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We study a class of multiobjective bilevel programs with the weights of objectives being uncertain and assumed to belong to convex
and compact set. To the best of our knowledge, there is no study about this class of problems. We use a worst-case weighted
approach to solve this class of problems. Our “worst-case weighted multiobjective bilevel programs” model supposes that each
player (leader or follower) has a set of weights to their objectives and wishes to minimize their maximum weighted sum objective
where the maximization is with respect to the set of weights. This new model gives rise to a new Pareto optimum concept,
which we call “robust-weighted Pareto optimum”; for the worst-case weighted multiobjective optimization with the weight set
of each player given as a polytope, we show that a robust-weighted Pareto optimum can be obtained by solving mathematical
programing with equilibrium constraints (MPEC). For an application, we illustrate the usefulness of the worst-case weighted
multiobjective optimization to a supply chain risk management under demand uncertainty. By the comparison with the existing
weighted approach, we show that our method is more robust and can be more efficiently applied to real-world problems.

1. Introduction

Multiobjective bilevel programs are a generalization of the
scalar criterion bilevel programs [1] and used to model situa-
tions where decision-makers at both upper and lower levels,
called players, take actions by considering their individual
multiple objectives [2–4]. Many papers have been published
in the last two decades about (multiobjective) bilevel pro-
grams because of their possible applications [1, 4, 5].

In this paper, we consider a special class of multiobjective
bilevel programs with the weights of objectives being uncer-
tain and assumed to belong to convex and compact set. To
the best our knowledge, there is no study about this class
of problems and the existing approaches in multiobjective
bilevel programs can not solve this class of problems. There-
fore, newmethods are necessary to be proposed. In this paper,
we present a robust-weighted approach to solve this class of
multiobjective bilevel programs. In our model, we suppose
that players at both upper and lower levels are risk-averse and
a player uses the robust optimization approach tomanage the
weight uncertainty, assuming that the other player is a robust
optimizer as well. Note that the robust optimization approach

is not concerning problem data or the other players’ strategies
but concerning theweights to the objectives.Wenote that this
model is closely related to robust optimization [6, 7]. It can be
seen as a natural extension of the robust modeling technique
by replacing a decision variable with a general deterministic
function [6, 7]. However, our model is also different from the
studies in [6, 7] that we study the bilevel problem, while the
model in [6, 7] is single level.

Multiobjective optimization has been extensively studied
and a number of different approaches have also been pro-
posed [8]. In multiobjective problems, since there are several
competing objectives to be considered and it is not possi-
ble to simultaneously optimize all objectives, a commonly
accepted approach for coping with this setting is the weighted
approach by assigning a nonnegative weight by considering
the importance of the corresponding objective function. And
then the decision-maker can make a decision by optimizing
a weighted sum objective [9–12]. A weighted Pareto optimal
point can be obtained. In the setting of multiobjectivemodels
including input from multiple experts, a decision can often
be obtained only after considering different opinions from
different experts [11].
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However current approaches tomodel-basedmultiexpert
multiobjective decision-making have several shortcomings.
How to choose a solution among (possibly infinite) generated
Pareto optimal solutions? There is no guidance. In multiex-
pert optimization, the relative weights given by experts can
differ significantly as experts with differing opinions often
assign different relative weights to objectives. As shown in
applications, the weights are not known in advance and the
player has to choose them. Ambiguity often exists in the
choice of the weights to objectives, as it is not easy to decide
relative weights for each objective. In addition, as shown in
multiobjective optimization in the literature, relative weights
given by the same decision-maker may rely on the elicitation
methods [12, 13]. In the bilevel setting considered in this
paper, it is more difficult for the decision-maker at the upper
level to exactly assume the weights of the decision-maker’s
objectives at the lower level.Therefore, in this paper, we focus
on a special class of multiobjective bilevel programs with the
weights of objectives being uncertain and assumed to belong
to convex and compact set. There is no study about this class
of problems and there no methods in multiobjective bilevel
programs can solve this class of problems. It is necessary to
provide a new approach to cope with these issues.

Hence, our motivation to utilize a worst-case weighted
approach is that it provides an alternative way to deal with
the weights ambiguity. Furthermore, if each player in multi-
objective bilevel problems chooses the worst-case weighted
approach, then we show that the computation for robust-
weighted Pareto optimum,with the choice of polytope weight
set for every player, is reformulated as a solution to math-
ematical programing with equilibrium constraints (MPEC)
which can be solved by the existingmethods (e.g., the sequen-
tial quadratic programing (SQP) methods).

