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This paper is concerned with a delayed SEIS (Susceptible-Exposed-Infectious-Susceptible) epidemic model with a changing
delitescence and nonlinear incidence rate. First of all, local stability of the endemic equilibrium and the existence of a Hopf
bifurcation are studied by choosing the time delay as the bifurcation parameter. Directly afterwards, properties of the Hopf
bifurcation are determined based on the normal form theory and the center manifold theorem. At last, numerical simulations
are carried out to illustrate the obtained theoretical results.

1. Introduction

The outbreak of infectious diseases had not only caused
the loss of billions of lives but also badly damaged the
social economy in a short time, which brought much pain
to human society [1]. Thus, it has been an increasingly
urgent issue to understand how to prevent or slow down
the transmission of infectious diseases. To this end, many
mathematical models have been proposed for describing
the spread process of infectious diseases [2–10]. However,
all the epidemic models above do not consider the change
of delitescence of the infectious diseases. Considering that
the diversity of the delitescence period in each infected
individual who is infected with disease virus is mainly due
to the variation of the virus and the distinct constitution
of different people for some disease, such as H1N1 disease,
Wang proposed the following SEIS epidemic model with
a changing delitescence and a nonlinear incidence rate
[11]:

𝑑𝑆 (𝑡)𝑑𝑡 = 𝐴 − 𝑑𝑆 (𝑡) − 𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝛼𝐼 (𝑡) + 𝛾𝐼 (𝑡) ,𝑑𝐸 (𝑡)𝑑𝑡 = 𝜇𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝛼𝐼 (𝑡) − (𝑑 + 𝜀) 𝐸 (𝑡) ,

𝑑𝐼 (𝑡)𝑑𝑡 = (1 − 𝜇) 𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝛼𝐼 (𝑡) + 𝜀𝐸 (𝑡)− (𝑑 + 𝛾 + 𝛿) 𝐼 (𝑡) ,
(1)

where 𝑆(𝑡), 𝐸(𝑡), and 𝐼(𝑡) denote the numbers of the suscep-
tible, exposed, and infectious populations at time 𝑡, respec-
tively.𝐴 is the recruitment rate of the susceptible population;𝑑 is the natural death rate of the population; 𝛿 is the death
rate due to the disease of the infected population; 𝜀 is the
rate at which the exposed population becomes infectious; 𝛾
is the rate at which the infected population returns to the
susceptible population because of the treatment; 𝜇 is the rate
at which the infected population becomes the exposed one;
and 1−𝜇 is the rate at which the infected population becomes
infectious directly. 𝛽𝑆𝐼/(1 + 𝛼𝐼) is the nonlinear incidence
rate, where𝛽measures the infection force of the disease and𝛼
measures the inhibition effect from the behavioral change of
the susceptible population.Wang investigated global stability
of system (1).

In fact, many infectious diseases have different kinds
of delays during their spreading process in the population,
such as latent period delay [9, 12–16], immunity period delay
[17, 18], and infection period delay [19]. The time delay
may induce Hopf bifurcation and periodic solutions. The
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occurrence of a Hopf bifurcation means that the state of the
epidemic disease prevalence changes from an equilibrium
to a limit cycle. Therefore, the time delay can influence the
dynamics of infectious diseases. So it is necessary and useful
to investigate system (1) with time delay. Based on this fact
and taking the period used to cure the infectious population,
we consider the following delayed epidemic system:

𝑑𝑆 (𝑡)𝑑𝑡 = 𝐴 − 𝑑𝑆 (𝑡) − 𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝛼𝐼 (𝑡) + 𝛾𝐼 (𝑡 − 𝜏) ,𝑑𝐸 (𝑡)𝑑𝑡 = 𝜇𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝛼𝐼 (𝑡) − (𝑑 + 𝜀) 𝐸 (𝑡) ,𝑑𝐼 (𝑡)𝑑𝑡 = (1 − 𝜇) 𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝛼𝐼 (𝑡) + 𝜀𝐸 (𝑡) − (𝑑 + 𝛿) 𝐼 (𝑡)− 𝛾𝐼 (𝑡 − 𝜏) ,
(2)

where 𝜏 is the time delay due to the period that is used to
cure the infectious population.That is, we assume that all the
infectious populations will survive after time 𝜏. The initial
conditions for system (2) are

(𝜙1 (𝜃) , 𝜙2 (𝜃) , 𝜙3 (𝜃)) ∈ 𝐶 = 𝐶 ([−𝜏, 0] , 𝑅3+) ,𝜙1 (𝜃) > 0, 𝜙2 (𝜃) > 0, 𝜙3 (𝜃) > 0, (3)

where 𝑅3+ = (𝑆, 𝐸, 𝐼) ∈ 𝑅3+.
The outline of this paper is as follows. In the next section,

stability of the endemic equilibrium is analyzed and the
critical value of the time delay at which a Hopf bifurcation
occurs is obtained. In Section 3, direction and stability
of the Hopf bifurcation are investigated. In Section 4, the
obtained theoretical results are verified by some numerical
simulations. Finally, this work is summarized in Section 5.

