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Many researchers have used quadratic utility function to study its influences on economic games with product differentiation. Such
games include Cournot, Bertrand, and a mixed-type game called Cournot-Bertrand. Within this paper, a cubic utility function that
is derived from a constant elasticity of substitution production function (CES) is introduced. This cubic function is more desirable
than the quadratic one besides its amenability to efficiency analysis. Based on that utility a two-dimensional Cournot duopoly
game with horizontal product differentiation is modeled using a discrete time scale. Two different types of games are studied in
this paper. In the first game, firms are updating their output production using the traditional bounded rationality approach. In
the second game, firms adopt Puu’s mechanism to update their productions. Puu’s mechanism does not require any information
about the profit function; instead it needs both firms to know their production and their profits in the past time periods. In both
scenarios, an explicit form for the Nash equilibrium point is obtained under certain conditions. The stability analysis of Nash point
is considered. Furthermore, some numerical simulations are carried out to confirm the chaotic behavior of Nash equilibrium point.

This analysis includes bifurcation, attractor, maximum Lyapunov exponent, and sensitivity to initial conditions.

1. Introduction

Complex dynamic behaviors are typically undesirable phe-
nomena in economic games where searching for stable
equilibrium states is a main interest. These complex behaviors
are important when studying the characteristics of equi-
librium states in such models. The complexity may arise
from different sources. It may occur due to the form of
utility function adopted to construct those models or from
the demand function whether it is linear or nonlinear, or
finally it may come from the amount of information that
each player involved in those models knows about its rival.
Many economically plausible models which have handled
this complexity have been studied in literature. Cournot
[1] introduced his first model about firms competition and
since that time Cournot’s model became a central concept
of many studies that came later. In Cournot’s model, it has
been assumed that firms played against each other using

quantities as their strategic variables. Quantities are not the
only variables that firms can use. There are also prices that
have been used by Bertrand [2] in studying another type
of games named later as Bertrand games. The appearance
of Cournot and Bertrand models has led to more inves-
tigations and analysis of such economic games and hence
some important results have been obtained. Those important
results have shown some complex dynamic characteristics
such as bifurcation and chaos. For instance, recently, studies
on such economical competition were suspected to lead to
complex dynamic behavior such as bifurcation and chaos. In
[3], complex dynamics characteristics have been detected in
a simple monopoly model. Using a demand function with no
inflection points, complex behaviors such as bifurcation and
chaos have been investigated in [4]. Askar [5] has shown some
important results about Cournot duopoly game that was
formed by a concave demand function. Other investigations
on those complex characteristics can be found in [6-12].


https://doi.org/10.1155/2017/2585708

It has been discussed in [13-15] that quantities may have
a degree of competition that is low if commodities are substi-
tutes. Therefore, if firms are free to decide their key variables,
they certainly favor to perform with quantities instead of
prices. On the other hand, there are types of strategic variables
which are a mix between quantities and prices. Games that
adopted such type of variables are called Cournot-Bertrand.
To the best of our knowledge, Shubik [16] introduced the first
model of duopoly on which firms use quantities and prices as
their strategic variables. Even though Shubik introduced an
analytical scheme for analyzing the behavior of such games,
he was not capable of deriving the equilibrium point of those
games. Since then literature has contained few number of
studies in which the Nash equilibrium (equilibrium solution)
was explicitly obtained in an analytical form and its stability
has been investigated. The Cournot-Bertrand competition
requires a certain degree of differentiation among products
offered by firms to avoid one firm dominating the market
by its lower price. In [17-20], the authors have argued that,
in certain cases, Cournot-Bertrand game may be optimal.
Furthermore, Tremblay et al. [21] have demonstrated that
empirical evidence has led to the fact that this kind of
competition is abundant. Recently, C. H. Tremblay and V. J.
Tremblay [22] have shown the static properties of the Nash
equilibrium of a Cournot-Bertrand duopoly according to
product differentiation. Naimzada and Tramontana [23] have
studied the dynamic properties of a Cournot duopoly game
with product differentiation using linearity of demand and
cost objective functions. In [24], the authors have studied an
economic market on which three heterogeneous firms are in
conflict and the demand function they adopt is isoelastic.
A dynamic duopoly game with heterogeneous players has
been investigated in [25] by taking one of the two competed
firms as an upper limiter on output, and the other one is a
lower limiter. The influences of the limiter on the dynamic
behavior of the firms have been shown. In [26], the dynamics
of a duopoly Cournot game model has been analyzed.
The game has been modeled based on different adjustment
mechanisms and expectations on which one of the firms
adopts the mechanism “one-period look-ahead” and selects
his decision using estimations, while the other firm uses
a bounded rational mechanism. A dynamic of a banking
duopoly game using homogeneous and heterogeneous firms
has been analyzed in [27] in order to identify the impact of
capital requirements in the context of the Monti-Klein model.
Fanti et al. have studied a nonlinear dynamic duopoly model
on which price and product differentiation are augmented
with managerial firms [28]. In [29], a heterogeneous duopoly
Cournot game is studied where firms adopt two different
approaches which are Local Monopolistic Approximation
(LMA) and a gradient-based approach. In [30], an investment
process has been considered and studied in a duopoly game
where all the firms are heterogeneous firms.