Though multiobjective bilevel programs have not attract-
ed much attention in the literature, there are some inter-
esting potential applications. One example is the multi-
criteria Stackelberg competition of a supply chain containing
a manufacturer who supplies a set of products to a risk-
averse retailer satisfying uncertain consumer demand. In
our model, the manufacturer decides on the quantity for
each product so as to maximize the profit and minimize the
cost simultaneously by forecasting the order quantity from
the retailer and the wholesale prices resulting from market
clearing conditions. The retailer also decides their wholesale
market order quantity for each product in order to simulta-
neouslymaximize themean profit andminimize the standard
deviation of the profit.

Since the possible applications,multiobjective bilevel pro-
grams have attracted some attention. For example, Yin [14]
considers a multiobjective bilevel model for transportation
planning and management problems, where genetic algo-
rithms are proposed to solve the resulting model. Deb and
Sinha [15] present evolutionary algorithms for solving multi-
objective optimization problems. Pieume et al. [16] develop
two methods for solving bilevel linear multiobjective opti-
mization problems. Eichfelder [17] gives a solution method
for solving nonlinear multiobjective bilevel problems based
on a scalarization approach and the sensitivity analysis of
adaptive parameters. To reduce traffic congestion as well as to

improve workforce productivity, a bilevel multiobjective
model is proposed for an urban logistics metropolis [18]. A
discrete approach is proposed to solve the resulting model.
The convergence result and numerical tests are also provided.
Some special multiobjective bilevel programs with linear
objectives are also studied extensively. For example, a linear
bilevel optimization problem with multiple objectives at the
upper level is studied in [19], where the original problem
reduces to solving a series of linear bilevel problems with a
single objective function at each level; a linear bilevel opti-
mization problemwithmultiple objectives at the lower level is
studied in [20], where the original problem is reformulated as
an optimization problem over a nonconvex region given by a
union of faces of the polyhedron defined by all constraints.

Our study is different from the above papers in that
we focus on a special class of multiobjective bilevel nonlin-
ear programs—the weights of objectives are uncertain and
assumed to belong to convex and compact set. To deal with
this uncertainty, a robust optimization approach is used.Then
we reformulated the original problem as a robust bilevel
nonlinear optimization problem. To the best of our knowl-
edge, this is the first paper to consider these special multiob-
jective bilevel problems.

We feel that the primary contributions of this paper are as
follows. We deal with a special class of multiobjective bilevel
programs, where the weights of objectives are uncertain and
assumed to belong to convex and compact set. To the best of
our knowledge, this is the first paper to consider such mul-
tiobjective bilevel programs. In our model, we suppose that
players at both upper and lower levels are risk-averse and a
player uses the robust optimization approach to manage the
weight uncertainty, assuming that the other player is a robust
optimizer as well. As we know that, there is no method to
solve such problem. We propose a worst-case weighted
approach for solving such multiobjective bilevel programs,
extending the notion of robust-weighted multiobjective opti-
mization models [21] to multiobjective bilevel problems. We
show that a robust-weighted Pareto optimal point can be cal-
culated by solving MPEC when the weight sets chosen by the
players are polytopes.We note that theMPEChas been exten-
sively studied and can be solved by the sequential quadratic
programing (SQP) method [22]. We demonstrate the useful-
ness of the worst-case weighted method in a bilevel multi-
objective competition problem within supply chain. We note
that, compared with the existing weighted approach [9], our
method is more “robust” in that there are different solutions
for choosing different weights by using weighted approach
[9], but there is a unique solution by using our approach.

Throughout this paper we use the following notations. 𝑅
is the set of real numbers; 𝑅+ denotes the set of nonnegative
real numbers; and 𝑅++ is the set of strictly positive real
numbers. Let 𝑅𝑚 = 𝑅 × ⋅ ⋅ ⋅ × 𝑅⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚
;𝑅𝑚+ = 𝑅+ × ⋅ ⋅ ⋅ × 𝑅+⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

;𝑅𝑚++ = 𝑅++ × ⋅ ⋅ ⋅ × 𝑅++⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

. (1)
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Figure 1: Illustration of links about the different mechanisms used.

