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We introduced a parameter o(t) which was related to «(t); then two numerical schemes for variable-order Caputo fractional
derivatives were derived; the second-order numerical approximation to variable-order fractional derivatives a(t) € (0,1) and
3 — «a(t)-order approximation for «(t) € (1,2) are established. For the given parameter o(t), the error estimations of formulas
were proven, which were higher than some recently derived schemes. Finally, some numerical examples with exact solutions were
studied to demonstrate the theoretical analysis and verify the efficiency of the proposed methods.

1. Introduction

Fractional differential equations include constant-order and
variable-order equations; a great quantity of natural phenom-
ena can be modeled by variable-order fractional differential
equations; the study of such problems has attracted much
attention. In recent years, profound background of physical
applications for the variable-order fractional calculus has
been already established; the definition of variable-order
operator has been investigated in [1-4]. Numerous problems
in mathematical physics and engineering have been modeled
by variable-order fractional differential equations, such as
successful applications in mechanics [5], in the simulation
of linear and nonlinear viscoelasticity oscillators [6], and in
other cases where the order of the derivative varies with
time [7]. In addition, a physical experimental investigation
of variable-order operators has been considered in [8].
Variable-order fractional derivatives can be used to model
anomalous diffusion, as they can describe the time dependent
diffusion process more specifically than fractional derivatives
of constant order, just as shown in [9]. The difference schemes
of fractional derivatives with constant and variable order are
investigated in [10].

Due to the existence of variable fractional derivative,
it is usually difficult to obtain the analytical solution of
such equations; therefore, it is particularly significant to give
numerical solutions to these problems. Cao and Qiu [11]

derived a high order numerical method for variable-order
fractional ordinary differential equation by establishing a
second-order numerical approximation to variable-order
Riemann-Liouville fractional derivative. Fu et al. [12] adopted
the method of approximate particular solutions for both
constant-order and variable-order time fractional diffusion
models. Several finite difference methods for variable-order
fractional partial diffusion equations were proposed in [13-
18].

As what we can see above, there are many different defi-
nitions of the variable-order fractional derivatives. However,
different from other definitions in mathematics, only initial
condition is needed for the variable-order Caputo definition
which can be easily used in physical field; this definition
means that the memory rate of system is determined by the
current time instant and changes with time. For simplicity,
only variable-order Caputo definition was discussed in the
whole paper.

A good approximation of the variable-order Caputo
derivatives was observed in [19], it was defined at the points
tu1/2 and t,; then what will happen if it is redefined in a
neighborhood at the point f,,? Approximation formula for
the a-order (0 < a < 1) Caputo derivatives at the point
t = t, 1., Was investigated in [20], where 0 = 1 — /2 is a
superconvergence point which ensures that the convergence
order improves from the local second order to the overall 3—«
order. In the current work, we applied the ideas in [20]; a
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parameter o(t) was given, which was changed with «(t), and
the selection of o(t) played a vital role in the numerical results
in the paper. We proposed two new approximation formulas
of second-order and 3 — «(t) accuracy for variable-order time
fractional operator with orders 0 < a(t) < L and 1 < «(f) < 2,
respectively. Specifically, we adopted the following definition
of variable-order Caputo fractional derivatives:

f(n) (s)

Calt) f gy _ 1 ' d
PO e L (- sy 01 1)

n—1<a(t) <n.

The paper is organized as follows. In the next section,
we present two new formulas, select o(t) = 1 — «(t)/2 for
0 < a(t) < Tand o(t) = 3/2 — a(t)/2 for 1 < a(t) < 2,
respectively, and provide the corresponding error analysis. In
Section 3, the numerical verifications are presented; as can
be seen from the numerical results, minor changes to the
selected parameters o(¢) will have a significant impact on the
error estimates. Finally, in Section 4, the conclusion is drawn.

2. Approximation Formulas

In this section, we present the following lemma, which plays
a vital role in the later analysis.

Lemma 1 (see [19]). Assuming that the derivatives of the
function f(x) exist to the order of n on [a, b] and to the order
ofn+1lon(ab), a<x,<x; <-+<x,<b px)is
the nth degree interpolation polynomial of f(x) based on the
Dpoints Xy, Xy, ..., X, then, for x € [a,b], the following holds:

7 x) - p® ()

G
= m (x - xf)k)) (x - x(lk)) . (x _ x;’?k) )

(k=0,1,2,...),

(k)

i

where & € (a,b) depends on k and x, and x; < x
0,1,...,n—k).