In monopoly and duopoly markets, there are two impor-
tant methods that have been used to tackle those types
of markets. They are called bounded rationality and Puu’s
incomplete information. In bounded rationality approach,
firms estimate their marginal profit so that they can update
their output productions. Depending on this estimation of
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the profit and using discrete time steps they build a discrete
dynamical system that describes the dynamic behavior of the
game. In addition, the firms adopting such local adjustment
mechanism are not requested to know the demand and the
cost functions used in the market [31]. Instead they need to
know if there is some small changes in the production by the
marginal profit estimation, will that lead to a response from
the market? This mechanism is sometimes called myopic [31]
and has been extensively used by many authors, mainly with
continuous time [32]. However, it is discussed elsewhere [31]
that a decision process based on discrete time scales is more
realistic because in real economic systems it may not be pos-
sible to revise the production decisions at every time instant.
On the other hand, an alternative and different approach has
been introduced recently by Puu [33]. It depends on imperfect
information about the competed firms in the market and
is called Puu’s incomplete information. It is characterized
by its applicability in economic markets as it is realistically
accepted. It requires the firms to know the quantity and the
profit in the past two times steps. Furthermore, it does not
need any information about the form of the profit function
in order to estimate the quantity produced in the next
time step. One of the disadvantages of this mechanism is
its singularity when approaching the equilibrium point and
this has been reported in [34]. It has been investigated that
systems based on Puu’s techniques are numerically unstable
when approaching the equilibrium position [34]. Moreover
such systems have serious instabilities in the case of duopoly.
The authors in [34] have modified those systems based on
Puu’s techniques with a change in the quantities produced by
10% per time step to avoid singularities in such systems.

Investors™ utility functions may assume some complex
forms; however, most recent theoretical and applied discus-
sions have dealt with relatively simple forms such as quadratic
utility functions [13, 14]. The reason for choosing such forms
is to manage the investment decision rules in a simple form.
Utility functions should possess some specific and amenable
characteristics such as continuity and differentiability. Even
though there are different functional forms of utility, still
there is little guidance for researchers to select among them.
Regardless of such functional forms, utility functions must
possess some important aspects such as strictly positive
marginal utility of income, estimating the parameters of the
function in an easy way to manipulate it analytically [35, 36].

The main aim of this paper is to analyze the influences
of a cubic utility function on a Cournot duopoly game with
differentiated products. We claim that cubic utility function
may be amenable and desirable to some extent compared
to quadratic form. Our main results concern stability and
instability of the fixed points of the proposed model including
the routes that lead to different types of bifurcations. Our
studies in this paper include analyzing two types of games
depending on two important and different methods, the
bounded rationality and Puu’s methods. Furthermore, we
develop a new control model based on the parameters
adjustment approach in order to protect the system from
instability and chaos.

The paper is organized as follows. In Section 2, two
different games are introduced. The first one consists of two
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bounded rational Cournot duopoly games and the second
one describes a competition between a bounded rational and
naive Cournot duopoly players. For both games, the Nash
equilibrium point is obtained and its stability is investigated.
Under some conditions, it is shown that the Nash point is
locally asymptotically stable and then it loses its stability via
bifurcation. In Section 3, a game between two duopolistic
firms is introduced in which both firms adopt Puu’s approach
to update their productions in the next time step. For
Puu’s game, Nash point is computed and its stability is
investigated. In Section 4, a control method to suppress chaos
in Puu’s system is developed. Finally, we end the paper with
conclusions to show the significance of our results.