For any 𝑢, V ∈ 𝑅𝑚, denote
V ≥ 𝑢 (resp. V ≤ 𝑢) ⇐⇒

V − 𝑢 ∈ 𝑅𝑚+ (resp. 𝑢 − V ∈ 𝑅𝑚+ ) ⇐⇒
V𝑗 − 𝑢𝑗 ≥ 0 (resp. V𝑗 − 𝑢𝑗 ≤ 0) , 𝑗 ∈ 𝐼;𝑢 ≻ V (resp. V ≺ 𝑢) ⇐⇒
V − 𝑢 ∈ 𝑅𝑚++ (resp. 𝑢 − V ∈ 𝑅𝑚++) ⇐⇒

V𝑗 − 𝑢𝑗 > 0 (resp. V𝑗 − 𝑢𝑗 < 0) , 𝑗 ∈ 𝐼;
V ⪰ 𝑢 (resp. V ⪯ 𝑢) ⇐⇒

V − 𝑢 ∈ 𝑅𝑚+ (resp. 𝑢 − V ∈ 𝑅𝑚+ ) , 𝑢 ̸= V ⇐⇒
V𝑗 − 𝑢𝑗 ≥ 0 (resp. V𝑗 − 𝑢𝑗 ≤ 0) , 𝑗 ∈ 𝐼, 𝑢 ̸= V,

(2)

where 𝐼 := {1, . . . , 𝑚} is the index set. Given any vector
function ℎ : 𝑅𝑛 → 𝑅𝑚, by ℎ ∈ 𝐶1(𝑅𝑛, 𝑅𝑚), we indicate thatℎ is a continuously differentiable function from 𝑅𝑛 to 𝑅𝑚 and
we use ∇ℎ(𝑥) ∈ 𝑅𝑛×𝑚 to denote the gradient of the functionℎ at 𝑥; for simplicity, in this paper we use superscript 𝑈
(resp., 𝐿) to denote decision-makers in the upper level (resp.,
decision-makers in the lower level) parameters, decision
variables, cost functions, and weights of payoff functions. We
note that the different mechanisms (e.g., bilevel, equilibrium,
multiobjective optimization, weighting, and Pareto) are used
in this paper. To specially understand the links between all
these components, we provide a figure (see Figure 1) to
illustrate this.

In Section 2, we review some basic concepts in multiob-
jective bilevel programs and then introduce a new concept of
the robust-weighted Pareto optimum.We show that a robust-
weighted Pareto optimal solution is also a weighted Pareto
optimum. In Section 3, we show that when the weight sets
are given as polytopes, the robust-weighted Pareto optimum

can be cast as MPEC which can be efficiently solved by
SQP methods. In Section 4, we show the efficiency of our
approach by an example for analyzing amultiobjective bilevel
competition problem within supply chain. Finally, we con-
clude this paper in Section 5.

2. Preliminaries

In this paper, we consider the followingmultiobjective bilevel
optimization:

min
𝑥𝑖∈𝑅𝑛

𝑖
,𝑖=𝑈,𝐿

𝐹𝑈 (𝑥𝑈, 𝑥𝐿)
s.t. 𝐺𝑈 (𝑥𝑈, 𝑥𝐿) ≥ 0,𝐻𝑈 (𝑥𝑈, 𝑥𝐿) = 0,𝑥𝐿 ∈ 𝑆𝐿 (𝑥𝑈) ,

(3)

where 𝑆𝐿(𝑥𝑈) signifies the set of solutions of the lower-level
problem

min
𝑥𝐿∈𝑅𝑛

𝐿
𝐹𝐿 (𝑥𝐿, 𝑥𝑈)

s.t. 𝐺𝐿 (𝑥𝐿, 𝑥𝑈) ≥ 0,𝐻𝐿 (𝑥𝐿, 𝑥𝑈) = 0 (4)