For a given function f(x) and an integer N > 0, denote
t,=nt, "= f(t,), n=0,1,...,N, wheret = T/N is the
step. Introduce the following notation:

< xi+k (l =

tho =m+0)T,

n+1/2 _ l ntl _ n
oM=L (- ), o

T

8t2fn _ Stfn+l/2 _ 6tfn—1/2’

T

and, for convenience, denote o = o(t,,).

2.1. Second-Order Formula for a(t) € (0,1). Denote «,,_;,, =
alt, 1.6)> 0=1-alt,_ 1,;)/2, n=0,1,...,N - 1.
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c
Estimating the derivative OD‘;‘(” f(t) with order «(t) €
(0,1) at the grid point ¢ ,n=01,...,N -1, from (1),
we directly obtain

n—1+o

%D?nihaf (tn—1+o)

tn—1+a ! (4)
= 1 J f (S) %1 dS.
r (1 - ‘xn—1+o) 0 (tn—1+a - 5) A

Evaluate the integration on each subinterval, leading to

C ~1+0
OD‘txn1 f(tn—l+a)
1 n—1 ty fl (S)
Y R
r (1 - (xn—lﬂf) k=1 “tk-1 (tn—1+g' - 5) (5)
tn—l+t7 ! S
* J f ( )“n—1+g d5:| '
) (tﬂ*1+U - S)
For each interval [t;_;,%], Kk = 1,...,n — 1, denote

the second-degree interpolation polynomial in the Lagrange
form as follows:

=1 (t—tey)

Lif (s) = 272
_ fk (t - tk—12) (t - tk+1) (6)
T
N - t) (E-1)
272 ’

and for the last interval [t,_,t,_,,,], denote the first-degree
interpolation polynomial in the Lagrange form as

L,f(s) =~

fn_l (t_tn)_'_fn(t_tn—l). (7)
T

T

As an approximation formula, the following result is
obtained:

F()=Lif(s) +7(s),

(8)
NS [tk—l’tk]’ k = 1,...,7’1— 1,
where
n0-E8 e,
& € (tirs trrn) s
FE) =Lyf()+7,(5)s s€[typtyriols (10)
where
r, (s) = f 2(6") (s—t,1)(s—t,), & €(t,pt,). D
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Substituting (8) and (10) into (5) yields

iD?nilwf (tn—1+a)

1 n
r(1-o,

n 1+¢7) k
tn—1+0
* J
t

n-1 (tn—1+o -

L th (L2 (s))

— s
iy (Bperse =)™ (12)

(Lf )

—1+
—ds|+R""7,
n—1+o
)

and the truncation error is

(L2f ()

Ky 146 gh—14+0 _
OAt f -

1 n ljtk
L=ty 146) | /5 d0 (taorig =)™

™

RO 1 [n_l th rllc (s) : ds
r(l - “n—lﬂr) tr (tn 1+0 — S) A

tu-tso ' (s)
+ J — o ds|.
t (tn—1+a - S)

n-1

(13)

Here we denote the discrete approximation formula
for the variable-order derivative with order «,_;,, as

GAT £ thus from (12), it is easy to get the following
result:

oo (LLF )
' J; (- s

. _ S)‘xn—ua
v [ I W/2) B+ 0 f ) + 87 f (st I e
I (1 - “n—1+a) k=1 Ytk (tn—1+a _ S)O‘n—lw - (tn_1+0 _ S)an—lﬂ:r
_ 6 k+1/2 8 k- 1/2 Xp-1+0
= 1 {Z ( f f ) [(n +o— k)lftx,,,lm _ (71 +o-k- 1)1’0‘;171“7]
I (1 &y lto k=1 2 (1 - (Xn—1+a)