2. Stability of the Endemic Equilibrium and
Existence of Hopf Bifurcation

By a direct computation, we know that if (I) 𝑏2 = 0 and 𝑏0/𝑏1 <0, (II) 𝑏21 − 4𝑏0𝑏2 > 0 and 𝑏0/𝑏2 < 0, (III) 𝑏21 − 4𝑏0𝑏2 > 0, 𝑏0 = 0
and 𝑏1/𝑏2 < 0, or (IV) 𝑏21 − 4𝑏0𝑏2 = 0 and 𝑏1/𝑏2 < 0, then
system (2) has a unique endemic equilibrium 𝑃∗(𝑆∗, 𝐸∗, 𝐼∗),
where

𝑆∗ = (𝑑 + 𝜀) (𝑑 + 𝛾 + 𝛿) (1 + 𝛼𝐼∗)𝛽 (1 − 𝜇) (𝑑 + 𝜀) + 𝜇𝛽𝜀 ,
𝐸∗ = (𝜇𝛽𝑆∗𝐼∗)((𝑑 + 𝜀) (1 + 𝛼𝐼∗)) ,

(4)

and 𝐼∗ is the unique positive root of the following equation:
𝑏2𝐼2 + 𝑏1𝐼 + 𝑏0 = 0, (5)

where

𝑏0 = 𝑑 (𝑑 + 𝜀) (𝑑 + 𝛾 + 𝜀) − 𝐴𝛽 ((1 − 𝜇) (𝑑 + 𝜀) + 𝜇𝜀) ,
𝑏1 = (𝑑 + 𝜀) (2𝑑𝛼 + 𝛽) (𝑑 + 𝛾 + 𝜀)

− 𝛽 ((1 − 𝜇) (𝑑 + 𝜀) + 𝜇𝜀) (𝐴𝛼 + 𝛾) ,
𝑏2 = 𝛼 (𝑑 + 𝜀) (𝑑𝛼 + 𝛽) (𝑑 + 𝛾 + 𝜀) .

(6)

Let 𝑢1(𝑡) = 𝑆(𝑡) − 𝑆∗, 𝑢2(𝑡) = 𝐸(𝑡) − 𝐸∗, 𝑢3(𝑡) = 𝐼(𝑡) − 𝐼∗.
We can rewrite system (2) as the following form:

𝑢̇1 (𝑡) = 𝑎11𝑢1 (𝑡) + 𝑎13𝑢3 (𝑡) + 𝑏13𝑢3 (𝑡 − 𝜏)
+ ∑
𝑖+𝑗≥2

1𝑖!𝑗!𝑓(1)𝑖𝑗 𝑢𝑖1 (𝑡) 𝑢𝑗3 (𝑡) ,
𝑢̇2 (𝑡) = 𝑎21𝑢1 (𝑡) + 𝑎22𝑢2 (𝑡) + 𝑎23𝑢3 (𝑡)

+ ∑
𝑖+𝑗≥2

1𝑖!𝑗!𝑓(2)𝑖𝑗 𝑢𝑖1 (𝑡) 𝑢𝑗3 (𝑡) ,
𝑢̇3 (𝑡) = 𝑎31𝑢1 (t) + 𝑎32𝑢2 (𝑡) + 𝑎33𝑢3 (𝑡) + 𝑏33𝑢3 (𝑡 − 𝜏)

+ ∑
𝑖+𝑗≥2

1𝑖!𝑗!𝑓(3)𝑖𝑗 𝑢𝑖1 (𝑡) 𝑢𝑗3 (𝑡) ,

(7)