and 𝐹𝑖 : 𝑅𝑛𝑖 ×𝑅𝑛𝑗 → 𝑅𝑚𝑖 , 𝐺𝑖 : 𝑅𝑛𝑖 ×𝑅𝑛𝑗 → 𝑅𝑝𝑖 , and𝐻𝑖 : 𝑅𝑛𝑖 ×𝑅𝑛𝑗 → 𝑅𝑞𝑖 , 𝑖, 𝑗 ∈ {𝑈, 𝐿}, 𝑖 ̸= 𝑗. In what follows, we assume that
all functions considered in the bilevel problem (3) are
continuously differentiable and 𝑚𝑖 ≥ 2, 𝑖 = 𝑈, 𝐿. Since we
consider the case of amultiobjective optimization (𝑚𝐿 ≥ 2) at
the lower level, given 𝑥𝑈, the solution set 𝑆𝐿(𝑥𝑈) denotes
the Pareto optimal set or weak Pareto optimal set; that is,
given any 𝑥𝑈 and 𝑥𝐿 ∈ 𝑆𝐿(𝑥𝑈), there is no feasible point 𝑥𝐿
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to (4) such that 𝐹𝐿(𝑥𝐿, 𝑥𝑈) ⪯ 𝐹𝐿(𝑥𝐿, 𝑥𝑈) or 𝐹𝐿(𝑥𝐿, 𝑥𝑈) ≺𝐹𝐿(𝑥𝐿, 𝑥𝑈).
Definition 1. (𝑥𝑈, 𝑥𝐿) is said to be feasible for problem (3) if𝐺𝑈(𝑥𝑈, 𝑥𝐿) ≥ 0,𝐻𝑈(𝑥𝑈, 𝑥𝐿) = 0, and 𝑥𝐿 ∈ 𝑆𝐿(𝑥𝑈). (𝑥𝑈, 𝑥𝐿) is
said to be locally Pareto optimal (resp., weak Pareto) for
problem (3), if it is feasible for (3) and there exists no other
feasible point (𝑥𝑈, 𝑥𝐿) in the neighborhood of (𝑥𝑈, 𝑥𝐿)
such that 𝐹𝑈(𝑥𝑈, 𝑥𝐿) ⪯ 𝐹𝑈(𝑥𝑈, 𝑥𝐿) (resp., 𝐹𝑈(𝑥𝑈, 𝑥𝐿) ≺𝐹𝑈(𝑥𝑈, 𝑥𝐿)).

In the multiobjective optimization literature, the weight-
ed approach is one of the most often used methods. However
the weighted approach is also criticized for several shortcom-
ings. For example, as shown in applications, weights are not
known in advance and the modeler or decision-maker has to
choose them while it is often difficult to make a reasonable
decision for choosing appropriate weights for objectives. In
many situations there may be uncertainty in the weights
provided by the decision-maker. Therefore there is a need
for providing a novel methodology to cope with these issues.
The robust-weighted approach is one possible choice as it
provides an alternative to solve the weight uncertainty in
the multiobjective bilevel model. Specifically, we assume that
players in both levels use the robust-weighted approach to
address theweight uncertainty; that is, both the leader and the
follower use a robust-weighted approach to minimize their
weighted payoff functions.

Definition 2. Let 𝑊𝑖 ∈ 𝑊𝑖𝑟 fl {𝑤𝑖 ∈ 𝑅𝑚𝑖+ | ‖𝑤𝑖‖1 = 1} be a
nonempty closed convex set of weights, 𝑖 = 𝑈, 𝐿. (𝑥𝑈, 𝑥𝐿) is
called a robust-weighted optimal solution of (3), if it is an
optimum to the following robust optimization problem:

min
𝑥𝑖∈𝑅𝑛

𝑖
,𝑖=𝑈,𝐿

max
𝑤𝑈∈𝑊𝑈

(𝑤𝑈)𝑇 𝐹𝑈 (𝑥𝑈, 𝑥𝐿)
s.t. 𝐺𝑈 (𝑥𝑈, 𝑥𝐿) ≥ 0,𝐻𝑈 (𝑥𝑈, 𝑥𝐿) = 0,𝑥𝐿 ∈ 𝑆𝐿𝑤 (𝑥𝑈) ,

(5)

where 𝑆𝐿𝑤(𝑥𝑈) signifies the set of solutions of the lower-level
problem:

min
𝑥𝐿∈𝑅𝑛

𝐿
max
𝑤𝐿∈𝑊𝐿

(𝑤𝐿)𝑇 𝐹𝐿 (𝑥𝐿, 𝑥𝑈)
s.t. 𝐺𝐿 (𝑥𝐿, 𝑥𝑈) ≥ 0,𝐻𝐿 (𝑥𝐿, 𝑥𝑈) = 0. (6)

Different from weighted Pareto concepts, the robust-
weighted optimum proposed in this paper seeks to find an
optimal solution that is robust and feasible for the worst-case
weight within the family of weights. It directly follows from
Theorem 2.2 of Hu and Mehrotra [21] and Definitions 1 and
2 that the following theorem holds.

Theorem 3. Let 𝑊𝑖 ⊂ 𝑊𝑖𝑟 be defined as in Definition 2, 𝑖 =𝑈, 𝐿. if 𝑥 := (𝑥𝑈, 𝑥𝐿) is a robust-weighted optimum of (5) with
the combination𝑊 fl (𝑊𝑈,𝑊𝐿) of weight sets, then we have
the following results:

(1) 𝑥 is a weak Pareto optimum of (3).

(2) if all of the weights in𝑊𝑈 are positive, then𝑥 is a Pareto
optimum of (3).