o
Gn-1
e S k=1 “ k1 (tn—1+a - 5) e

6fn—1/2_l_1—(xn,l+d n-1 .t
+ t -0, 110 + J

(Stsz (s —t) ds

e n—1 8 fk+l/2 +6 fk71/2
. {Z( ! ! )[(n+a—k)1‘“m —(n+o—k-1)""]
r (2 - “n—1+a) k=1 2 (14)
1 _ _ _ _ _
+ Z&zf T [2 ((n+o-k)* " —(n+o—k-1)"%")-(n+o-k) “] +6,f" 0! “}
Xpl+o
_ 1% ti0 [n-1 (ocn 1ha) (6 fk+1/2 5fk 1/2) i %110) 152 f +5fn_1/2 1-a,_ M]
r (2 - an—lﬂr) | k=1 k=1
1-a, _
T n—1+o _
= —1" 5 Za(“n 1+0) (6tfk+1/2 +8tfk 1/2) Z Xy 14o) (6 fk+1/2 (ka 1/2) +8ffl 1/2 1-a,_ 1+a]
( _“n—1+a) k=1
_ T "i ( TS B A SN o) b(oww)) S £k ( @nerra) 4 (@1so) b(oww)) 5. 2
T (2 — ) A ki1 Tk n—k+1 n—k tf 4 +ay +0 tf
n-1+o k=2
+ (@ po) 8,12 | = T S g Nl T e (5 1)
" n_l ' F(Z Ky 1+0)k 1 ok F(Z Xy 1+a)k 1 nk '
where —(k+o) ™™ 1<k<n-1.
a(()"‘n—uo) — 0-1_“71—14-6) d]((‘xn—ua)
1 _ _
1 (e (S A Vg P RS R RS R P
1 0 1 > N
1<k<n-1
- - > — ( n +0) ( n— +o) ( - +o) (¢ n— +0)
A - akill +aer ' +bkj1l bkal , I<k<n-2
k . a(‘xn—lw) _ b}i"‘n—lm), k=n-1.
- k 20y 11 _ k —-1 2-0, 140
Z_anflﬂr [( +0) ( te ) ] (15)



Next, the analysis for the approximation error of formula
(12) was given in detail.

Theorem 2. Let «
following holds:

(ODF f (tyeraa) = AT 7717

1), f € C([0,t,,]); the

n-1+o €

max [f" (1) (16)

Mo<t<t,

1
[ —
r(l - ‘xn—lJra) |:

o-lfo‘nfhu T*Otn,H,

— max |f"(t)|]r,

n-1+g  ‘n-15t<hn

where ®, = 7% " %/(1 - ), ©, = )1 -

. o Cl n-1+o
Qy140)» N=2,...,N —1,¢ is a positive constant.

Proof. From (12), obviously

n-l+o _ 1 < (™ rllc (s)
R I(l-« )I:ZJ t e
n-1+0) | k=1 Ytk ( n-1l+o S)
Litvo v (s)
" J s (17)
tn1 (tn—1+0 - 5)
1
- (R +nry).
r (1 - ‘xn—1+¢7) ' ’

Using Lemma 1, it produces
e (s) = f”’( ) (s=107) (s -117).

€ (tti)»

(18)

M € (b tien) >ty 1 € (totin), 1<k<n-1,

r:; (S) = f” ( ) (S - té”)) > Mn € (trkl’ tn) > t‘gn) € (tnfl’ tn) . (19)

Next, the error on each interval is analyzed.
When n = 1, from (19), it follows that

fo 7’1()
e

< 7 max |f” (t)| J: (t;ds
(20)

G K
- 1-
T 70
=TT a7 0]

1 —a, tostst

When n = 2,...,N - 1, from (18), this leads to the

following estimation:

n—-1 ¢ !
Ry =) J k rk—(s)amds‘
k=1 Ytk (tn—1+a - 5)
et £ -8 - )
- kzlE fj-1 (tn—1+o - S)lxn_lﬂ7 ’
B (21)
n 1 2
< ¢ max t ——ds|T
1t°<t<t -1 |f ( )' ‘[to (tn—1+¢7 - S)‘anna
1-0y 140
_ Cltn—?Jro{ max |f’" (t)"rz,
1=, toStst,

where ¢, is a positive constant.
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From (19), it can be obtained in the same method.

|R2| =

[ 7! (s)
J & ’
t1 (t - s)

n— n-1+o

<7 max | f" (t)| (22)

t, . <t<t,

n-l+o 1
———ds
Jn . (t _ S)"‘ano

n-1+o
1-a,_ 0,
o n l+UT n—1+o

_o T |f” (t)' 2

l-ay 145 o ‘<t<t

Substituting (20)-(22) into (17) leads to the theorem. [

2.2. Second-Order Formula for a(t) € (1,2). Denote f(; =
f'(ty), o = 3/2 — &, ,,,/2. Computing the variable-order
derivative with order a(t) (1 < «(t) < 2) att,_;,q»
-

r (2 - ‘Xn—1+a)

fll (S)

