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The spectral radius minimization problem (SRMP), which aims to minimize the spectral radius of a network by deleting a given
number of edges, turns out to be crucial to containing the prevalence of an undesirable object on the network. As the SRMP is
NP-hard, it is very unlikely that there is a polynomial-time algorithm for it. As a result, it is proper to focus on the development
of effective and efficient heuristic algorithms for the SRMP. For that purpose, it is appropriate to gain insight into the pattern
of an optimal solution to the SRMP by means of checking some regular networks. Hypercubes are a celebrated class of regular
networks. This paper empirically studies the SRMP for hypercubes with two/three/four missing edges. First, for each of the three
subproblems of the SRMP, a candidate for the optimal solution is presented. Second, it is shown that the candidate is optimal for
small-sized hypercubes, and it is shown that the proposed candidate is likely to be optimal for medium-sized hypercubes.The edges
in each candidate are evenly distributed over the network, which may be a common feature of all symmetric networks and hence
is instructive in designing effective heuristic algorithms for the SRMP.

1. Introduction

Theepidemicmodeling is recognized as an effective approach
to the understanding of propagation process of objects over
a network [1, 2]. For instance, epidemic models help us
understand the key factors that affect the prevalence of
malware [3–8].The speed and extent of spread of an epidemic
on a network depend largely on the structure of the network;
whether the epidemic goes viral depends on whether the
spectral radius of the network exceeds a threshold [9–14].
Therefore, reducing the spectral radius of a network by
removing a set of edges is an effective approach to the
containment of the prevalence of an undesirable epidemic
on the network. The spectral radius minimization problem
(SRMP) aims to remove a given number of edges of a network
so that the spectral radius of the resulting network attains
the minimum. As the SRMP is NP-hard [15], it is much
unlikely that there be a polynomial-time algorithm for it. As
thus, a number of heuristic algorithms for the SRMP have
been proposed [15–19]. In most situations, these heuristics

are ineffective, because they produce nonoptimal solutions
rather than optimal solutions. For the purpose of developing
effective heuristic algorithms for the SRMP, it is appropriate
to gain insight into the pattern of an optimal solution to
the SRMP by means of checking some regular networks.
Recently, Yang et al. [20] studied the SRMP for 2D tori.

Hypercubes are a class of regular networks [21]. Due
to remarkable advantages in communication [22–25], fault
tolerant communication [26–30], fault diagnosis [31–34],
and parallel computation [35, 36], hypercubes have been
widely adopted as the underlying interconnection network in
multicomputer systems [37]. To our knowledge, the SRMP for
hypercubes is still unsolved.

This paper addresses three subproblems of the SRMP,
where two/three/four edges are removed from a hypercube,
respectively. First, for each of the three subproblems of the
SRMP, a candidate optimal solution is presented. Second,
it is shown that the candidate is optimal for small-sized
hypercubes, and it is shown that the proposed candidate is
likely to be optimal for medium-sized hypercubes. The edges
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Figure 1: Three examples of𝐻
𝑛
.
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Figure 2: The proposed candidate in𝐻
𝑛
.

in each candidate are evenly distributed over the network,
which may be a common feature of all symmetric networks
and hence is instructive in designing effective heuristic
algorithms for the SRMP.

The remaining materials are organized in this fashion:
the preliminary knowledge is given in Section 2. Section 3
presents the main results of this work. Finally, Section 4
summarizes this work.
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Figure 3: Assume that the red edge in the upper-left 3D subcube of𝐻
5
is the first deleted edge and each of the remaining edges is a candidate

for the second deleted edge. The spectral radius of the surviving network formed by deleting each of the candidate edges from𝐻
5
is shown.

