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This paper mainly addresses the issue of how to effectively inhibit viral spread by means of dynamic countermeasure. To this
end, a controlled node-level model with nonlinear infection and countermeasure rates is established. On this basis, an optimal
control problem capturing the dynamic countermeasure is proposed and analyzed. Specifically, the existence of an optimal dynamic
countermeasure scheme and the corresponding optimality system are shown theoretically. Finally, some numerical examples are
given to illustrate the main results, from which it is found that (1) the proposed optimal strategy can achieve a low level of
infections at a low cost and (2) adjusting nonlinear infection and countermeasure rates and tradeoff factor can be conductive to the
containment of virus propagation with less cost.

1. Introduction

In order to study the long-term behavior of computer virus
and suppress viral spread macroscopically, a large number
of dynamical models have been proposed in the past few
decades (for the related references, see, e.g., [1–11]). From the
perspective of the division scale of computers on networks,
these models can be roughly divided into two categories:
compartment-level models and node-level models.

Compartment-level models are those models that regard
computers having the same state as an object to study. This
work can be traced back to the 1980s. The first compart-
ment-level model is proposed by Kephart andWhite [1], who
followed the suggestions recommended by Cohen [12] and
Murray [13]. Since then, multifarious propagation models
have been developed (see, e.g., [14–22]). It is worth noticing
that Zhu et al. [6] proposed the original compartment-level
SICS (susceptible-infected-countermeasured-susceptible)
model with linear static countermeasure based on the CMC
(Countermeasure Competing) strategy presented by Chen
and Carley [23]. However, compartment-level models ignore

the effect of network eigenvalue on viral spread. Conse-
quently, node-level models are considered.

Node-level models are those models that regard a single
computer as an object to investigate. The first node-level
model (i.e., SIS (susceptible-infected-susceptible) model) is
proposed by Van Mieghem et al. [7]. Since then, Sahneh and
Scoglio [8] presented the node-level SAIS (susceptible-alert-
infected-susceptible)model, andYang et al. [9, 10] considered
the node-level SLBS (susceptible-latent-breaking-suscepti-
ble) and SIRS (susceptible-infected-recovered-susceptible)
models, respectively. Very recently, Gan [11] established the
node-level SIES (susceptible-infected-external-susceptible)
model. Besides, for the other related work about this topic,
one can refer to [24–28] and the references cited therein.

Inspired by the above-mentioned work and based on
the compartment-level SICS model, this paper considers a
controlled node-level SICS model. Different from the con-
ventional node-level models, this paper mainly addresses the
issue of how to effectively distribute dynamic countermeasure
by optimal control strategy (for the related references of
optimal models, see, e.g., [29–33]). An optimal control
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Figure 1: The transfer diagram of the controlled node-level SICS model.

problem is proposed and the existence of an optimal control is
proved.The corresponding optimality system is also derived.
Finally, some numerical examples are made, from which it
can be seen that the proposed optimal strategy can achieve a
low level of infections at a low cost.

The subsequent materials of this paper are organized as
follows. Sections 2 and 3 formulate the controlled node-level
model and analyze the optimal control problem, respectively.
Numerical examples are provided in Section 4. Finally,
Section 5 closes this work.

2. The Controlled Node-Level Model

In this paper, the propagation network of computer virus
and countermeasure is represented by a graph 𝐺 = (𝑉, 𝐸)
with𝑁 nodes labelled 1, 2, . . . , 𝑁, where each node and edge
stand for a computer and a network link, respectively. Thus,
the graph 𝐺 can be described by its adjacency matrix A =[𝑎𝑖𝑗]𝑁×𝑁, where 𝑎𝑖𝑖 = 0.

As was treated in the traditional SICS model [6], at any
time all nodes in the graph 𝐺 are divided into three groups:𝑆-nodes (susceptible nodes are uninfected but have no immu-
nity), 𝐼-nodes (infected nodes), and 𝐶-nodes (countermea-
sured nodes are uninfected and have temporary immunity
due to the presence of countermeasures). Let 𝑆𝑖(𝑡), 𝐼𝑖(𝑡),
and 𝐶𝑖(𝑡) denote the probability of node 𝑖 being susceptible,
infected, and countermeasured at time 𝑡, respectively. Then
the vector

(𝑆1 (𝑡) , . . . , 𝑆𝑁 (𝑡) , 𝐼1 (𝑡) , . . . , 𝐼𝑁 (𝑡) , 𝐶1 (𝑡) , . . . , 𝐶𝑁 (𝑡))𝑇 (1)

probabilistically captures the state of the network at time 𝑡.