where

𝑎11 = −(𝑑 + 𝛽𝐼∗1 + 𝛼𝐼∗) ,
𝑎13 = − 𝛽𝑆∗1 + 𝛼𝐼∗ ,𝑏13 = 𝛾,
𝑎21 = 𝜇𝛽𝐼∗1 + 𝛼𝐼∗ ,𝑎22 = − (𝑑 + 𝜀) ,
𝑎23 = 𝜇𝛽𝑆∗1 + 𝛼𝐼∗ ,
𝑎31 = (1 − 𝜇) 𝛽𝐼∗1 + 𝛼𝐼∗ ,
𝑎32 = 𝜀,
𝑎33 = (1 − 𝜇) 𝛽𝐼∗1 + 𝛼𝐼∗ − (𝑑 + 𝛿) ,
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𝑏33 = −𝛾,
𝑓(𝑘)𝑖𝑗 = 𝜕𝑖+𝑗𝑓(𝑘) (𝑆∗, 𝐸∗, 𝐼∗)𝜕𝑢𝑖1 (𝑡) 𝜕𝑢𝑗3 (𝑡) ,
𝑓(1) = 𝐴 − 𝑑𝑢1 (𝑡) − 𝛽𝑢1 (𝑡) 𝑢3 (𝑡)1 + 𝛼𝑢3 (𝑡) + 𝛾𝑢3 (𝑡 − 𝜏) ,
𝑓(2) = 𝜇𝛽𝑢1 (𝑡) 𝑢3 (𝑡)1 + 𝛼𝑢3 (𝑡) − (𝑑 + 𝜀) 𝑢2 (𝑡) ,
𝑓(3) = (1 − 𝜇) 𝛽𝑢1 (𝑡) 𝑢3 (𝑡)1 + 𝛼𝑢3 (𝑡) + 𝜀𝑢2 (𝑡) − (𝑑 + 𝛿) 𝑢3 (𝑡)

− 𝛾𝑢3 (𝑡 − 𝜏) .
(8)

Then we obtain the linearized system of system (2)𝑢̇1 (𝑡) = 𝑎11𝑢1 (𝑡) + 𝑎13𝑢3 (𝑡) + 𝑏13𝑢3 (𝑡 − 𝜏) ,𝑢̇2 (𝑡) = 𝑎21𝑢1 (𝑡) + 𝑎22𝑢2 (𝑡) + 𝑎23𝑢3 (𝑡) ,𝑢̇3 (𝑡) = 𝑎31𝑢1 (𝑡) + 𝑎32𝑢2 (𝑡) + 𝑎33𝑢3 (𝑡)+ 𝑏33𝑢3 (𝑡 − 𝜏) .
(9)

The characteristic equation is𝜆3 + 𝐴2𝜆2 + 𝐴1𝜆 + 𝐴0 + (𝐵2𝜆2 + 𝐵1𝜆 + 𝐵0) 𝑒−𝜆𝜏= 0, (10)

where𝐴0 = 𝑎13 (𝑎22𝑎31 − 𝑎21𝑎32) + 𝑎11 (𝑎23𝑎32 − 𝑎22𝑎33) ,𝐴1 = 𝑎11𝑎22 + 𝑎22𝑎33 + 𝑎11𝑎33𝐴2 = − (𝑎11 + 𝑎22 + 𝑎33) ,𝐵0 = 𝑏13 (𝑎22𝑎31 − 𝑎21𝑎32) − 𝑎11𝑎22𝑏33,𝐵1 = 𝑏33 (𝑎11 + 𝑎22) − 𝑎13𝑏13,𝐵2 = −𝑏33.
(11)

When 𝜏 = 0, (10) reduces to𝜆3 + (𝐴2 + 𝐵2) 𝜆2 + (𝐴1 + 𝐵1) 𝜆 + 𝐴0 + 𝐵0 = 0. (12)

Routh-Hurwitz criterion implies that 𝑃∗ is locally asymp-
totically stable without delay if condition (𝐻1) holds.

(𝐻1) 𝐴2 + 𝐵2 > 0, (𝐴2 + 𝐵2)(𝐴1 + 𝐵1) > 𝐴0 + 𝐵0 > 0.
For 𝜏 > 0, substituting 𝜆 = 𝑖𝜔 (𝜔 > 0) into (10), we obtain𝐵1𝜔 sin 𝜏𝜔 + (𝐵0 − 𝐵2𝜔2) cos 𝜏𝜔 = 𝐴2𝜔2 − 𝐴0,𝐵1𝜔 cos 𝜏𝜔 − (𝐵0 − 𝐵2𝜔2) sin 𝜏𝜔 = 𝜔3 − 𝐴1𝜔. (13)

Then 𝜔6 + 𝑎2𝜔4 + 𝑎1𝜔2 + 𝑎0 = 0, (14)

where 𝑎0 = 𝐴20 − 𝐵20,𝑎1 = 𝐴21 − 2𝐴0𝐴2 − 𝐵21 + 2𝐵0𝐵2,𝐴2 = 𝐴22 − 2𝐴1 − 𝐵22.
(15)

Let 𝜔2 = V; then

V3 + 𝑎2V2 + 𝑎1V + 𝑎0 = 0, (16)

where 𝑓(V) = V3 + 𝑎2V2 + 𝑎1V + 𝑎0. According to the analysis
about the distribution of roots of (16) in Song et al. [20], we
have the following result.