S)(xn71+071

C
D‘txnilwf(tana) =

J' e
to

1 Jfl
- r (2 - (xn—1+o) to (t

(tn—1+a -

fII s)
s )

n—l+o S)

n-2 i+ "
[

j=17% (tn—1+o - S) e

J'tn 1+0 f” (S)
tn1 (tn—1+a - S)‘xn?lwil

For the interval [¢,,t,], the cubic interpolation polyno-
mial in the Hermite form is as

A (f =1~ f,

Lof )= £+ fo(s—to) + - (s
I (TLIGETR Y
2T T (24)
am (- -am(f-r) )
- (s—to) (s
2T
-t)),
and it follows that
F)=Lyf(s)+75(s)3 (25)

the truncation error is

(4)
f (EO) (s—t0)2 (S_t1)(5_t2)’

24 (26)
& € (toty).

7o (s) =
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For the interval [t;,¢;,,], j = 1,...,n — 2, the cubic
interpolation polynomial at points ¢;_y,¢;,t;,;,and t;,, in the
Lagrange form is as

Jj+2 Jj+2
cfe =y [ —= (27)

k=j-1 m=j- lmgék
leading to
f&)=Lif () +7;(5); (28)

the truncation error is

f(4) &) 2
rj(s) = #H (s-

k=—1

tk+j)’ f € ( j-1° ]+2) (29)

using the cubic interpolation polynomial at points t,_,,,_;,
and ¢, in the Lagrange form to approximate f(s) on the last
interval [f,_,t,_1,,]> We get

5
n2 oty (L f(s)+r; (s))
d
g J (tn—1+a - S)an et :
turro (L2 g
+J (L%f (s) +r;,(s))_1 ds} '
fn1 (tn—lJro - S) e
(33)

Denote the approximation formula of the variable-order

. . . o, — .
derivative with order «,_,_ as A%t 149 3nd obtain
n—1+o 0=t

Ay 11g =140
oA

1 n=2 cti
T (2-a140) []Zo Lj (tptso
oo (2 ) ]
+J ——ds
R (S

. Jtl (L) B (34)
to (¢

(Lif (s))n

_ S)"‘nflﬂy_

1

n-2 = App4o—1
2 ) (1) T2~ e, 145) netag —S)
Lnf (S) - 2T2 .
n— n=2 ct;, LS-
o (e-t,,) (E-t,) (30) . IJ (L3 (SL) _
2 j=1 t (tn71+0 - S) A
f(t_t ) (E=t,1) ¢ 2 "
n- n N n—1+o0 Ln (S)
272 + J ( f a) —ds |,
bt (tn—1+a - ) i
the following holds:
where
F) = LLf ()47, (9); (31) o s—ty foafl 0
(LOf (s)) T 2
the truncation error is
t,—s8f - f2-7f° - 61f,
n >
& 272
Ty (S) = fT()(s_tn—Z) (S_tn—l)(s_tn)’ ! X . ‘ .
(32) 3 "o tivy _Sfj_1 - 2f] + fJJr1
En € (tn—Z’ tn) . ( jf (S)) - T ‘L‘2 (35)
—t. j+1 j+2
Substituting (25), (28), and (31) into (23), there is + s f 2f - +f ,
T T
Cre —1+0 i -
oD¢" f(tn—1+0) 1<j<N-2,
" —
1 b (L () 41 (s)” (Lf(s) =85
- J Ay14o—1 ds
T2 1i0) | (thotee =) Substituting the above formula into (34), thus
o Ac:rﬁlJra fnflw
—2f 4 ) 1)+ (- 9) 1) ((8f" = f2 = 7f° - 61fy) /zrz)ds

0

o [rw@—%wﬂ«ﬁ

r (2 Ky 1+o)

(tn—l+a - S)anilw_l
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ds

j (0 =) (7 =217+ 1) 12) + (5= 1) 1) (=207 + £77) 17°)

(tn—1+cr - S)‘xn?lw_l

Lytig 62 n-1 1
+J o ldS]: (L+L+1).
t

D

n-1 (tn—1+a - S)an?lwi I (2 - (Xn—1+a)

(36)