For convenience, two important functions, which will be
used in the sequel, are defined as follows:

𝑓𝑖 (𝑡) = ∑
𝑗

𝑎𝑖𝑗𝛽𝑗𝐼𝑗 (𝑡)
1 + 𝑚1𝐼𝑗 (𝑡) , 𝑚1 ≥ 0, 𝛽𝑗 > 0. (2)

Clearly, 𝑓𝑖(𝑡) ≤ ∑𝑗 𝑎𝑖𝑗𝛽𝑗𝐼𝑗(𝑡).
𝑔𝑖 (𝑡) = ∑

𝑗

𝑎𝑖𝑗𝛾𝑗 (𝑡) 𝐶𝑗 (𝑡)
1 + 𝑚2𝐶𝑗 (𝑡) , 𝑚2 ≥ 0, (3)

where 𝛾𝑗(𝑡) ∈ 𝐿2[0, 𝑇] is a controllable rate, 𝛾 ≤ 𝛾𝑗(𝑡) ≤ 𝛾,
0 ≤ 𝑡 ≤ 𝑇; 𝛾 and 𝛾 are positive constants, 0 < 𝛾 < 𝛾 < 1.

Now, a set of probabilistic assumptions on the state
transition of node 𝑖 are made (see also Figure 1).

(A1) An 𝑆-node 𝑖 becomes infected at rate 𝑓𝑖(𝑡).
(A2) An 𝑆- or 𝐼-node 𝑖 becomes countermeasured at rate𝑔𝑖(𝑡).
(A3) An 𝐼-node 𝑖 becomes susceptible at a constant rate𝛼𝑖 > 0.
(A4) A 𝐶-node 𝑖 loses immunity at constant rate 𝜃𝑖 > 0.
LetΔ𝑡 be a very small time interval and 𝑜(Δ𝑡) be a higher-

order infinitesimal. Assumptions (A1)–(A4) imply that the
probabilities of state transition of node 𝑖 satisfy the following
relations:

Pr (𝑖 is infected at time 𝑡
+ Δ𝑡 | 𝑖 is susceptible at time 𝑡) = 𝑓𝑖 (𝑡) Δ𝑡
+ 𝑜 (Δ𝑡) ,
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Pr (𝑖 is countermeasured at time 𝑡
+ Δ𝑡 | 𝑖 is susceptible at time 𝑡) = 𝑔𝑖 (𝑡) Δ𝑡
+ 𝑜 (Δ𝑡) ,

Pr (𝑖 is countermeasured at time 𝑡
+ Δ𝑡 | 𝑖 is infected at time 𝑡) = 𝑔𝑖 (𝑡) Δ𝑡 + 𝑜 (Δ𝑡) ,

Pr (𝑖 is susceptible at time 𝑡
+ Δ𝑡 | 𝑖 is infected at time 𝑡) = 𝛼𝑖Δ𝑡 + 𝑜 (Δ𝑡) ,

Pr (𝑖 is susceptible at time 𝑡
+ Δ𝑡 | 𝑖 is countermeasured at time 𝑡) = 𝜃𝑖Δ𝑡
+ 𝑜 (Δ𝑡) .

(4)
Invoking the total probability formulas and letting Δ𝑡 →0, the controlled node-level model (i.e., controlled node-level

SICS model) can be derived.
𝑑𝑆𝑖 (𝑡)𝑑𝑡 = 𝛼𝑖𝐼𝑖 (𝑡) + 𝜃𝑖𝐶𝑖 (𝑡) − 𝑓𝑖 (𝑡) 𝑆𝑖 (𝑡) − 𝑔𝑖 (𝑡) 𝑆𝑖 (𝑡) ,
𝑑𝐼𝑖 (𝑡)𝑑𝑡 = −𝛼𝑖𝐼𝑖 (𝑡) + 𝑓𝑖 (𝑡) 𝑆𝑖 (𝑡) − 𝑔𝑖 (𝑡) 𝐼𝑖 (𝑡) ,
𝑑𝐶𝑖 (𝑡)𝑑𝑡 = −𝜃𝑖𝐶𝑖 (𝑡) + 𝑔𝑖 (𝑡) (𝑆𝑖 (𝑡) + 𝐼𝑖 (𝑡)) ,

0 ≤ 𝑡 ≤ 𝑇, 𝑖 = 1, 2, . . . , 𝑁,

(5)

with initial condition
(𝑆1 (0) , . . . , 𝑆𝑁 (0) , 𝐼1 (0) , . . . , 𝐼𝑁 (0) , 𝐶1 (0) , . . . , 𝐶𝑁 (0))𝑇
∈ Ω̃, (6)

where
Ω̃ = {(𝑆1, . . . , 𝑆𝑁, 𝐼1, . . . , 𝐼𝑁, 𝐶1, . . . , 𝐶𝑁)𝑇 ∈ R

3𝑁
+ | 𝑆𝑖

+ 𝐼𝑖 + 𝐶𝑖 = 1, 𝑖 = 1, 2, . . . , 𝑁} .
(7)

The admissible control set is
𝑈 = {u (⋅) ∈ (𝐿2 [0, 𝑇])𝑁 | 𝛾 ≤ 𝛾𝑖 (⋅) ≤ 𝛾, 1 ≤ 𝑖 ≤ 𝑁} , (8)

where u(⋅) = (𝛾1(⋅), . . . , 𝛾𝑁(⋅))𝑇.
3. The Optimal Control Problem

As 𝑆𝑖(𝑡) + 𝐼𝑖(𝑡) + 𝐶𝑖(𝑡) ≡ 1, 1 ≤ 𝑖 ≤ 𝑁, system (5) can be
reduced to the following system:
𝑑𝐼𝑖 (𝑡)𝑑𝑡 = −𝛼𝑖𝐼𝑖 (𝑡) + 𝑓𝑖 (𝑡) (1 − 𝐼𝑖 (𝑡) − 𝐶𝑖 (𝑡))