(3) if 𝑥 is the unique optimal solution of (5), then 𝑥 is a
Pareto optimum of (3).

3. MPEC Reformulations for (5)

Now that a robust-weighted optimumof (5) is a (weak) Pareto
optimum of (3), our next step is to discuss how to realize such
a solution. To do this, we assume that the weight sets 𝑊𝑖,𝑖 = 𝑈, 𝐿, are given as polyhedral regions.Then the problem of
computing a robust-weighted optimal point could be cast as
MPEC which has been extensively studied and can be solved
by the solver PATH [23].

We suppose that the uncertain weights can be described
by a fixed reference point and a perturbation region around
the point; that is, the weight sets 𝑊𝑈 and 𝑊𝐿 can be given
as follows: let 𝑤𝑖 ∈ 𝑅𝑚𝑖 be the reference point of 𝑤𝑖 and 𝐶𝑖 ∈𝑅𝑏𝑖×𝑚𝑖 be a coefficientmatrix used to construct a perturbation
region around 𝑤𝑖, 𝑖 = 𝑈, 𝐿, and then define the perturbation
region around 𝑤𝑖 as follows:𝑊𝑖 = {𝑤𝑖 ∈ 𝑅𝑚𝑖 | 𝑤𝑖 = 𝑤𝑖 + (𝐶𝑖)𝑇 V𝑖, V𝑖 ∈ 𝑉𝑖 ⊂ 𝑅𝑏𝑖} ,𝑖 = 𝑈, 𝐿, (7)

where 𝑉𝑖, 𝑖 = 𝑈, 𝐿, are two uncertain sets which belong to𝑉̃𝑖 = {V𝑖 ∈ 𝑅𝑏𝑖 | 𝑤𝑖 + (𝐶𝑖)𝑇 V𝑖≥ 0, (𝑒𝑖)𝑇 (𝑤𝑖 + (𝐶𝑖)𝑇 V𝑖) = 1} , 𝑖 = 𝑈, 𝐿, (8)

and here 𝑒𝑖 fl (1, . . . , 1) ∈ 𝑅𝑚𝑖 , 𝑖 = 𝑈, 𝐿. Note that the above
method for defining uncertain parameters has been widely
used in the robust optimization literature [12, 13].

Define𝑉𝑖 fl {V𝑖 ∈ 𝑉̃𝑖 | 𝐴𝑖V𝑖 = 𝛾𝑖, 𝐵𝑖V𝑖 ≥ 𝑐𝑖} , 𝑖 = 𝑈, 𝐿, (9)

where 𝐴𝑖 ∈ 𝑅𝑙𝑖×𝑏𝑖 , 𝛾𝑖 ∈ 𝑅𝑙𝑖 , 𝑐𝑖 ∈ 𝑅𝑘𝑖 , and 𝐵𝑖 ∈ 𝑅𝑘𝑖×𝑏𝑖 ,𝑖 = 𝑈, 𝐿.Wenowpresent a reformulation for problem (5)with𝑊𝑖 given as (7)–(9). Next, we show that the computation for
a robust-weighted Nash equilibrium point of MBG can be
casted as solving MPEC.

Lemma 4. Suppose the weight sets 𝑊𝑖, 𝑖 = 𝑈, 𝐿, are given
as (7)–(9), and then the robust-weighted bilevel optimization
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problem (5) is equivalent to the following bilevel optimization
problem:

min
𝑥𝑖 ,𝑧𝑖𝑗,𝑖=𝑈,𝐿;𝑗=1,2,3,4

(𝑤𝑈)𝑇 𝑧𝑈3 + 𝑧𝑈4 − (𝛾𝑈)𝑇 𝑧𝑈1− (𝑐𝑈)𝑇 𝑧𝑈2
s.t. 𝐶𝑈𝑧𝑈3 + (𝐴𝑈)𝑇 𝑧𝑈1 + (𝐵𝑈)𝑇 𝑧𝑈22 = 0𝐹𝑈 (𝑥𝑈, 𝑥𝐿) − 𝑧𝑈3 − 𝑧𝑈4 𝑒 ≤ 0𝑧𝑈1 ∈ 𝑅𝑙𝑈 ,𝑧𝑈2 ∈ 𝑅𝑘𝑈+ ,𝑧𝑈3 ∈ 𝑅𝑚𝑈 ,𝑧𝑈4 ∈ 𝑅𝐺𝑈 (𝑥𝑈, 𝑥𝐿) ≥ 0,𝐻𝑈 (𝑥𝑈, 𝑥𝐿) = 0(𝑥𝐿, 𝑧𝐿1 , 𝑧𝐿2 , 𝑧𝐿3 , 𝑧𝐿4) ∈ 𝑆𝐿𝑤 (𝑥𝑈) ,