2. The Dynamic Model

In this section, we assume an economic market where
two types of agents are presented: firms and consumers.
The competition in this market may be divided into two
important sectors. The first sector produces the numeraire
commodity y > 0, while the other sector consists of two
duopolistic firms, usually called firm 1 and firm 2. Both firms’
decision variables are either prices p; or production quantities
g;» i = 1,2. Existence of a continuum identical consumers
that have preferences towards g, g,, and y is assumed. These
preferences may be represented by a separable utility function
V(@142 y) : RY = R, givenby V(qy, 45, ¥) = U(q1,45) + 3,
where U(q;,q,) : R? — R, is a twice differentiable func-
tion. The representative consumer has an exogenously given
income, M > 0, and thus maximizes his/her preferences
with respect to the quantities produced, g;, g,, according to a
budget constraint, p,q, + p,q, + y = M. According to that the
consumer’s optimization problem is given by the following
form:

maxU (q1,42) = P19y = Pada + M- M

Solving problem (1) gives the inverse demand function,
p; = 0U/9q; = pi(q1,9,), i = 1,2, which represents the
prices of commodities produced by the firms as functions
of quantities. In order to have explicit demand functions,
a specific utility function is required. In this paper, the
following cubic utility function is considered:

1
U(q:,9,) = (a-dq,q,) (q, +q,) - 3 (‘ﬁ + q;) )

It is easy to check that U is strictly concave at g, =
q, = Va/(1+3d), d € (-1/3,1). Therefore, it is strictly
quasiconcave and so is strictly convex to the origin level
curves. This means that by setting the total differential dU = 0
we get the marginal rate of technical substitution, MRTS =
—~dqy/dq, = (a - (q} + 29,9, + dq3))/(a — (dq; + 29,9, +
g3)), which is strictly convex to the origin. It means that the
consumer can substitute one input for the other and continue
to produce the same level of output. Here a > 0 captures the
size of the market demand, while -1 < d < 1 represents

the degree of horizontal product differentiation. Using (1) and
(2), one gets

pp=a- ‘ﬁ - d‘ﬁ —2dq,q,,
, (3)
py=a-dq, - q, - 2dqq,.

If d = 1, the two inverse demand functions become
identical, which is the case of homogenous goods. This leads
to MRTS = —dg,/dq, = 1 and hence dq, = —dgq, which
means that the consumer can substitute one good for the
other and continue to remain on the same indifference curve.
If d = 0, it implies that the market has two monopolistic
firms. Assuming negative values of the parameter d implies
complementarity between the two firms. Now, we construct
our proposed games.

First, it is assumed that both firms play based on their
marginal profits. The profit function for firmiis; = (p;—c)g;,
i = 1,2, where c is a fixed marginal cost. By substituting (3) in
7;, 1 = 1,2, profits of firm 1 and firm 2 are, respectively, given
by

m (a4,4,) = (a—c—q; - dq; - 2dq,q,) 4y

m, (a1,4,) = (a—c—dq} - g5 - 2dq,q,) 4,

Suppose a dynamic competition between the two firms
takes place. For a discrete time t € Z_, (4) can be rewritten in
the form

Tt (Ch,t’ %,t) = (a —c- Cﬁ,t - dqg,t - qul,tqz,t) 91> 5)
5
s (e Go) = (“ —c- dCIit - qg,t - chh,t%,t) Dot

Therefore, the marginal profits are obtained as follows:

aﬂl,t (Ch,t’ %,t)

0qy caTer 3qit B dqit —4dq, 49
(6)

oy, (‘h,t’ ‘h,t)

a‘h,t =a—-c— dqit - 3q§,t - 4dq1,tq2,t'

Now, we may set up the information by which each
player should know about its competitor. If each player has
a complete knowledge of the profit function (i.e., demand
and cost functions), then he/she will use some kind of
expectations against his/her competitor’s decision. Those
expectations may be naive, rational, or adaptive expectations,
or, alternatively, some weighted sum of previous decision to
set the quantities at time ¢ + 1. On the other hand, if a player
does not have a complete knowledge of the profit function,
he/she can use some local estimation of the marginal profit
in order to follow the steepest slope of the profit function [6].
Such limited information makes players unable to completely
solve the optimization problem max, o 7;,1(qy t41592,641)
by considering expectations about the quantity that the
competitor will choose for the next period, but they are able
to get a correct estimate of their own local slope, that is,
the partial derivatives of the profit computed at the current
state of production. This will help each player to increase
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FIGURE 1: (a) Bifurcation diagram of g, , and q,, with respect to k at the system parameters:a = 1, ¢ = 0.7, d = 0.8. (b) Attractor of q,, and

q,, at the system parameters:a = 1, ¢ = 0.7, d = 0.8.

or decrease the quantity produced at time # + 1 depending
on whether its own marginal profit at time t is positive
or negative. Assuming limited information, the adjustment
mechanism of quantities over time is described as follows:

oy,
i1 =1 t kﬁ’

Lt
(7)

o,

o1 = Qoy tk 3dn, >

where k > 0isa constant that captures the speed at which firm
i adjusts its quantity with respect to the consequent marginal
change in its profit. Now the following games are considered.