Lemma 1. For the polynomial equation (16),

(1) if 𝑎0 < 0, then (16) has at least one positive root;
(2) if 𝑎0 ≥ 0 and󳵻 = 𝑎22 −3𝑎1 ≤ 0, then (16) has no positive

roots;
(3) if 𝑎0 ≥ 0 and 󳵻 = 𝑎22 − 3𝑎1 > 0, then (16) has positive

roots if and only if V∗1 = (−𝑎2+√󳵻)/3 > 0 and 𝑓(V∗1 ) ≤0.
Next, we assume that the coefficients in (16) satisfy the following
condition.(𝐻2) (i) 𝑎0 < 0 or (ii) 𝑎0 ≥ 0, 󳵻 = 𝑎22 − 3𝑎1 > 0, V∗1 =(−𝑎2 + √󳵻)/3 > 0, and 𝑓(V∗1 ) ≤ 0.

Thus, (14) has at least one positive root such that (10) has a
pair of purely imaginary roots ±𝑖𝜔0. The corresponding critical
value 𝜏0 can be obtained from (13)

𝜏0 = 1𝜔0
⋅ arccos (𝐵1 − 𝐴2𝐵2) 𝜔40 + (𝐴2𝐵0 + 𝐴0𝐵2 − 𝐴1𝐵1) 𝜔20 − 𝐴0𝐵0𝐵21𝜔20 + (𝐵0 − 𝐵2𝜔20)2 . (17)

Taking derivative with respect to 𝜏 on both sides of (10), we
obtain

[𝑑𝜆𝑑𝜏]−1 = − 3𝜆2 + 2𝐴2𝜆 + 𝐴1𝜆 (𝜆3 + 𝐴2𝜆2 + 𝐴1𝜆 + 𝐴0)
+ 2𝐵2𝜆 + 𝐵1𝜆 (𝐵2𝜆2 + 𝐵1𝜆 + 𝐵0) − 𝜏𝜆 .

(18)

Further, we have

Re [𝑑𝜆𝑑𝜏]−1𝜏=𝜏0 = 𝑓󸀠 (𝜔20)𝐵21𝜔20 + (𝐵0 − 𝐵2𝜔20)2 . (19)

Thus, if the condition (𝐻3): 𝑓󸀠(𝜔20) ̸= 0 holds, then
Re[𝑑𝜆/𝑑𝜏]−1𝜏=𝜏0 ̸= 0. Then, based on the Hopf bifurcation
theorem in [21], we have the following.

Theorem 2. For system (2), if the conditions (𝐻1)–(𝐻3) hold,
then the endemic equilibrium 𝐸∗(𝑆∗, 𝐸∗, 𝐼∗) of system (2) is
asymptotically stable for 𝜏 ∈ [0, 𝜏0) and system (2) undergoes
a Hopf bifurcation at the endemic equilibrium 𝐸∗(𝑆∗, 𝐸∗, 𝐼∗)
when 𝜏 = 𝜏0, where 𝜏0 is defined in (17).
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3. Direction and Stability of the
Hopf Bifurcation

Let 𝜏 = 𝜏0 +𝜇, 𝜇 ∈ 𝑅; then 𝜇 = 0 is the Hopf bifurcation value
of system (2). Rescaling the time delay 𝑡 → (𝑡/𝜏), then system
(2) can be transformed into an FDE in 𝐶 = 𝐶([−1, 0], 𝑅3) as
follows: 𝑢̇ (𝑡) = 𝐿𝜇𝑢𝑡 + 𝐹 (𝜇, 𝑢𝑡) , (20)
where

𝐿𝜇𝜙 = (𝜏0 + 𝜇)(𝑎11 0 𝑎13𝑎21 𝑎22 𝑎23𝑎31 𝑎32 𝑎33)𝜙 (0)
+ (𝜏0 + 𝜇)(0 0 𝑏130 0 00 0 𝑏33)𝜙 (−1) ,

𝐹 (𝜇, 𝜙) = (𝜏0 + 𝜇) (𝐹1, 𝐹2, 𝐹3)𝑇 ,
(21)

where 𝐹1, 𝐹2, and 𝐹3 are defined by Appendix A.
By the Riesz representation theorem, there exists a 3 × 3

matrix function 𝜂(𝜃, 𝜇), 𝜃 ∈ [−1, 0], whose components are
of bounded variation, such that𝐿𝜇𝜙 = ∫0

−1
𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜙 ∈ 𝐶 ([−1, 0] , 𝑅3) . (22)

In fact, we choose

𝜂 (𝜃, 𝜇) = (𝜏0 + 𝜇)(𝑎11 0 𝑎13𝑎21 𝑎22 𝑎23𝑎31 𝑎32 𝑎33)𝜙 (0)
+ (𝜏0 + 𝜇)(0 0 𝑏130 0 00 0 𝑏33)𝜙 (−1) .