(10)

where 𝑆𝐿𝑤(𝑥𝑈) signifies the set of solutions of the lower-level
problem:

min
𝑥𝐿,𝑧𝐿𝑗 ,𝑗=1,2,3,4

(𝑤𝐿)𝑇 𝑧𝐿3 + 𝑧𝐿4 − (𝛾𝐿)𝑇 𝑧𝐿1 − (𝑐𝐿)𝑇 𝑧𝐿2
s.t. 𝐶𝐿𝑧𝐿3 + (𝐴𝐿)𝑇 𝑧𝐿1 + (𝐵𝐿)𝑇 𝑧𝐿22 = 0𝐹𝐿 (𝑥𝐿, 𝑥𝑈) − 𝑧𝐿3 − 𝑧𝐿4 𝑒 ≤ 0𝐺𝐿 (𝑥𝐿, 𝑥𝑈) ≥ 0,𝐻𝐿 (𝑥𝐿, 𝑥𝑈) = 0𝑧𝐿1 ∈ 𝑅𝑙𝐿 ,𝑧𝐿2 ∈ 𝑅𝑘𝐿+ ,𝑧𝐿3 ∈ 𝑅𝑚𝐿 ,𝑧𝐿4 ∈ 𝑅.

(11)

Proof. This lemma can be proven as follows. Given the
leader’s strategy 𝑥𝑈, it is easy to show that the follower’s
optimization problem (6) can be rewritten as

min
𝑥𝐿,𝑡

𝑡
s.t. max
𝑤𝐿∈𝑊𝐿

(𝑤𝐿)𝑇 𝐹𝐿 (𝑥𝐿, 𝑥𝑈) ≤ 𝑡,𝐺𝐿 (𝑥𝐿, 𝑥𝑈) ≥ 0,𝐻𝐿 (𝑥𝐿, 𝑥𝑈) = 0.
(12)

For any given (𝑥𝑈, 𝑥𝐿), the left-hand side in the first inequality
constraint in the above problem is equivalent to

max
V𝐿

(𝐶𝐿𝐹𝐿 (𝑥𝐿, 𝑥𝑈))𝑇 V𝐿 + (𝑤𝐿)𝑇 𝐹𝐿 (𝑥𝐿, 𝑥𝑈) ,
s.t. 𝑤𝐿 + (𝐶𝐿)𝑇 V𝐿 ≥ 0,𝑒𝑇 (𝑤𝐿 + (𝐶𝐿)𝑇 V𝐿) = 1,𝐴𝐿V𝐿 = 𝛾𝐿,𝐵𝐿V𝐿 ≥ 𝑐𝐿.

(13)

The corresponding dual problem is

min
𝑧𝐿1 ,𝑧
𝐿
2 ,𝑧
𝐿
3 ,𝑧
𝐿
4

(𝑤𝐿)𝑇 𝑧𝐿3 + 𝑧𝐿4 − (𝛾𝐿)𝑇 𝑧𝐿1 − (𝑐𝐿)𝑇 𝑧𝐿2 ,
s.t. 𝐶𝐿𝑧𝐿3 + (𝐴𝐿)𝑇 𝑧𝐿1 + (𝐵𝐿)𝑇 𝑧𝐿2 = 0𝐹𝐿 (𝑥𝐿, 𝑥𝑈) − 𝑧𝐿3 − 𝑧𝐿4 𝑒 ≤ 0𝑧𝐿1 ∈ 𝑅𝑙𝐿 ,𝑧𝐿2 ∈ 𝑅𝑘𝐿+ ,𝑧𝐿3 ∈ 𝑅𝑚𝐿 ,𝑧𝐿4 ∈ 𝑅,

(14)

where “0” and “𝑒” are the zero and unit vectors with appro-
priate dimensions, respectively.

Therefore it follows from (12)–(14) and the strong duality
theorem that the assertion of this theorem is true.

The above lemma shows the equivalence between the
bilevel problems (5) and (10); that is, if (𝑥𝑈, 𝑥𝐿) is a robust-
weighted optimal solution to (5), then there is (𝑧𝑖𝑗)𝑖=𝑈,𝐿;𝑗=1,2,3,4
such that (𝑥𝑖, 𝑧𝑖𝑗)𝑖=𝑈,𝐿;𝑗=1,2,3,4 is an optimal solution to (10);
otherwise if (𝑥𝑖, 𝑧𝑖𝑗)𝑖=𝑈,𝐿;𝑗=1,2,3,4 is an optimal solution to (10),
then (𝑥𝑈, 𝑥𝐿) is a robust-weighted optimal solution to (5). So,
in what follows, we focus on the bilevel problem (10).