− 𝑔𝑖 (𝑡) 𝐼𝑖 (𝑡) ,
𝑑𝐶𝑖 (𝑡)𝑑𝑡 = −𝜃𝑖𝐶𝑖 (𝑡) + 𝑔𝑖 (𝑡) (1 − 𝐶𝑖 (𝑡)) ,

0 ≤ 𝑡 ≤ 𝑇, 𝑖 = 1, 2, . . . , 𝑁,

(9)

with initial condition

(𝐼1 (0) , . . . , 𝐼𝑁 (0) , 𝐶1 (0) , . . . , 𝐶𝑁 (0))𝑇 ∈ Ω, (10)

where

Ω = {(𝐼1, . . . , 𝐼𝑁, 𝐶1, . . . , 𝐶𝑁)𝑇 ∈ R
2𝑁
+ | 𝐼𝑖 + 𝐶𝑖 ≤ 1, 𝑖

= 1, 2, . . . , 𝑁} . (11)

Then system (9) can be written in matrix notation as

𝑑x (𝑡)
𝑑𝑡 = f (x (𝑡) , u (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇, (12)

with initial condition x(0) ∈ Ω.
Now, the objective is to find a control variable u(⋅) ∈ 𝑈 so

as tominimize both the prevalence of infected computers and
the total budget for dynamic countermeasure during the time
period [0, 𝑇]. That is, the following optimal control problem
needs to be solved:

Minimize
u∈𝑈

𝐽 (u) = ∫𝑇
0
𝐿 (x (𝑡) , u (𝑡)) 𝑑𝑡 (P)

subject to system (12), where

𝐿 (x, u) = ∑
𝑖

(𝐼𝑖 (𝑡) + 12𝜀𝑖𝛾2𝑖 (𝑡)) , 𝜀𝑖 > 0, (13)

is the Lagrangian and 𝜀 = (𝜀1, . . . , 𝜀𝑁)𝑇 is a tradeoff factor
based on the control effect and control cost of dynamic
countermeasure.

3.1. Existence of an Optimal Control. First, a lemma, which
plays a critical role afterwards, is introduced.

Lemma 1 (see [34, 35]). We have an optimal control problem

Minimize
u∈𝑈

𝐽 (u) = ∫𝑇
0
𝐿 (x (𝑡) , u (𝑡)) 𝑑𝑡 (14)

subject to

𝑑x (𝑡)
𝑑𝑡 = f (x (𝑡) , u (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇, (15)

with x(0) ∈ Ω, where Ω is positively invariant for system
(15). The problem has an optimal control if the following six
conditions hold simultaneously.

(C1) There is u ∈ 𝑈 such that system (15) is solvable.
(C2) 𝑈 is convex.
(C3) 𝑈 is closed.
(C4) f(x, u) is bounded by a linear function in x.
(C5) 𝐿(x, u) is convex on 𝑈.
(C6) 𝐿(x, u) ≥ 𝑐1‖u‖𝜌2 + 𝑐2 for some 𝜌 > 1, 𝑐1 > 0, and 𝑐2.
In order to prove the existence of an optimal control,

six lemmas, one for each condition in Lemma 1, should be
proved.
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Lemma 2. There is u ∈ 𝑈 such that system (9) or (12) is
solvable.

Proof. Substituting u ≡ u fl (𝛾, . . . , 𝛾⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑁

)𝑇 into system (12), one

can get the uncontrolled system:

𝑑x (𝑡)
𝑑𝑡 = f (x (𝑡) , u) (16)

with x(0) ∈ Ω. Then the function f(x, u) is continuously
differentiable, and Ω is positively invariant for the system.
Hence, the claimed result follows from the Continuation
Theorem for differential equations [36].

Lemma 3. The admissible set 𝑈 is convex.

Proof. Let

u(1) = (𝛾(1)1 , . . . , 𝛾(1)𝑁 ) ∈ 𝑈,
u(2) = (𝛾(2)1 , . . . , 𝛾(2)𝑁 ) ∈ 𝑈,

0 < 𝜉 < 1.
(17)

As (𝐿2[0, 𝑇])𝑁 is a real vector space, one can obtain

(1 − 𝜉) u(1) + 𝜉u(2) ∈ (𝐿2 [0, 𝑇])𝑁 . (18)

Then, the convexity of 𝑈 follows by the observation that

𝛾 ≤ (1 − 𝜉) 𝛾(1)𝑖 + 𝜉𝛾(2)𝑖 ≤ 𝛾, 1 ≤ 𝑖 ≤ 𝑁. (19)

Hence, the claimed result follows.

Lemma 4. The admissible set 𝑈 is closed.