For the first term in the right hand side of (36), this leads

to
. I (= t0) /) (2 =21+ ) 12) + (1 = ) () ((8F' - £ = 76" - 6ufo) 1277)
1 fo (tn—1+a - )‘X’Hw*l
82 L ot w .
—% J- (tyrso —5) " ds+ (n—1+0) 8 f! J (tyrse —5) 7 ds
ty ty
8FL_ 2 _ 740 gl oty . 8FL_ f2_ 70 _grf! t .
+ Lt 2T3f o J; (ta-tso — 5)2 "ds—(n+o-2) S -1 2T2f o J.t (tateo = 5)1 "ds (37)
32— 12f" +9f° + 61f)) v %10
- (3f f'+9f +6tfy) [((n+0 1% — (n+ 0 —2)* ]
2 (2 - “n—1+o) (3 - “n—1+(r)
8Fl — 2 7% — 6rf!) ¢ %140 2F2 —4f 4 2f0) %10
N ( f-f i fO) (n+o- 1)2—ocn,1ﬂI _ ( f f f ) (n+o- 2)2—0<n71+a )
2 (2 - (Xn—l-HI) 2 (2 - “n—1+0)
For the second term in the right hand side of (36), the
following holds:

L. Jw (b0 =) 1) ((F =207+ ) 1)+ ((s— 1) 1) ((F - 2670 + f742) 122)

X401 ds
i (ty-140 =)
8% fJ (tim t.1—s 8% FIHL (i s—t;
= tf J} = A,y _1d5+ tf J] ](x - _lds
T £ (tn—1+a - S) A T £ (tn—1+a - S) e (38)
j+2 — 3 j+1 + 3 J — j71 T*Otn,Hg
— (f f f f ) [(n +0-— ] _ 1)3_0‘n—1+y _ (T’l +0— ] _ 2)3_0‘n71+a]
(2 - ‘xn—1+a) (3 - ‘xn—1+0)
(fj+1 _ ij + fj—l) %110 . (fj+2 _ 2fj+1 + f]) %110 o
+ (n+o—j—1)" "1 - (n+o—j—2) "
20, 140 20y 14
For the third term in the right hand side of (36), this yields Substituting (37)-(39) into (36), we obtain the approxi-

s C Xn-1+0
mate difference scheme of the (D" f(t,_,,):

tn—1+a 62 n-1
- i f
t,

-1 (tn—1+a - S)anilw (39)

(fn _ zfn—l + fn—Z) O_Z—an,lﬂ, B Ao fn—1+a B Xn-1+o Za - o) (fj+2
= t -

«,
T n—1+<7. 0
2 -« r (3 O 1+o

-1

n—1+o
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n-2
_ 2fj+1 + f]) + Zbr(i;;m) (fj+1 _ 2fj + fj—l)

=

# b (sf1 - 277 - 611y

+ O,Z—rxn,lﬂ, (fn _ 2fn—l + fn—z) ,

(40)
where
(@ 140) _ 1 (j 30110
a; =—|((j+o-1)
/ 3- (A [
— (o —2) ] < (o —2) e ()
I1<j<mn,
b;“n—1+g) _ (] to— 1)2—%71”
. 3=t 140
e AL )

~(j+o-2)"""], 2<js<n-1.

Similar to the proof of the Theorem 2, the truncation error
of formula (40) is given by following theorem.

Theorem 3. For o, ,,, € (1,2), f € C*([0,t,,,]), the
following holds:

‘(;D(txnilwf (tn—1+(r) - OA‘?HM fn71+0

1 22—, (4) 2
< _ n-1+o
T (3 - “n—1+a) <tn71+0 fogflg‘):-l 'f (t)l ’ (43)

2=0y 140

+ G0
K t, 1<t<t

|fm (t)' 3—a,_ M) i

where c, is a positive constant.

Proof. From (33), we obtain the truncation error
Rn—1+a

(1’]3. (S))II
1

1 n-2 i+l
= — J p — S
TQ2-a, 1) | S5 s) e (44)

j=0 %] (tn—1+o -
tn71+17
+ J
t,

(ri (S))H
n-1 (tn—1+a -

S)“nfna_l

From Lemma 1, the result below is natural.