Bounded Rational Cournot Duopoly Game. By taking into
account (6), system (7) becomes as follows:

Qi1 = Qe tk (a —Cc- 3‘1?,: - dqi,t - 4d‘11,t‘h,t) >
, , (8)
Qo1 = Goe +k (a —c—dq, —3q, - 4d‘11,t‘h,t) .

The above system describes our proposed game. Its
equilibrium point can be obtained by setting in system (8)
(Q1411>920+41) = (G14>9,,); then the following proposition
holds.

Proposition 1. The system given by (8) admits a unique
positive fixed point at =3/5 < d < 1. It is given by NE =
(\V(a=¢c)/(3+5d),\/(a-c)/(3+5d))anda > c.

It is interesting to study the stability and instability of this
fixed point. The Jacobian matrix of system (8) at this point is
given by the following:

a—c a—c
1-2k -
. (3+2d)\/3+5d 6kd\/3+5d
I T | ©
~6kd\ - I_Zk(3+2d)\/3+5d

whose eigenvalues are

a—c
3+5d

A :1—2k(3—d)\/
(10)

a-c
A, =1-2k(3+5d .
: Grsd) \/3 +5d
Therefore, this fixed point is asymptotically stable under the

condition 0 < k < 1/+/(a - ¢)(3 + 5d).

Some numerical evidences are provided to illustrate the
above results given in Proposition 1. They are carried out by
assuming the systems parameters as follows: a = 1, ¢ =
0.7, d = 0.8. The results graphically show that the behavior
of map (8) changes from stability to chaotic state for different
values of the reaction coeflicient k. Figure 1 shows that the
fixed point is asymptotically stable for certain values of k and
at the same time positive values of the quantities produced are
guaranteed. After that it becomes unstable due to bifurcation
appearing and the negative values of quantities obtained. In
Figure 1(b) the attractor behavior of the two firms at those
parameters is depicted. The bifurcation diagram shows that
the system moves from stability through a sequence of a
period doubling bifurcation to chaos. In Figure 2(a), one can
easily see that a bifurcation is reported too and the region of
stability increases as the differentiation parameter d decreases
in the case substitutability (0 < d < 1). Figure 3 shows
that when d approaches zero (in the case of substitutability)
the stability region increases and then becomes unstable due
to bifurcation. Moreover, the simulation experiments have
confirmed that when choosing values of d € [0.8,1] no
results can be obtained and this is because both firms’ outputs
become negative and that has no sense in economy.

On the other hand, when choosing negative values of
d e (-0.54,0), the behavior of the fixed point of system
(8) becomes asymptotically stable for some values of the
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parameter k. Figures 4, 5, and 6 show the behavior of the
system when negative values of d are chosen. Comparing the
above attractors, there are some changes in their structures
in both cases, the case of substitutability (d € (0,0.8)) and
the case of complementarity (d € (-3/5,0)). Furthermore,
Figure 4 shows that in the latter case when d increases
(d € (-3/5,0)), and no matter what the two firms choose
initially, the stability region of the fixed point increases. In
Figure 7(a), the maximum Lyapunov exponents are plotted.
The sensitivity of system (8) to the initial conditions is also
depicted in Figure 7. The two orbits are initially started and
slightly deviated from (q,0,g,5) = (0.1,0.5) and (q,, +
0.0001,g5,0) = (0.1001,0.5).

Bounded Rational versus Naive Cournot Duopoly Game. In
this game, some heterogeneous expectations are assumed.
We assume that the first firm adopts bounded rational
expectations against the quantity produced by its opponent
in the future. The second firm has a naive expectation in the
sense that it expects that the competitor will produce in the
future a quantity based on the marginal profit obtained in
the last period. In this case, system (8) can be rewritten as
follows:

Qi1 = Qe+ k (a —Cc- 3‘1?,: - dq;,t - 4d‘11,t‘h,t) >

, , 11)
ats1 =4 —C— d‘h,t =3q5, — 4dq, 4 @,s-
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Proposition 2. The system given by (11) admits the fixed point
E = (q,.,) that satisfies the condition (3 — d)(q; — G3) = G,-
The Jacobian matrix of system (11) at this point is given by

1-2k(3g, +2dq,) —2kd (2, +9,)

d(g+2m)  20dg+3)]
whose trace and determinant are, respectively,
Tr = 1 -2k (2dq, + 3g,) - 2 (2dg, + 34,),
Det = -2[(dq; +37,) (13)

—2k(3-4d) (2dqf +dg,q, + 2dg; + 3@1?12)] .