Proof. Let u = (𝛾1, . . . , 𝛾𝑁)𝑇 be a limit point of 𝑈 and

u(𝑛) = (𝛾(𝑛)1 , . . . , 𝛾(𝑛)𝑁 )𝑇 , 𝑛 = 1, 2, . . . , (20)

be a sequence of points in 𝑈 such that

󵄩󵄩󵄩󵄩󵄩u(𝑛) − u󵄩󵄩󵄩󵄩󵄩2 fl [∫𝑇
0

󵄨󵄨󵄨󵄨󵄨u(𝑛) (𝑡) − u (𝑡)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡]
1/2 < 1

𝑛 . (21)

From the completeness of (𝐿2[0, 𝑇])𝑁, one can get

lim
𝑛→∞

u(𝑛) = u ∈ (𝐿2 [0, 𝑇])𝑁 . (22)

Hence, the closeness of 𝑈 follows from the observation that

𝛾 ≤ 𝛾𝑖 = lim
𝑛→∞

𝛾(𝑛)𝑖 ≤ 𝛾, 1 ≤ 𝑖 ≤ 𝑁. (23)

Lemma 5. f(x, u) is bounded by a linear function in x.

Proof. Note that, for system (9) and for 𝑖 = 1, 2, . . . , 𝑁,

−𝛾𝑁24 − 𝛼𝑖𝐼𝑖 ≤ 𝑑𝐼𝑖𝑑𝑡 ≤ −𝛼𝑖𝐼𝑖 +∑
𝑗

𝑎𝑖𝑗𝛽𝑗𝐼𝑗,

−𝜃𝑖𝐶𝑖 ≤ 𝑑𝐶𝑖𝑑𝑡 ≤ −𝜃𝑖𝐶𝑖 + 𝛾∑
𝑗

𝑎𝑖𝑗𝐶𝑗.
(24)

Thus, the claimed result follows.

Lemma 6. 𝐿(x, u) is convex on 𝑈.
Proof. Note that the Hessian matrix of 𝐿(x, u) with respect to
u ∈ 𝑈 is as follows:

Hu (𝐿)

=

[[[[[[[[[[[[[[[[
[

𝜕2𝐿
𝜕𝛾21

𝜕2𝐿
𝜕𝛾1𝜕𝛾2 ⋅ ⋅ ⋅ 𝜕2𝐿

𝜕𝛾1𝜕𝛾𝑁−1
𝜕2𝐿

𝜕𝛾1𝜕𝛾𝑁𝜕2𝐿
𝜕𝛾2𝜕𝛾1

𝜕2𝐿
𝜕𝛾22 ⋅ ⋅ ⋅ 𝜕2𝐿

𝜕𝛾2𝜕𝛾𝑁−1
𝜕2𝐿

𝜕𝛾2𝜕𝛾𝑁... ... d
... ...

𝜕2𝐿
𝜕𝛾𝑁−1𝜕𝛾1

𝜕2𝐿
𝜕𝛾𝑁−1𝜕𝛾2 ⋅ ⋅ ⋅ 𝜕2𝐿

𝜕𝛾2𝑁−1
𝜕2𝐿

𝜕𝛾𝑁−1𝜕𝛾𝑁𝜕2𝐿
𝜕𝛾𝑁𝜕𝛾1

𝜕2𝐿
𝜕𝛾𝑁𝜕𝛾2 ⋅ ⋅ ⋅ 𝜕2𝐿

𝜕𝛾𝑁𝜕𝛾𝑁−1
𝜕2𝐿
𝜕𝛾2𝑁

]]]]]]]]]]]]]]]]
]

=
[[[[[[[[[
[

𝜀1 0 ⋅ ⋅ ⋅ 0 0
0 𝜀2 ⋅ ⋅ ⋅ 0 0
... ... d

... ...
0 0 ⋅ ⋅ ⋅ 𝜀𝑁−1 0
0 0 ⋅ ⋅ ⋅ 0 𝜀𝑁

]]]]]]]]]
]

.

(25)

For any 𝑡 ∈ [0, 𝑇],Hu(𝐿) is real symmetric and its eigenvalues
are all positive. Then, Hu(𝐿) is positive definite. Hence, the
convexity of 𝐿(x, u) follows by the result in [37].

Lemma 7. 𝐿(x, u) ≥ 𝑐1‖u‖𝜌2 + 𝑐2 for some 𝜌 > 1, 𝑐1 > 0, and𝑐2.
Proof. Let 𝜌 = 2, 𝑐1 = min𝑖{𝜀𝑖}/2, and 𝑐2 = 0. Then, 𝐿(x, u) ≥(min𝑖{𝜀𝑖}/2) × ‖u‖22. Thus, the proof is complete.

Now, it is time to examine the main result of this
subsection.

Theorem 8. The optimal control problem (P) has a solution.
Proof. Lemmas 2–7 show that the six conditions in Lemma 1
are all met. Hence, the proof is complete.

