of load forecasting is
reduced and the multistep prediction is guaranteed.

The testing result of the 𝑅/𝑆 method shows that the
monthly electricity consumption has the property of long-
memory process. This conclusion may be attributed to inter-
ference of the amount of the data. However, in the actual
order analysis, the higher-order AR or MA indeed affects
the power load forecasting. Therefore, the long memory of
the time series can be considered for building the SARFIMA
model in the midterm power load forecasting.
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Table 6: Electricity consumption forecasting results in 2014.

Month Original data
Model

Seasonal-ARIMA Combined seasonal-ARIMA
Prediction RE (%) Prediction RE (%)

Jan. 2014 4407.06 4524.87 2.650 4307.64 −2.256
Feb. 2014 3835.00 3713.78 −3.161 3821.68 −0.347
Mar. 2014 4544.15 4439.32 −2.307 4282.66 −5.754
Apr. 2014 4356.27 4431.63 1.730 4318.90 −0.858
May 2014 4492.04 4503.10 0.246 4459.16 −0.732
June 2014 4638.50 4699.41 1.313 4527.83 −2.386
Jul. 2014 5096.96 5282.25 3.635 5174.04 1.512
Aug. 2014 5025.34 5348.25 6.426 5175.76 2.993
Sep. 2014 4569.73 4730.72 3.523 4604.44 0.760
Oct. 2014 4508.40 4591.07 1.834 4470.74 −0.834
Nov. 2014 4632.24 4736.44 2.249 4560.08 −1.558

Table 7: The error of forecast.

SARIMA model Improved model
RMSE (%) 3.052 2.340
MAPE (%) 2.643 1.817
MAE 122.386 84.289
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