To study the stability of the fixed point E, we recall the well-
known stability conditions [7] which are generally given by

i) F=1+Tr+Det>0
(ii)
(i) H:=1-Det > 0.

TC:=1-Tr+Det>0 (14)

It is known that the violation of any conditions of the
above with the other two being simultaneously satisfied leads to
different types of bifurcation. Using E = (q,,q,), the conditions
can be rewritten in the following form:

F:=2-12g, + 6k (64,9, — q;)

+d [4k (67, + 63, - 3,) - 83, ]
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— 4kd® (2q; +,q, + 235)
TC = 6kg, (1 +64,) + 4kd (67; + 63, + ;)
- 4kd® (2q; + 4,9, + 20)
H:=1+2(dq, +37,)
—4d (3 - d) (3dq; +dq,q, + 2dq, + 34,7, ) -
(15)

The above conditions do not give any information about the
stability of the fixed point of system (11). Instead, we use some
numerical simulations to get some insights about the stability
behavior of the fixed point. We choose the system’s parameters
as follows: a = 1, ¢ = 0.7, and d = -0.55. It is shown
in Figure 8 that both firms are unstable since bifurcations
start to appear from the initial quantities chosen. In addition,
simulation experiments have shown that for any values of the
system’s parameters both firms will be entirely unstable and this
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is clear from Figures 9, 10, and 11. The reason for that may be
the naive expectation adopted by the second firm.

3. Puu’s Games and Main Results

Puu’s incomplete information approach is an alternative to
the bounded rationality approach. It has a main advantage
that it is realistic since a firm does not need to know the
form of the profit function to get an estimate of the quantity
(Cournot game) or price (Bertrand game). Instead all it needs
is its profits and the quantities (or prices in the case of
Bertrand) in the past two time steps. However it has a serious
problem; that is, the system g;,,, Qi + k(g )((m;, —
i )/(Qir — qis1))s i = 1,2, is numerically unstable as it

approaches equilibrium (g;,; = g;; = ;;_1, i = 1,2). There
is no guarantee that the rate of convergence of the profits will
be faster than or equal to that of the quantities (or prices).
Now, using (5), the following system is obtained:

Quen =itk (th) [a -c

2 2
- (qu + 919161t CI1,t_1)

d (QI,tqg,t - q%,t—lql,t—l)
dit ~ 91,-1

B 2d (QitqZ,t - qit—qu,t—l)
qit ~ 4911

|



Discrete Dynamics in Nature and Society

0.8 T T T T T T T T

0.7

0.6

0.5 E
e

0.4 . .

0.3 E
?\ a2t

0.2 7\\ |
! ~

v e _

0 L L n et ".u L L L

0 005 01 015 02 025 03 035 04 045

(a)

FIGURE 10: (a) Bifurcation diagram of g, , and g, , with respect to k at the system parameters:a =1, ¢ =0.7, d =

and g, at the system parameters:a = 1, ¢ = 0.7, d = —0.62.

0.4 T T T T T T T T

0.1

q1, 092, t

-0.1

=02}

-0.3 : ' :

0.45

9, ¢

0.8 T T T

0.7

0.6

0.3 F

0.2 F

0.1} '

0.2 0.3
qi,¢

(®)

0
0.1

-0.62. (b) Attractor of g, ,

0.4 T T T T T T

0.3 F

<

0.2

(®)

FIGURE 11: (a) Bifurcation diagram of q, , and g, , with respect to k at the system parameters:a = 1, ¢ = 0.7, d = 0.7. (b) Attractor of g, , and
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Dop1 = Doy tk (‘12,t) [a -C

2 2
- (‘b,t 9921t ‘12,t—1)

d (‘b,t‘ﬁ,t - qit—qu,t—l)
Dot ~ d24-1

2d (qg,tql,t - q%,t—lql,t—l)
Dot ~ d2-1

|

(16)