3.2. The Optimality System. In this subsection, a necessary
condition for an optimal control of problem (P) is drawn.
Theorem 9. Suppose u∗(⋅) is an optimal control for problem(P) and (𝐼∗(⋅), 𝐶∗(⋅))𝑇 is the solution to system (9) with



Discrete Dynamics in Nature and Society 5

u(⋅) = u∗(⋅). Then, there exist functions 𝜆∗1𝑖(𝑡) and 𝜆∗2𝑖(𝑡),0 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑁, such that

𝑑𝜆∗1𝑖 (𝑡)𝑑𝑡 = −1 + 𝜆∗1𝑖 (𝑡) [𝛼𝑖 + 𝑓∗𝑖 (𝑡) + 𝑔∗𝑖 (𝑡)]
− 𝛽𝑖
(1 + 𝑚1𝐼∗𝑖 (𝑡))2

⋅ ∑
𝑗

𝑎𝑖𝑗𝜆∗1𝑗 (𝑡) (1 − 𝐼∗𝑗 (𝑡) − 𝐶∗𝑗 (𝑡)) ,
𝑑𝜆∗2𝑖 (𝑡)𝑑𝑡 = 𝜆∗1𝑖 (𝑡) 𝑓∗𝑖 (𝑡) + 𝜆∗2𝑖 (𝑡) [𝜃𝑖 + 𝑔∗𝑖 (𝑡)]

+ 𝛾∗𝑖 (𝑡)
(1 + 𝑚2𝐶∗𝑖 (𝑡))2

⋅ ∑
𝑗

𝑎𝑖𝑗 [𝐼∗𝑗 (𝑡) 𝜆∗1𝑗 (𝑡) − (1 − 𝐶∗𝑗 (𝑡)) 𝜆∗2𝑗 (𝑡)] ,
0 ≤ 𝑡 ≤ 𝑇, 𝑖 = 1, 2, . . . , 𝑁,

(26)

with transversality conditions

𝜆∗1𝑖 (𝑇) = 𝜆∗2𝑖 (𝑇) = 0, 𝑖 = 1, 2, . . . , 𝑁. (27)

Furthermore, one can get

𝛾∗𝑖 (𝑡) = max
{{{
min

{{{
𝐶∗𝑖 (𝑡)𝜀𝑖 (1 + 𝑚2𝐶∗𝑖 (𝑡)) ∑𝑗 𝑎𝑖𝑗 [𝐼

∗
𝑗 (𝑡) 𝜆∗1𝑗 (𝑡) − (1 − 𝐶∗𝑗 (𝑡)) 𝜆∗2𝑗 (𝑡)] , 𝛾}}}

, 𝛾}}}
,
0 ≤ 𝑡 ≤ 𝑇, 𝑖 = 1, 2, . . . , 𝑁.

(28)

Proof. The corresponding Hamiltonian is

𝐻(I,C, 𝜆, u) = ∑
𝑖

(𝐼𝑖 + 12𝜀𝑖𝛾2𝑖 ) +∑
𝑖

𝜆1𝑖 𝑑𝐼𝑖𝑑𝑡
+∑
𝑖

𝜆2𝑖 𝑑𝐶𝑖𝑑𝑡 ,
(29)

where 𝜆1𝑖, 𝜆2𝑖 are undetermined, 𝜆 = (𝜆11, . . . , 𝜆1𝑁, 𝜆21, . . . ,𝜆2𝑁)𝑇.
According to the Pontryagin Minimum Principle [35],

there exist functions 𝜆∗1𝑖(𝑡) and 𝜆∗2𝑖(𝑡), 0 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑁,
such that

𝑑𝜆∗1𝑖 (𝑡)𝑑𝑡 = −𝜕𝐻 (I∗ (𝑡) ,C∗ (𝑡) , 𝜆∗ (𝑡) , u∗ (𝑡))
𝜕𝐼𝑖 ,

𝑑𝜆∗2𝑖 (𝑡)𝑑𝑡 = −𝜕𝐻 (I∗ (𝑡) ,C∗ (𝑡) , 𝜆∗ (𝑡) , u∗ (𝑡))
𝜕𝐶𝑖 ,
0 ≤ 𝑡 ≤ 𝑇, 𝑖 = 1, 2, . . . , 𝑁.

(30)

Thus, system (26) follows by direct calculations. As the
terminal cost is unspecified and the final state is free,
the transversality conditions hold. By using the optimality
condition

𝐻(I∗,C∗, 𝜆∗, u∗) = min
u∈𝑈

𝐻(I∗,C∗, 𝜆∗, u) , (31)
one can obtain that, for 0 ≤ 𝑡 ≤ 𝑇 and for 1 ≤ 𝑖 ≤ 𝑁, either

𝜕𝐻 (I∗ (𝑡) ,C∗ (𝑡) , 𝜆∗ (𝑡) , u∗ (𝑡))
𝜕𝛾𝑖 = 𝜀𝑖𝛾∗𝑖 (𝑡)

− 𝐶∗𝑖 (𝑡)1 + 𝑚2𝐶∗𝑖 (𝑡)
⋅ ∑
𝑗

𝑎𝑖𝑗 [𝐼∗𝑗 (𝑡) 𝜆∗1𝑗 (𝑡) − (1 − 𝐶∗𝑗 (𝑡)) 𝜆∗2𝑗 (𝑡)] = 0
(32)

or 𝛾∗𝑖 (𝑡) = 𝛾 or 𝛾∗𝑖 (𝑡) = 𝛾. Hence, the proof is complete.