100 200 300 400 500 600 700 800 900 1000
7.9796
7.9798

7.98
7.9802
7.9804
7.9806
7.9808

7.981
7.9812
7.9814
7.9816

Edge-removing schemes

Sp
ec

tr
al

 ra
di

us
 o

f t
he

 re
sid

ue
ne

tw
or

k

100 200 300 400 500 600 700 800 900 1000
8.9896
8.9898

8.99
8.9902
8.9904
8.9906
8.9908

8.991
8.9912
8.9914

Edge-removing schemes

ne
tw

or
k

Sp
ec

tr
al

 ra
di

us
 o

f t
he

 re
sid

ue

The proposed scheme
Random schemes

The proposed scheme
Random schemes

The proposed scheme
Random schemes

The proposed scheme
Random schemes

100 200 300 400 500 600 700 800 900 1000
9.9947

9.9948

9.9948

9.9949

9.9949

9.995

9.995

9.9951

Edge-removing schemes

Sp
ec

tr
al

 ra
di

us
 o

f t
he

 re
sid

ue
ne

tw
or

k

100 200 300 400 500 600 700 800 900 1000
10.9982

10.9983

10.9983

10.9983

10.9983

10.9983

10.9984

10.9984

Edge-removing schemes

Sp
ec

tr
al

 ra
di

us
 o

f t
he

 re
sid

ue
ne

tw
or

k

Figure 4: The proposed candidate (red) versus 103 random candidates (blue).
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Figure 5: The proposed candidate in𝐻
𝑛
.

2. Preliminaries

For fundamental knowledge on the spectral radius of a
network, see [38, 39]. The SRMP is formulated as follows:
given a network 𝐺 = (𝑉, 𝐸) and a positive integer 𝑘, find a
set of 𝑘 edges of 𝐺 so that the surviving network obtained
by removing the set of edges from the network achieves the
minimum spectral radius.

An 𝑛-dimensional cube (𝑛-D cube, for short), denoted
by 𝐻
𝑛
, is a network 𝐺 = (𝑉, 𝐸), where there is a one-to-one

correspondance 𝜙 from 𝑉 to the set of all 0-1 binary strings
of length 𝑛 so that node 𝑢 is adjacent to node V if and only
if 𝜙(𝑢) differs from 𝜙(V) in exactly one bit position. In what
follows, it is always assumed that the nodes of a hypercube
have been labelled with 0-1 strings in this way. See Figure 1
for three small-sized hypercubes.

An 𝑛-D cube can also be defined in a recursive way as
follows. (1) A 0-D cube is a graph on a single node. (2) For
𝑛 ≥ 1, an 𝑛-D cube is built from two copies of an (𝑛 − 1)-D
cube in this way: connect each node in one copy to the same
node in the other copy.

3. Main Results

This section considers the optimal scheme of deleting
two/three/four edges from𝐻

𝑛
, respectively.

3.1. Deleting Two Edges. Firstly, we consider a subproblem of
the SRMP, denoted by SRMP-H2, for which two edges will be
deleted from a hypercube. Let us present a candidate for the
optimal solution to the SRMP-H2 as follows, where 𝑛 denotes
the dimension of the hypercube:

𝑒
1
= {0𝑛, 0𝑛−11} ,

𝑒
2
= {1𝑛, 1𝑛−10} .

(1)

Figure 2 shows the proposed candidate in𝐻
2
,𝐻
3
,𝐻
4
, and

𝐻
5
, respectively.
For 2 ≤ 𝑛 ≤ 7, it follows by exhaustive search that the

proposed candidate is optimal. For instance, assume that the
red edge in the upper-left 3D subcube of𝐻

5
is the first deleted

edge, and each of the remaining edges is a candidate for
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Figure 6: The proposed candidate (red) versus 103 random candidates (blue).

the second deleted edge. The spectral radius of the surviving
network formed by deleting each of the candidate edges from
𝐻
5
is shown in Figure 3. It can be seen that the larger the

distance between the two edges, the smaller the spectral
radius of the surviving network. At the extreme, the proposed
candidate is optimal.

For 8 ≤ 𝑛 ≤ 11, the proposed candidate is compared
with 103 random candidates in terms of the spectral radius
of the surviving network; see Figure 4. It is concluded that
the proposed candidate is optimal among these candidates.

Therefore, we propose the following conjecture.

Conjecture 1. For all 𝑛 ≥ 2, the proposed candidate is an
optimal solution to the SRMP-H2.