(23)

For 𝜙 ∈ 𝐶([−1, 0], 𝑅3), we define
𝐴 (𝜇) 𝜙 = {{{{{{{{{

𝑑𝜙 (𝜃)𝑑𝜃 , −1 ≤ 𝜃 < 0,
∫0
−1
𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {{{
0, −1 ≤ 𝜃 < 0,𝐹 (𝜇, 𝜙) , 𝜃 = 0.

(24)

Then system (20) is equivalent to𝑢̇ (𝑡) = 𝐴 (𝜇) 𝑢𝑡 + 𝑅 (𝜇) 𝑢𝑡. (25)

For 𝜑 ∈ 𝐶1([0, 1]), (𝑅3)∗, the adjoint operator 𝐴∗ of 𝐴 is
defined as

𝐴∗ (𝜑) = {{{{{{{{{
−𝑑𝜑 (𝑠)𝑑𝑠 , 0 < 𝑠 ≤ 1,
∫0
−1
𝑑𝜂𝑇 (𝑠, 0) 𝜑 (−𝑠) , 𝑠 = 0, (26)

and a bilinear inner product is defined by⟨𝜑 (𝑠) , 𝜙 (𝜃)⟩ = 𝜑 (0) 𝜙 (0)
− ∫0
𝜃=−1

∫𝜃
𝜉=0

𝜑 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (27)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
Let 𝑞(𝜃) = (1, 𝑞2, 𝑞3)𝑇𝑒𝑖𝜔0𝜏0𝜃 be the eigenvector of 𝐴(0)

belonging to +𝑖𝜔0𝜏0 and 𝑞∗(𝑠) = 𝐷(1, 𝑞∗2 , 𝑞∗3 )𝑒𝑖𝜔0𝜏0𝑠 be
the eigenvector of 𝐴∗(0) belonging to −𝑖𝜔0𝜏0. By a direct
computation, we can get

𝑞2 = 𝑎21 + 𝑎23𝑞3𝑖𝜔0 − 𝑎22 ,𝑞3 = 𝑖𝜔0 − 𝑎11𝑎13 + 𝑏13𝑒−𝑖𝜏0𝜔0 ,𝑞∗2 = − 𝑎32𝑞3𝑖𝜔0 + 𝑎22 ,
𝑞∗3 = (𝑎13 + 𝑏13𝑒𝑖𝜏0𝜔0) (𝑖𝜔0 + 𝑎22)𝑎23𝑎32 − (𝑖𝜔0 + 𝑎22) (𝑖𝜔0 + 𝑎33 + 𝑏33𝑒𝑖𝜏0𝜔0) .

(28)

From (27), we can get⟨𝑞∗ (𝑠) , 𝑞 (𝜃)⟩= 𝐷 [1 + 𝑞2𝑞∗2 + 𝑞3𝑞∗3 + 𝜏0𝑒−𝑖𝜏0𝜔0𝑞3 (𝑏13 + 𝑏33𝑞∗3 )] . (29)

Then we choose𝐷 = [1 + 𝑞2𝑞∗2 + 𝑞3𝑞∗3 + 𝜏0𝑒−𝑖𝜏0𝜔0𝑞3 (𝑏13 + 𝑏33𝑞∗3 )]−1 . (30)

such that ⟨𝑞∗, 𝑞⟩ = 1.
Next, we can obtain the coefficients 𝑔20, 𝑔11, 𝑔02, and 𝑔21

by using the method introduced in [21] and a computation
process similar to that in [22–24].The expressions of 𝑔20, 𝑔11,𝑔02, and 𝑔21 are defined by Appendix B.

Then, we can get the following coefficients which deter-
mine the properties of the Hopf bifurcation:

𝐶1 (0) = 𝑖2𝜏0𝜔0 (𝑔11𝑔20 − 2 󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑔02󵄨󵄨󵄨󵄨23 ) + 𝑔212 ,
𝜇2 = − Re {𝐶1 (0)}

Re {𝜆󸀠 (𝜏0)} ,𝛽2 = 2Re {𝐶1 (0)} ,
𝑇2 = − Im {𝐶1 (0)} + 𝜇2Im {𝜆󸀠 (𝜏0)}𝜏0𝜔0 .

(31)

In conclusion, we have the following results.

Theorem 3. For system (2), if 𝜇2 > 0 (𝜇2 < 0), then the Hopf
bifurcation is supercritical (subcritical). If 𝛽2 < 0 (𝛽2 > 0),
then the bifurcating periodic solutions are stable (unstable).
If 𝑇2 > 0 (𝑇2 < 0), then the bifurcating periodic solutions
increase (decrease).
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Figure 1: 𝑃∗ is locally asymptotically stable for 𝜏 = 4.475 < 𝜏0 = 5.1686 with initial values “27.5, 260.5, 65.”