By combining the above discussions, one can get the
optimality system for problem (P) as follows:

𝑑𝐼𝑖 (𝑡)𝑑𝑡 = −𝛼𝑖𝐼𝑖 (𝑡) + 𝑓𝑖 (𝑡) (1 − 𝐼𝑖 (𝑡) − 𝐶𝑖 (𝑡)) − 𝑔𝑖 (𝑡) 𝐼𝑖 (𝑡) ,
𝑑𝐶𝑖 (𝑡)𝑑𝑡 = −𝜃𝑖𝐶𝑖 (𝑡) + 𝑔𝑖 (𝑡) (1 − 𝐶𝑖 (𝑡)) ,
𝑑𝜆1𝑖 (𝑡)𝑑𝑡 = −1 + 𝜆1𝑖 (𝑡) [𝛼𝑖 + 𝑓𝑖 (𝑡) + 𝑔𝑖 (𝑡)] − 𝛽𝑖

(1 + 𝑚1𝐼𝑖 (𝑡))2 ∑𝑗 𝑎𝑖𝑗𝜆1𝑗 (𝑡) (1 − 𝐼𝑗 (𝑡) − 𝐶𝑗 (𝑡)) ,
𝑑𝜆2𝑖 (𝑡)𝑑𝑡 = 𝜆1𝑖 (𝑡) 𝑓𝑖 (𝑡) + 𝜆2𝑖 (𝑡) [𝜃𝑖 + 𝑔𝑖 (𝑡)] + 𝛾𝑖 (𝑡)

(1 + 𝑚2𝐶𝑖 (𝑡))2 ∑𝑗 𝑎𝑖𝑗 [𝐼𝑗 (𝑡) 𝜆1𝑗 (𝑡) − (1 − 𝐶𝑗 (𝑡)) 𝜆2𝑗 (𝑡)] ,
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Figure 2: 𝛾∗(𝑡) and 𝐼∗(𝑡) under different control strategies with𝑚1 = 𝑚2 = 2 for Example 1.
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Figure 3: 𝛾∗(𝑡) for different𝑚1 and𝑚2 for Example 1.

𝛾𝑖 (𝑡) = max
{{{
min

{{{
𝐶𝑖 (𝑡)𝜀𝑖 (1 + 𝑚2𝐶𝑖 (𝑡)) ∑𝑗 𝑎𝑖𝑗 [𝐼𝑗 (𝑡) 𝜆1𝑗 (𝑡) − (1 − 𝐶𝑗 (𝑡)) 𝜆2𝑗 (𝑡)] , 𝛾

}}}
, 𝛾}}}

,

0 ≤ 𝑡 ≤ 𝑇, 𝑖 = 1, 2, . . . , 𝑁,
(33)

with (I(0),C(0))𝑇 ∈ Ω and 𝜆(𝑇) = 0.
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Figure 4: 𝐼∗(𝑡) for different𝑚1 and𝑚2 for Example 1.
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Figure 5: The final proportion of infected nodes 𝐼∗(𝑇) and the objective function 𝐽(u∗) for different𝑚1 and𝑚2 for Example 1.

4. Numerical Examples

In this section, the effectiveness of the optimal dynamic
countermeasurewill be verified by some numerical examples.

For our purpose, three networks are considered: a syn-
thetic small-world network (WS network [38]), a synthetic
scale-free network (BA network [39]), and a partial Facebook

network [40], with 𝑁 = 150 nodes, respectively. The
parameters of system (33) are set as 𝛼𝑖 = 0.01, 𝛽𝑖 = 0.004887
(the value of 𝛽𝑖 comes from a report on some real infection
probabilities in [41]), 𝜃𝑖 = 0.02, 𝜀𝑖 = 1, 𝛾 = 0.01, 𝛾 = 0.1,
and 𝑇 = 50, 1 ≤ 𝑖 ≤ 𝑁, and the initial conditions are set
as 𝐼𝑖(0) = 0.03 and 𝐶𝑖(0) = 0.01, 1 ≤ 𝑖 ≤ 𝑁. The optimality
system (33) is solved by invoking the backward-forward Euler
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Figure 6: 𝛾∗(𝑡), 𝐼∗(𝑡), 𝐼∗(𝑇), and 𝐽(u∗) for different 𝜀 with𝑚1 = 𝑚2 = 5 for Example 1.

scheme with step size 0.01. Here we have to point out that
some parameter values are chosen hypothetically due to the
unavailability of real world data.

Suppose u∗(𝑡) is an optimal control for problem (P) and
x∗(𝑡) is a solution to the corresponding controlled system. Let𝛾∗(𝑡) and 𝐼∗(𝑡) denote the average control and the proportion
of infected nodes under u∗(𝑡), respectively, where

𝛾∗ (𝑡) = 1
𝑁 ∑
𝑖

𝛾∗𝑖 (𝑡) ,
𝐼∗ (𝑡) = 1

𝑁 ∑
𝑖

𝐼∗𝑖 (𝑡) .
(34)

Example 1. Take a WS network with 150 nodes and 150 links
as the propagation network.