3.2. Deleting Three Edges. Secondly, we consider a subprob-
lem of the SRMP problem, denoted by SRMP-H3, for which
three edges will be removed from a hypercube. Let us present
a candidate for the optimal solution to the SRMP-H3 as
follows, where 𝑛 denotes the dimension of the hypercube,
𝑐 = ⌊(𝑛 + 1)/3⌋:

𝑒
1
= {0𝑛, 0𝑛−11} ,

𝑒
2
= {0𝑛−2𝑐12𝑐, 0𝑛−2𝑐−112𝑐+1} ,

𝑒
3
= {1𝑛−𝑐−10𝑐+1, 1𝑛−𝑐0𝑐} .

(2)

Figure 5 shows the proposed candidate in𝐻
3
,𝐻
4
,𝐻
5
, and𝐻

6
,

respectively.
For 2 ≤ 𝑛 ≤ 6, it follows by exhaustive search that

the proposed candidate is optimal. For 7 ≤ 𝑛 ≤ 10, the
proposed candidate is comparedwith 103 randomcandidates;
see Figure 6. It is concluded that the proposed candidate is
optimal among these candidates. Therefore, we propose the
following conjecture.

Conjecture 2. For all 𝑛 ≥ 3, the proposed candidate is an
optimal solution to the SRMP-H3.

3.3. Deleting Four Edges. Finally, consider a subproblem of
the SRMP, denoted by SRMP-H4, for which four edges will
be deleted from a hypercube. Let us present a candidate to the
optimal solution to the SRMP-H4 as follows, where 𝑛 denotes
the dimension of the hypercube, 𝑐 = ⌊(𝑛 − 1)/3⌋:

If 𝑛 ≡ 0, 2mod 3, then

𝑒
1
= {0𝑛, 0𝑛−11} ,

𝑒
2
= {0𝑛−2𝑐−212𝑐+2, 0𝑛−2𝑐−212𝑐+10} ,

𝑒
3
= {1𝑛−2𝑐−20𝑐1𝑐+10, 1𝑛−2𝑐−20𝑐1𝑐02} ,

𝑒
4
= {1𝑛−𝑐−20𝑐+11, 1𝑛−𝑐−20𝑐12} .

(3)
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Figure 7: The proposed candidate in𝐻
𝑛
.

If 𝑛 ≡ 1mod 3, then

𝑒
1
= {0𝑛, 0𝑛−11} ,

𝑒
2
= {0𝑛−2𝑐−112𝑐+1, 0𝑛−2𝑐−112𝑐0} ,

𝑒
3
= {1𝑛−2𝑐−10𝑐1𝑐+1, 1𝑛−2𝑐−10𝑐1𝑐0} ,

𝑒
4
= {1𝑛−𝑐−10𝑐+1, 1𝑛−𝑐−10𝑐1} .

(4)

Figure 7 shows the proposed candidate in𝐻
3
,𝐻
4
,𝐻
5
, and

𝐻
6
, respectively.
For 3 ≤ 𝑛 ≤ 6, it follows by exhaustive search that the

proposed candidate is an optimal solution to the SRMP-H4
problem. For 7 ≤ 𝑛 ≤ 10, the proposed candidate is compared
with 103 random candidates; see Figure 8. It is concluded that

the proposed candidate is optimal among these candidates.
Therefore, we propose the following conjecture.

Conjecture 3. For all 𝑛 ≥ 3, the proposed candidate is an
optimal solution to the SRMP-H4.

4. Summary

This paper has addressed the spectral radius minimization
problem for hypercubes. Given the number of edges to be
deleted, a candidate for the optimal solution has been pre-
sented. For small-sized hypercubes, the proposed candidate
has been shown to be optimal. Formedium-sized hypercubes,
it has been shown that the proposed candidate is likely to
be optimal. Due to the symmetry of hypercubes, there are
multiple optimal solutions for each of the subproblems. The
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Figure 8: The proposed candidate (red) versus 103 random candidates (blue).

experimental results show that, up to isomorphism, all of
the optimal solutions are identical. By observing the pattern
of the proposed candidate, it has been speculated that, for
any symmetric network, the edges in an optimal solution are
always evenly distributed.

Towards this direction, some researches are yet to be
done. First, the proposed conjectures need a proof. Second,
this work should be extended to asymmetric networks such
as the hypercube-like networks [40, 41], the small-world net-
works [42], the scale-free networks [43, 44], and the general
networks [45, 46]. Last, the effectiveness of heuristics for the
spectral radius minimization problem must be improved.
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