f(4) (1) ( t(o)) (s _ tgo)),

n
[1’3 (S)] - 2
( t) € (tort,), 1 €

Mo € (tost2), (tot2)

por =200 (o),

7
M€ (tintin) 1 € (Gntin)s 07 € (tt100),
"
[ @] = " () (s-1"),
Mn € (tn—Z’tn)’ t(()n) € (tn72’tn) .
(45)
Substituting (45) into (44), it yields the estimation
[ R)e),
fo (tn—l-m - S)%ilﬂril
1-0y 146
t<t<t | (4) (t)| J (tVl—1+0' _S) St ds T2
tz—“wHU
< 3 max | f* (t)|'r2
2=, 5 tosStsh
_ ( ) ()
ORI N
n-1+0 1
j=17t (tn—1+a _5)0‘ '
f,
<2 max |f(4) (t)| J 1 (tyyio = 5) 0 ds| 72 (46)
to<t<t, | )
tz_i‘nﬂﬂ) 4 5
< _n-lto 77,
PG
J’tn—lﬂf f’” (’1”) (S - tgl))
——ds
fa (tn—lﬂf - 5) e
n noite 1-0ty 146
< ¢, max, G] J tyt4o — 5) ds|T
2—«,
o n—1+0
et I L
R t<t
where ¢, is a positive constant.
Substituting (46) into (44) leads to the theorem. O

Remark 4. From the second term of the right hand of the
truncation error estimate in Theorem 2, we can easily obtain
the fact that formula (14) does not have exact second-order
accuracy; it is related to the selection of a(t) and o. This can
be seen from Table 2 in the numerical example below; its
accuracy is much higher than the second order.

3. Numerical Verification

In this section, the validity and numerical accuracy of the
new presented formula (14) and (40) are demonstrated,
respectively. Meanwhile, the corresponding computational
results with the formula of [19] are given for contrast.
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TABLE 1: Maximum errors and convergence rates for Examplelat T = land o = 1 — «, /2.

alt) T EN(7) (14) Rate (14) EN(7) [19] Rate [19]
1/40 1.400e - 3 2.0753 1.726e - 3 1.9354
21 1/80 3.560e — 4 1.9755 4.512e -4 1.9421
1/120 1.576e - 5 2.0121 2.053e - 4 1.9438
2 1/160 8.844¢ - 5 2.0091 1.173e - 4 1.9468
1/200 5.653e - 5 — 7.600e — 5 —
TABLE 2: Maximum errors and convergence rates for Examplelat T =2and o = 1 — «, /2.
o(t) T EN(7) (14) Rate (14) EN(7) Rate [19]
1/40 5.830e — 4 2.5859 4.834e -2 1.9724
1/80 9.138¢ -5 2.6734 1.232e -2 1.9843
e’ 1/120 3.02le -5 2.7145 5.509¢ -3 1.9889
1/160 1.362e - 5 2.7462 3.10% - 3 1.9914
1/200 7.285e — 6 — 1.993e -3 —

Take a positive integer N, let T = t,_,,,, T = T/N, and
denote

Fn71+a = ((iD(txn71+O-f (tn—lﬂ'/) >

fn71+a

A1 ph—140
OAt f >

0<n<N, (47)
EN (T) _ |Fn—1+a _ fn—1+<7'
EN (1)
Rate = log, ———.
ate OgZEN (T/Z)

Example 1 (accuracy of formula (14) and [19]). Take f(t) =
t> -, 0 < t < T. Compute the Caputo fractional derivative
of f(t)atT = 1,2 numerically.

The exact solution is given by

C o, I'(6) 5-a
D n—1+o t - t n-1+o
0"t f( n—1+o) r (6 _ anng)
(48)
_ r (4) t3_‘xn71+a
r (4 - “n—1+o)

From the results presented in Table 1, taking o =
1 — o /2 = 1/2, we found that although both formula
(14) and [19] have second-order approximation accuracy,
the numerical accuracy by the formula (14) is significantly
higher than that by the formula of [19]; furthermore, the
computational errors are also obviously smaller than the
formula of [19]. Thus, the new formula (14) is valid for solving
complex problems that require high accuracy, and better
computational results can be obtained from the formula.

In Table 2, taking 0 = 1 — «,/2 = 0.9323, it shows
that the convergence order is higher as compared with the
theoretical result, and the error is smaller than the theoretical
result, but why this happens is not clear yet; it requires further
investigation.

Moreover, on the basis of Table 1, if a slight disturbance to
o is added to Tables 3 and 4, the experimental results will be

greatly different. It can be easily found that there is a very close
relationship between the convergence order and the selection
of 0. The experimental results show that the convergence
order is the ideal result only when ¢ = 1 — «, /2. Tables 2,
5, and 6 also illustrate this fact.