Figure 2 exhibits the average control 𝛾∗(𝑡) and 𝐼∗(𝑡) under
different control strategies. Table 1 gives the final proportion
of infected nodes and the value of objective function 𝐽 under
different control strategies, where the value of static control
u = 0.08895 is an average of several real curing probabilities
reported in [42]. From Figure 2 and Table 1, one can conclude
that u∗ is indeed the optimal control strategy tominimize the
objective function 𝐽 and reduce virus prevalence to a low level
simultaneously.
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Figure 7: 𝛾∗(𝑡) and 𝐼∗(𝑡) under different control strategies with𝑚1 = 𝑚2 = 2 for Example 2.
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Figure 8: 𝛾∗(𝑡) for different𝑚1 and𝑚2 for Example 2.

Table 1: 𝐼∗(𝑇) and 𝐽 under different control strategies with𝑚1 = 𝑚2 = 2 for Example 1.

u = u∗ u = 0.01 u = 0.04 u = 0.08995 u = 0.1
𝐼∗(𝑇) 0.0089 0.0283 0.0231 0.0072 0.0053
𝐽(u) 172.55 218.97 211.61 181.14 177.27

Figure 3 demonstrates the average control 𝛾∗(𝑡) for
different 𝑚1 and 𝑚2. From this figure, one can see that (a)
enhancing 𝑚1 and 𝑚2 roughly reduces 𝛾∗(𝑡), (b) the smaller𝑚2 is, the longer 𝛾∗(𝑡) stays at 𝛾, and (c) 𝑚2 has a more
significant impact on 𝛾∗(𝑡) than𝑚1 does.

Figure 4 displays 𝐼∗(𝑡) for different𝑚1 and𝑚2. From this
figure, it can be seen that (a) lower𝑚1 favors virus spreading,
whereas lower 𝑚2 is conducive to the containment of virus
prevalence, (b) 𝑚2 affects 𝐼∗(𝑡) more significantly than 𝑚1
does, which implies that dynamic countermeasure plays a
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Figure 9: 𝐼∗(𝑡) for different𝑚1 and𝑚2 for Example 2.
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Figure 10: 𝐼∗(𝑇) and 𝐽(u∗) for different𝑚1 and𝑚2 for Example 2.

dominant role in the suppression of virus diffusion, and (c)
linear infection rate overestimates virus prevalence, which is
in accordance with the result in [7].

Figure 5 depicts the final proportion of infected nodes𝐼∗(𝑇) and the objective function 𝐽(u∗) for varied 𝑚1 and𝑚2. From this figure, it can be seen that 𝐽 is decreasing and
increasing with respect to 𝑚1 and 𝑚2, respectively, which
makes a suggestion that enhancing 𝑚1 and diminishing 𝑚2

are beneficial to the containment of viral spread and reduce 𝐽
to a low level simultaneously.

Figure 6 shows 𝛾∗(𝑡), 𝐼∗(𝑡), 𝐼∗(𝑇), and 𝐽(u∗) for different𝜀. From this figure, it is found that decreasing 𝜀 is effective
on the suppression of virus propagation and attains a lower𝐽(u∗) simultaneously, although it creates more control cost.
This is in good agreement with the fact that when the control
effect (i.e., to obtain a low level of infections) is given priority



Discrete Dynamics in Nature and Society 11

0

0.02

0.04

0.06

0.08

0.12
Th

e a
ve

ra
ge

 co
nt

ro
l�훾

∗

0.1

5 10 15 20 25 30 35 40 45 500
Time

�휀 = 0.1
�휀 = 0.5

�휀 = 1

�휀 = 2

�휀 = 5

(a) 𝛾∗(𝑡)

�휀 = 0.1
�휀 = 0.5

�휀 = 1

�휀 = 2

�휀 = 5

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

Pr
op

or
tio

n 
of

 in
fe

ct
ed

 n
od

es
I∗

10 20 30 40 500
Time

(b) 𝐼∗(𝑡)

The final proportion of infected nodes

The objective function

I∗(T)

J(u∗)

0.01
0.012
0.014
0.016
0.018

0.02

I∗
(T

)

140

160

180

200

J(
u∗

)

1 2 3 4 50
�휀

1 2 3 4 50
�휀

(c) 𝐼∗(𝑇) and 𝐽(u∗)

Figure 11: 𝛾∗(𝑡), 𝐼∗(𝑡), 𝐼∗(𝑇), and 𝐽(u∗) for different 𝜀 with𝑚1 = 𝑚2 = 5 for Example 2.

(i.e., with lower 𝜀), often the decision ismade to spend enough
control cost. Hence, the tradeoff factor 𝜀 plays a critical role
in the balance between control effect and control cost.

Example 2. Take a BA network with 150 nodes and 150 links
as the propagation network.