The singularity of the above system at the equilibrium
point causes instability. To overcome this disadvantage, there
are two possibilities. The first is that the two firms are different
enough such that eventually only one firm persists while the
other goes bankrupt. In this case, one regains the case of
monopoly and, therefore, the market is dominated by this
firm. The other possibility is that the two firms are close
enough that they all persist. This means that when the game
is with incomplete information, firms may or may not know
some information about the other firms, for example, their
“type,” their strategies, their payofts, or their preferences.
Here, we assume that both firms know their amount of
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and g, at the system parameters:a = 1, ¢ = 0.7, d = -0.3.

quantities at time ¢ and, in this case, the above system can
be approximated by setting q, , = g, :

Qe =qip tk (‘h,t)

. [a —c—(1+3d) (Q%,t + 9149101 ‘ﬁ,t—l)] >
17)

Goee1 = Gog + K (da)
: [a —c—(1+3d) (qit T Didar-1 t qg,t—l)] .
Now, two different cases for k(q, ;) are studied.

Case 1. Let k(q,;) = k be a constant; then the following
proposition is given.

Proposition 3. The system given by (17) admits the positive
fixed point E* = (\/(a—¢c)/3(1+3d),/(a-c)/3(1+3d)),
a>c andd e (-1/3,1).

The Jacobian matrix of system (17) at this point is given by

a—=c¢
a k(1 +3d) | —o—— 19
0 1-6k(1+3d) 3(1 +3d)
whose eigenvalues are A, = A, = 1 — 6k(1 +

3d)\(a—c)/3(1 + 3d) and therefore E* is stable under the
condition k < 1/+/3(a — ¢)(1 + 3d). We use some simulations

to confirm these obtained results. We start witha = 1, ¢ =
0.7, d = —0.3. Figure 12 shows that this fixed point of system
(17) is asymptotically stable for some values of the parameter
k. Moreover, when d increases above the interval (-1/3,0),
the region of stability decreases and the fixed point becomes
unstable due to chaos. Figures 13 and 14 show the behavior of
system (17) for different values of d.

4. Controlling Chaos via
Parameters Adjustment

Since chaos is an undesirable phenomena in economic
systems, then it needs to be controlled. In this section, we
develop a control method to suppress chaos in the systems
presented in the previous section. To start the numerical
simulation of the controlled system, we should rewrite system
(17) in the following form:

1 1
di+1 = (1 - ;)%,r"’ (;)

. [a —c—(1+3d) (Qit + 14911t qit—l)] >

1 1
Dot+1 = (1 - ;)‘h,r‘* (;)

. [a —c—(1+3d) (q;,t + 921t qg,t—l)] .

Figure 15 shows that for the parameters a = 1, ¢ =
0.7, d = —0.03, and « < 0.5 the system behaves chaotically
and the fixed point of the system is unstable. In addition, for
any value for the parameter of product differentiation less
than —0.03 and the other parameters are fixed, the system gets
involved in the chaotic region and hence the fixed point is
unstable. Figure 16 presents another controllable case of the
systemata = 1, ¢ = 0.7, d = 0.6. Once a« > 1.2 with the
other parameters being fixed and d € [-0.3, 1] the fixed point
becomes asymptotically stable and this is clear in Figure 16.

(19)

5. Conclusion

In this paper, we have generalized and extended results
in literature for the Cournot duopoly games with product
differentiation. Based on a proposed cubic utility function
that is derived from a constant elasticity of substitution
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production function (CES), firms have made some compu-
tational skills required to make their decisions. In particular,
the time evolution of those games has been modeled by
a discrete dynamic system obtained by the iteration of a
two-dimensional map. A rational Cournot duopoly and a
Puu duopoly with quantity competition have been proposed.
For each game, the Nash equilibrium of the game has been
computed. Complete analytical and numerical studies of the
stability conditions for the Nash point have been investigated.
The analysis of bifurcation which causes qualitative changes
in the behavior of games and causes loss of stability of
Nash equilibrium has been discussed through numerical
explorations. We conclude according to the obtained results
that it is not directed to say which one of the two games is
better than the other since both games are sensitive to their

parameters. Finally, a developed control technique has been
applied to Puu’s game.

For a long time, although the quadratic utility function
has got more attention in economic studies, but in decision
analysis many applications have some critical steps about
the estimation of a suitable utility function. The choice of a
utility function may be critical as it may have an influence
on the decision-makers. We have adopted in this paper
the cubic utility function because it has certain properties
which are preferred to those of quadratic one. One of these
properties includes the fact that the utility function should
be monotonically increasing under certain restrictions on
its coeflicients. We believe that since utility function reflects
the individual’s preferences, it is not likely that one form of
utility will be used to correctly predict individual’s behavior.
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