4. Numerical Simulations

In order to verify the efficiency of the obtained results in
the paper, we carry out some numerical simulations in this
section. By extracting some values from [11] and considering
the conditions for the existence of the Hopf bifurcation, we
consider the special case of system (2) with the parameters𝐴 = 5, 𝑑 = 0.01, 𝛽 = 0.5, 𝛼 = 0.4, 𝛾 = 0.5, 𝜇 = 0.65, 𝜀 = 0.1,
and 𝛿 = 0.02, Then, system (2) becomes the following form:𝑑𝑆 (𝑡)𝑑𝑡 = 5 − 0.01𝑆 (𝑡) − 0.5𝑆 (𝑡) 𝐼 (𝑡)1 + 0.4𝐼 (𝑡) + 0.5𝐼 (𝑡 − 𝜏) ,𝑑𝐸 (𝑡)𝑑𝑡 = 0.325𝑆 (𝑡) 𝐼 (𝑡)1 + 0.4𝐼 (𝑡) − 0.11𝐸 (𝑡) ,

𝑑𝐼 (𝑡)𝑑𝑡= 0.175𝑆 (𝑡) 𝐼 (𝑡)1 + 0.4𝐼 (𝑡) + 0.1𝐸 (𝑡) − 0.03𝐼 (𝑡)
− 0.5𝐼 (𝑡 − 𝜏) ,

(32)

0.0014𝐼2 − 0.0999𝐼 − 0.2584 = 0, (33)

from which we can obtain the unique positive root 𝐼∗ =73.8562 and then we get the unique endemic equilibrium𝑃∗(34.3750, 245.5930, 73.8562). Then, we can obtain 𝜔0 =0.3950, 𝜏0 = 5.1686, and 𝜆󸀠(𝜏0) = 0.0012 − 0.0759𝑖.
Thus, based on Theorem 2, we know that the endemic
equilibrium 𝑃∗(34.3750, 245.5930, 73.8562) is locally asymp-
totically stable when 𝜏 < 𝜏0 = 5.1686, which can be
illustrated by Figures 1 and 2. In this case, the disease
can be controlled easily. Once the value of the delay

passes through the critical value 𝜏0 = 5.1686, then the
endemic equilibrium 𝑃∗(34.3750, 245.5930, 73.8562) loses its
stability and a Hopf bifurcation occurs, and a family of
periodic solutions bifurcate from the endemic equilibrium𝑃∗(34.3750, 245.5930, 73.8562). This property can be shown
as in Figures 3 and 4. In this case, the disease will be out of
control.

In addition, according to (31), we get 𝐶1(0) = −1.0027 −0.9244𝑖, 𝜇2 = 835.5833 > 0, 𝛽2 = −2.0054 < 0, and𝑇2 = 31.5171 > 0. Therefore, we can conclude that the Hopf
bifurcation is supercritical and the bifurcating periodic solu-
tions are stable and increase. Since the bifurcating periodic
solutions are stable, it can be concluded that the populations
in system (32) can coexist from the view of ecology. Based on
this fact, we can conclude that the time delay is harmful for
system (32).

5. Conclusions

We generalize a delayed SEIS (Susceptible-Exposed-Infec-
tious-Susceptible) epidemic model with a changing delites-
cence and nonlinear incidence rate in this paper by introduc-
ing the time delay due to the period that is used to cure the
infectious population into the SEIS model considered in the
literature [11]. Compared with the literature [11], we mainly
consider the effect of the time delay on the model.

The main results are given in terms of local stability
and Hopf bifurcation. Stability of the endemic equilibrium
is investigated by analyzing the corresponding characteristic
equation. By choosing the time delay as a bifurcation param-
eter, sufficient conditions have been established for local
existence of Hopf bifurcation at the endemic equilibrium.
Then, with the help of the normal form theory and the



6 Discrete Dynamics in Nature and Society

0 100 200 300 400 500
20

30

40

t

S
(t
)

0 100 200 300 400 500
180

200

220

240

260

t

E
(t
)

0 100 200 300 400 500
50

60

70

t

I(
t)

50
60

70
200

250

20

30

40

I(t)
E(t)

S
(t
)

Figure 2: 𝑃∗ is locally asymptotically stable for 𝜏 = 4.475 < 𝜏0 = 5.1686 with initial values “22, 200, 75.”
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Figure 3: 𝑃∗ becomes unstable and a Hopf bifurcation occurs when 𝜏 = 5.485 > 𝜏0 = 5.1686 with initial values “27.5, 260.5, 65.”

center manifold theorem due to Hassard et al. [21], direction
and stability of the Hopf bifurcation are determined. Finally,
through numerical simulations, it can be concluded that
the period used to cure the infectious population plays an
important role in the disease spreading and the disease may
be controlled by shortening the period used to cure the
infectious population.