Figure 7 displays 𝛾∗(𝑡) and 𝐼∗(𝑡) under different control
strategies. Table 2 shows the values of 𝐼∗(𝑇) and 𝐽(u) under
different control strategies. Figures 8 and 9 depict 𝛾∗(𝑡)
and 𝐼∗(𝑡) for different 𝑚1 and 𝑚2, respectively. Figure 10

demonstrates 𝐼∗(𝑇) and 𝐽(u∗) for different 𝑚1 and 𝑚2.
Figure 11 exhibits 𝛾∗(𝑡), 𝐼∗(𝑡), 𝐼∗(𝑇), and 𝐽(u∗) for different𝜀. From them, one can get the same results in Example 1. So
they are omitted here for brevity.

Example 3. Take a partial Facebook network with 150 nodes
and 603 links as the propagation network.

Figure 12 shows 𝛾∗(𝑡) and 𝐼∗(𝑡) under different control
strategies. Table 3 gives the values of 𝐼∗(𝑇) and 𝐽(u) under
different control strategies. Figures 13 and 14 display 𝛾∗(𝑡)
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Figure 12: 𝛾∗(𝑡) and 𝐼∗(𝑡) under different control strategies with𝑚1 = 𝑚2 = 2 for Example 3.
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Figure 13: 𝛾∗(𝑡) for different𝑚1 and𝑚2 for Example 3.

Table 2: 𝐼∗(𝑇) and 𝐽 under different control strategies with𝑚1 = 𝑚2 = 2 for Example 2.

u = u∗ u = 0.01 u = 0.04 u = 0.08895 u = 0.1
𝐼∗(𝑇) 0.0132 0.0288 0.0208 0.0111 0.0097
𝐽(u) 169.84 219.58 202.91 185.27 185.65

Table 3: 𝐼∗(𝑇) and 𝐽 under different control strategies with𝑚1 = 𝑚2 = 2 for Example 3.

u = u∗ u = 0.01 u = 0.04 u = 0.08895 u = 0.1
𝐼∗(𝑇) 0.0013 0.0504 0.0035 0.0008 0.0006
𝐽(u) 61.91 373.77 112.31 83.53 86.17
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Figure 14: 𝐼∗(𝑡) for different𝑚1 and𝑚2 for Example 3.
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Figure 15: 𝐼∗(𝑇) and 𝐽(u∗) for different𝑚1 and𝑚2 for Example 3.

and 𝐼∗(𝑡) for different 𝑚1 and 𝑚2, respectively. Figure 15
demonstrates 𝐼∗(𝑇) and 𝐽(u∗) for varied𝑚1 and𝑚2. Figure 16
depicts 𝛾∗(𝑡), 𝐼∗(𝑡), 𝐼∗(𝑇), and 𝐽(u∗) for different 𝜀.

Most of the results concluded from this example are the
same as those in Example 1 except the two phenomena listed
as follows: (a) higher𝑚2 increases 𝛾∗(𝑡), which is contrary to
the results in Figures 3(b) and 8(b), and (b)𝑚1 has a negligible
impact on 𝛾∗(𝑡) and 𝐼∗(𝑡). This indicates that the network

structure, to some extent, determines the control cost and
virus diffusion.

Combining the above numerical examples, the main
results are listed below.

(a) u∗ is indeed the optimal control strategy to minimize
the objective function 𝐽 and reduce the infections to
a low level simultaneously.
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Figure 16: 𝛾∗(𝑡), 𝐼∗(𝑡), 𝐼∗(𝑇), and 𝐽(u∗) for different 𝜀 with𝑚1 = 𝑚2 = 5 for Example 3.

(b) Linear infection rate overestimates the prevalence of
virus.

(c) Enhancing𝑚1 and diminishing𝑚2 are conductive to
the containment of viral propagation and reduce 𝐽 to
a low level simultaneously.

(d) 𝑚2 hasmore significant influences on 𝛾∗(𝑡), 𝐼∗(𝑡), and𝐽(u∗) than𝑚1 does.
(e) Decreasing the tradeoff factor 𝜀 is beneficial to the

suppression of virus spread and obtains a lower 𝐽(u∗)
simultaneously, although it brings more control cost.

Additionally, the structure of network, to some extent,
determines the virus prevalence and the control cost. Thus,
we shall investigate how the network topology affects virus
spreading and control cost in the next work.

5. Concluding Remarks

This paper has studied the issue of how to work out an
optimal dynamic countermeasure for achieving a low level
of infections with a low cost. In this regard, a controlled
node-level SICS model with nonlinear infection rate has
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been established. Furthermore, an optimal control problem
has been proposed. The existence of an optimal control and
the corresponding optimality system have also been derived.
Additionally, some numerical examples have been given to
illustrate the main results. Specifically, it has been found that
the proposed optimal countermeasure scheme can achieve a
low level of infections at a low cost.

In our opinions, the next work could be made as follows.
First, the quadratic cost functions may be generalized to
some generic functions. Second, delays [43–45], pulses [46,
47], and random fluctuations [15] may be incorporated to
controlled node-level models. Last, but not least, it is worthy
to carry out research on the impact of the network topology
[9, 25, 48, 49] on the dynamic countermeasure strategy.
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