Example 2 (accuracy of formula (40)). Take f(t) = £,

f'(0) = 0,0 < t < T. Compute the Caputo fractional
derivative of f(¢) at T = 1 numerically.
The exact solution is given by

Ir'(6)

5-a,
t n71+17' 4
r(6-a (49)

COD(txnngf (tn—1+a) =

n—1+0)

Table 7 lists the maximum errors and convergence rates
for the variable-order sin(¢) + 1. In particular, when T' = 1,
alt,_1,5) = sin(l) + 1 = 1.8415, and ¢ = 0.5793, the
numerical results demonstrate that formula (40) leads to 3 —
«(t) accuracy.

Similar to Example 1, we also give Tables 8 and 9 as a
comparison; the results show that 0 = 3/2 — &, /2 is the best
choice.

Remark 3. Due to the fact that the selection of ¢ is very
important, it is worth noting that different selected o leads
to the different numerical accuracy. From considerable trials,
we observed that only if we take 0 = 1—-«a(t)/2 for «(t) € (0,1)
ando = 3/2—«(t)/2 for a(t) € (1,2), will numerical results be
closer to theoretical analysis. In addition, carefully observing
Table 9, although the convergence order is not higher than in
Table 7, the error is lower than in Table 7; further investigation
is needed on this phenomenon.

4. Conclusion

In this paper, two approximations to variable-order Caputo
fractional derivatives were developed, and the analysis for the
truncation errors of new formulas was made. In addition,
numerical examples support theoretical results. In further
work, we also want to give a strict proof of the selection of
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TABLE 3: Maximum errors and convergence rates for Example1at T = 1and o, = 0 - 0.1.
aft) T EN(1) Rate
1/40 3.720e - 2 1.0847
2, 1/80 1.800e — 2 1.0473
f ;— 1/120 1.190e - 2 1.0300
1/160 8.900e - 3 1.0161
1/200 7.100e — 3 1.0101
TABLE 4: Maximum errors and convergence rates for ExamplelatT = 1 and 0, = 0 + 0.1.
at) T EN(7) Rate
1/40 3.380e - 2 0.9412
2, 1/80 1.720e -2 0.9746
! ;“ 1/120 1.150e - 2 0.9874
1/160 8.700e — 3 0.9833
1/200 7.000e — 3 0.9792
TABLE 5: Maximum errors and convergence rates for Example 1at T = 2 and o; = 0 + 0.1.
o(t) T EN(1) Rate
1/40 3.070e — 2 1.8040
1/80 8.600e — 3 1.8358
e’ 1/120 4.100e - 3 1.8323
1/160 2.400e - 3 1.8413
1/200 1.600e — 3 1.8329
TABLE 6: Maximum errors and convergence rates for Example 1 at T = 2 and 0, = 0 — 0.23.
a(t) T EN(7) Rate
1/40 5.390e - 2 1.8808
1/80 1.470e - 2 1.8745
e’ 1/120 6.900e — 3 1.8688
1/160 4.000e - 3 1.8777
1/200 2.600e - 3 1.8995
TABLE 7: Maximum errors and convergence rates for Example 2atT = 1 and 0 = 3/2 — /2.
a(t) T EN(7) Rate
1/40 4.023e -1 1.1310
1/80 1.821e -1 1.1435
. 1/160 8.210e — 2 1.1493
sin(t) + 1
1/320 3.690e — 2 1.1538
1/640 1.660e — 2 1.1524
1/1280 7.400e - 3 1.1656
TABLE 8: Maximum errors and convergence rates for Example 2atT = 1 and 05 = 0 + 0.2.
a(t) T EN(7) Rate
1/40 5.644e — 1 1.1219
1/80 2.562e -1 1.1394
. 1/160 1.156e - 1 1.1481
sin(t) + 1
1/320 5.200e - 2 1.1526
1/640 2.33e -2 1.1582
1/1280 1.050e — 2 1.1499
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TABLE 9: Maximum errors and convergence rates for Example 2at T = 1 and 04 = 0 — 0.3.

o(t) T EN(1) Rate

1/40 1.705e — 1 1.1216

1/80 7.760e — 2 1.1356

. 1/160 3.510e — 2 1.1446
sin(t) + 1

1/320 1.580e — 2 1.1515

1/640 7.100e — 3 1.1540

1/1280 3.200e - 3 1.1497

o and apply these new methods to solve more complex cases
within a reasonable accuracy.
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