Appendix

A. The Expressions of 𝐹1, 𝐹2, and 𝐹3
𝐹1 = 𝑔1𝜙23 (0) + 𝑔2𝜙1 (0) 𝜙3 (0) + 𝑔3𝜙1 (0) 𝜙23 (0)+ 𝑔4𝜙33 (0) + ⋅ ⋅ ⋅ ,
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Figure 4: 𝑃∗ becomes unstable and a Hopf bifurcation occurs when 𝜏 = 5.485 > 𝜏0 = 5.1686 with initial values “22, 200, 75.”

𝐹2 = ℎ1𝜙23 (0) + ℎ2𝜙1 (0) 𝜙3 (0) + ℎ3𝜙1 (0) 𝜙23 (0)+ ℎ4𝜙33 (0) + ⋅ ⋅ ⋅ ,
𝐹3 = 𝑘1𝜙23 (0) + 𝑘2𝜙1 (0) 𝜙3 (0) + 𝑘3𝜙1 (0) 𝜙23 (0)+ 𝑘4𝜙33 (0) + ⋅ ⋅ ⋅ ,
𝑔1 = 𝛼𝛽𝑆∗(1 + 𝛼𝐼∗)3 ,
𝑔2 = − 𝛽(1 + 𝛼𝐼∗)2 ,
𝑔3 = 𝛼𝛽(1 + 𝛼𝐼∗)3 ,
𝑔4 = − 𝛼2𝛽𝑆∗(1 + 𝛼𝐼∗)4 ,
ℎ1 = − 𝜇𝛼𝛽𝑆∗(1 + 𝛼𝐼∗)3 ,
ℎ2 = 𝜇𝛽(1 + 𝛼𝐼∗)2 ,
ℎ3 = − 𝜇𝛼𝛽(1 + 𝛼𝐼∗)3 ,
ℎ4 = 𝜇𝛼2𝛽𝑆∗(1 + 𝛼𝐼∗)4 ,

𝑘1 = −(1 − 𝜇) 𝛼𝛽𝑆∗(1 + 𝛼𝐼∗)3 ,
𝑘2 = (1 − 𝜇) 𝛽(1 + 𝛼𝐼∗)2 ,
𝑘3 = −(1 − 𝜇) 𝛼𝛽(1 + 𝛼𝐼∗)3 ,
𝑘4 = (1 − 𝜇) 𝛼2𝛽𝑆∗(1 + 𝛼𝐼∗)4 .

(A.1)

B. The Expressions of 𝑔20, 𝑔11, 𝑔02, and 𝑔21
𝑔20 = 2𝜏0𝐷(𝑔1 (𝑞(3) (0))2 + 𝑔2𝑞(1) (0) 𝑞(3) (0)
+ 𝑞∗2 (ℎ1 (𝑞(3) (0))2 + ℎ2𝑞(1) (0) 𝑞(3) (0)) + 𝑞∗3 (𝑘1 (𝑞(3) (0))2
+ 𝑘2𝑞(1) (0) 𝑞(3) (0))) ,

𝑔11 = 𝜏0𝐷(2𝑔1𝑞(3) (0) 𝑞(3) (0) + 𝑔2 (𝑞(1) (0) 𝑞(3) (0) + 𝑞(1) (0)
⋅ 𝑞(3) (0)) + 𝑞∗2 (2ℎ1𝑞(3) (0) 𝑞(3) (0) + ℎ2 (𝑞(1) (0) 𝑞(3) (0)+ 𝑞(1) (0) 𝑞(3) (0))) + 𝑞∗3 (2𝑘1𝑞(3) (0) 𝑞(3) (0)
+ 𝑘2 (𝑞(1) (0) 𝑞(3) (0) + 𝑞(1) (0) 𝑞(3) (0)))) ,

𝑔02 = 2𝜏0𝐷(𝑔1 (𝑞(3) (0))2 + 𝑔2𝑞(1) (0) 𝑞(3) (0)
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+ 𝑞∗2 (ℎ1 (𝑞(3) (0))2 + ℎ2𝑞(1) (0) 𝑞(3) (0)) + 𝑞∗3 (𝑘1 (𝑞(3) (0))2
+ 𝑘2𝑞(1) (0) 𝑞(3) (0))) ,

𝑔21 = 2𝜏0𝐷(𝑔1 (2𝑊(3)11 (0) 𝑞(3) (0) + 𝑊(3)20 (0) 𝑞(3) (0))
+ 𝑔2 (𝑊(1)11 (0) 𝑞(3) (0) + 12𝑊(1)20 (0) 𝑞(3) (0) + 𝑊(3)11 (0) 𝑞(1) (0)+ 12𝑊(3)20 (0) 𝑞(1) (0)) + 𝑔3 (𝑞(1) (0) (𝑞(3) (0))2 + 2𝑞(1) (0)⋅ 𝑞(3) (0) 𝑞(3) (0)) + 3𝑔4 (𝑞(3) (0))2 𝑞(3) (0)
+ 𝑞∗2 (ℎ1 (2𝑊(3)11 (0) 𝑞(3) (0) + 𝑊(3)20 (0) 𝑞(3) (0))
+ ℎ2 (𝑊(1)11 (0) 𝑞(3) (0) + 12𝑊(1)20 (0) 𝑞(3) (0) + 𝑊(3)11 (0) 𝑞(1) (0)+ 12𝑊(3)20 (0) 𝑞(1) (0)) + ℎ3 (𝑞(1) (0) (𝑞(3) (0))2+ 2𝑞(1) (0) 𝑞(3) (0) 𝑞(3) (0)) + 3ℎ4 (𝑞(3) (0))2 𝑞(3) (0))
+ 𝑞∗3 (𝑘1 (2𝑊(3)11 (0) 𝑞(3) (0) + 𝑊(3)20 (0) 𝑞(3) (0))
+ 𝑘2 (𝑊(1)11 (0) 𝑞(3) (0) + 12𝑊(1)20 (0) 𝑞(3) (0) + 𝑊(3)11 (0) 𝑞(1) (0)+ 12𝑊(3)20 (0) 𝑞(1) (0)) + 𝑘3 (𝑞(1) (0) (𝑞(3) (0))2+ 2𝑞(1) (0) 𝑞(3) (0) 𝑞(3) (0)) + 3𝑘4 (𝑞(3) (0))2 𝑞(3) (0))) ,

𝑊20 (𝜃) = 𝑖𝑔20𝑞 (0)𝜏0𝜔0 𝑒𝑖𝜏0𝜔0𝜃 + 𝑖𝑔02𝑞 (0)3𝜏0𝜔0 𝑒−𝑖𝜏0𝜔0𝜃 + 𝐸1𝑒2𝑖𝜏0𝜔0𝜃,
𝑊11 (𝜃) = −𝑖𝑔11𝑞 (0)𝜏0𝜔0 𝑒𝑖𝜏0𝜔0𝜃 + 𝑖𝑔11𝑞 (0)𝜏0𝜔0 𝑒−𝑖𝜏0𝜔0𝜃 + 𝐸2,
𝐸1 = (2𝑖𝜔0 − 𝑎11 0 −𝑎13 − 𝑏13𝑒−2𝑖𝜏0𝜔0−𝑎21 2𝑖𝜔0 − 𝑎22 −𝑎23−𝑎31 −𝑎32 2𝑖𝜔0 − 𝑎33 − 𝑏33𝑒−2𝑖𝜏0𝜔0)

−1

×(𝐸(1)1𝐸(2)1𝐸(3)1 ),

𝐸2 = −(𝑎11 𝑎12 𝑎13 + 𝑏13𝑎21 𝑎22 𝑎23𝑎31 𝑎32 𝑎33 + 𝑏33)
−1 ×(𝐸(1)2𝐸(2)2𝐸(3)2 ),

𝐸(1)1 = 𝑔1 (𝑞(3) (0))2 + 𝑔2𝑞(1) (0) 𝑞(3) (0) ,𝐸(2)1 = ℎ1 (𝑞(3) (0))2 + ℎ2𝑞(1) (0) 𝑞(3) (0) ,𝐸(3)1 = 𝑘1 (𝑞(3) (0))2 + 𝑘2𝑞(1) (0) 𝑞(3) (0) ,
𝐸(1)2 = 2𝑔1𝑞(3) (0) 𝑞(3) (0) + 𝑔2 (𝑞(1) (0) 𝑞(3) (0) + 𝑞(1) (0) 𝑞(3) (0)) ,
𝐸(2)2 = 2ℎ1𝑞(3) (0) 𝑞(3) (0) + ℎ2 (𝑞(1) (0) 𝑞(3) (0) + 𝑞(1) (0) 𝑞(3) (0)) ,
𝐸(3)2 = 2𝑘1𝑞(3) (0) 𝑞(3) (0) + 𝑘2 (𝑞(1) (0) 𝑞(3) (0) + 𝑞(1) (0) 𝑞(3) (0)) .
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