Given 𝑥𝑈, it is expected that a solution (𝑥𝐿, 𝑧𝐿𝑗 )𝑗=1,2,3,4 of
the lower-level problem (11) is a stationary point of (11); that
is, it solves the followingKarush-Kuhn-Tucker (KKT) system:∇𝑥𝐿Γ= ∇𝑥𝐿𝐹𝐿 (𝑥𝐿, 𝑥𝑈) 𝜆𝐿2 − ∇𝑥𝐿𝐺𝐿 (𝑥𝐿, 𝑥𝑈) 𝜆𝐿4+ ∇𝑥𝐿𝐻𝐿 (𝑥𝐿, 𝑥𝑈) 𝜆𝐿5 = 0;∇𝑧𝐿1 Γ = −𝛾𝐿 + 𝐴𝐿𝜆𝐿1 = 0;∇𝑧𝐿2 Γ = −𝑐𝐿 + 𝐵𝐿𝜆𝐿1 − 𝜆𝐿3 = 0;∇𝑧𝐿3 Γ = 𝑤𝐿 + (𝐶𝐿)𝑇 𝜆𝐿1 − 𝜆𝐿2 = 0;∇𝑧𝐿4 Γ = 1 − 𝑒𝑇𝜆𝐿2 = 0;𝐻𝐿 (𝑥𝐿, 𝑥𝑈) = 0;



6 Discrete Dynamics in Nature and Society𝐹𝐿 (𝑥𝐿, 𝑥𝑈) − 𝑧𝐿3 − 𝑧𝐿4 𝑒 ≤ 0,𝜆𝐿2 ≥ 0;(𝜆𝐿2)𝑇 (𝐹𝐿 (𝑥𝐿, 𝑥𝑈) − 𝑧𝐿3 − 𝑧𝐿4 𝑒) = 0;𝑧𝐿2 ≥ 0,𝐺𝐿 (𝑥𝐿, 𝑥𝑈) ≥ 0,𝜆𝐿3 ≥ 0,𝜆𝐿4 ≥ 0;(𝜆𝐿3)𝑇 𝑧𝐿2 = 0,(𝜆𝐿4)𝑇𝐺𝐿 (𝑥𝐿, 𝑥𝑈) = 0,
(15)

where Γ is the Lagrangian of (11) defined as

Γ ((𝑥𝐿, 𝑥𝑈) , (𝑧𝐿1 , 𝑧𝐿2 , 𝑧𝐿3 , 𝑧𝐿4) , (𝜆𝐿1, 𝜆𝐿2, 𝜆𝐿3, 𝜆𝐿4, 𝜆𝐿5))
fl (𝑤𝐿)𝑇 𝑧𝐿3 + 𝑧𝐿4 − (𝛾𝐿)𝑇 𝑧𝐿1 − (𝑐𝐿)𝑇 𝑧𝐿22+ (𝜆𝐿1)𝑇 (𝐶𝐿𝑧𝐿3 + (𝐴𝐿)𝑇 𝑧𝐿1 + (𝐵𝐿)𝑇 𝑧𝐿2)+ (𝜆𝐿2)𝑇 (𝐹𝐿 (𝑥𝐿, 𝑥𝑈) − 𝑧𝐿3 − 𝑧𝐿4 𝑒) − (𝜆𝐿3)𝑇 𝑧𝐿2− (𝜆𝐿4)𝑇𝐺𝐿 (𝑥𝐿, 𝑥𝑈) + 𝜆𝐿5𝐻𝐿 (𝑥𝐿, 𝑥𝑈) .

(16)

Therefore replacing the lower level optimization problem
(11) with (15) derives MPEC:

min
𝑥𝑖 ,𝑧𝑖𝑗,𝑖=𝑈,𝐿;𝑗=1,2,3,4,𝜆

𝐿
𝑘
,𝑘=1,...,5

(𝑤𝑈)𝑇 𝑧𝑈3 + 𝑧𝑈4 − (𝛾𝑈)𝑇 𝑧𝑈1 − (𝑐𝑈)𝑇 𝑧𝑈2
s.t. 𝐶𝑈𝑧𝑈3 + (𝐴𝑈)𝑇 𝑧𝑈1 + (𝐵𝑈)𝑇 𝑧𝑈22 = 0𝐹𝑈 (𝑥𝑈, 𝑥𝐿) − 𝑧𝑈3 − 𝑧𝑈4 𝑒 ≤ 0𝑧𝑈1 ∈ 𝑅𝑙𝑈 ,𝑧𝑈2 ∈ 𝑅𝑘𝑈+ ,𝑧𝑈3 ∈ 𝑅𝑚𝑈 ,𝑧𝑈4 ∈ 𝑅𝐺𝑈 (𝑥𝑈, 𝑥𝐿) ≥ 0,𝐻𝑈 (𝑥𝑈, 𝑥𝐿) = 0(𝑥𝐿, 𝑧𝐿1 , . . . , 𝑧𝐿4 ,𝜆𝐿1, . . . , 𝜆𝐿5) solves {(15)} .

(17)

This problem can be efficiently solved by the solver PATH
[23].We note that the PATH algorithm is originally described
in [24]. This algorithm computes a stationary solution of
MPEC (since it solves an equation related to the necessary
optimality conditions). If for any given 𝑥𝑈 functions𝐹𝐿(⋅, 𝑥𝑈)
and𝐻𝐿(⋅, 𝑥𝑈) are convex in 𝑥𝐿 and𝐺𝐿(⋅, 𝑥𝑈) is concave in 𝑥𝐿,
then under some constraint qualification an optimal solution
of the bilevel optimization problem (10) is also a stationary
solution of the MPEC (17) [25].

Theorem 5. Suppose the weight sets𝑊𝑖, 𝑖 = 𝑈, 𝐿, are given as
(7)–(9). If for any given 𝑥𝑈 functions 𝐹𝐿(⋅, 𝑥𝑈) and 𝐻𝐿(⋅, 𝑥𝑈)
are convex in 𝑥𝐿 and 𝐺𝐿(⋅, 𝑥𝑈) is concave in 𝑥𝐿, then under

some constraint qualification an optimal solution of the bilevel
optimization problem (5) is also a stationary solution of the
MPEC (17).

Proof. The proof for this theorem follows directly from
Lemma 4, the above discussions, and Proposition 5 [25].
4. An Application

4.1. Model Description. In this section, we model the multi-
criteria competition in a supply chain of 𝑀 manufacturers
who cooperatively decide on volume to supply 𝑃 products
to 𝑁 risk-averse retailers who also cooperatively decide on
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volume to satisfy uncertain consumer demand. Manufactur-
ers have two objectives (i.e., to maximize their profit and
to minimize their cost of products supplied simultaneously)
by choosing the supply quantity for each of 𝑃 products in
the anticipation of the order quantities of the retailers and
also anticipating of the wholesale prices resulting from the
market clearing conditions. Retailers have also two objectives
(i.e., to maximize the expected utility from retail sales and to
minimize the risk expressed as the standard deviation of the
profit) by deciding the wholesale market order quantity for
each of 𝑃 products.

The retail demand satisfies the following stochastic linear
inverse demand function:𝑝 = (𝑎 − 𝐵𝑥) 𝜉, (18)

where 𝑝 = (𝑝1, . . . , 𝑝𝑁)𝑇 ∈ 𝑅𝑁𝑃 is the aggregate price vector,𝑝𝑗 is the vector of the 𝑗th retailer prices with 𝑝𝑗 = (𝑝𝑗1,. . . , 𝑝𝑗𝑃),𝑝𝑗𝑘 is the price of the 𝑗th retailer for the 𝑘th product,
and 𝜉 = ∑𝑟𝑙=1 𝜆𝑙𝜉𝑙 with 𝜉𝑙 as a positive scalar random variable
with mean 𝜇𝑙 and finite standard deviation 𝜎𝑙, 𝜆𝑙 ≥ 0, and∑𝑟𝑙=1 𝜆𝑙 = 1. The vector 𝑎 = (𝑎1, . . . , 𝑎𝑁)𝑇 ∈ 𝑅𝑁𝑃 with 𝑎𝑗 =(𝑎𝑗1, . . . , 𝑎𝑗𝑃) gives the prices that the consumers would be
willing to pay if the retail market supply was 0 and 𝜉 is a finite
number. The matrix 𝐵 ∈ 𝑅𝑁𝑃×𝑁𝑃 is the positive definite
matrix of inverse demand sensitivitieswhich can be expressed
as

(𝐻1 𝐺12 ⋅ ⋅ ⋅ 𝐺1𝑁𝐺21 𝐻2 ⋅ ⋅ ⋅ 𝐺2𝑁... ... d
...𝐺𝑁1 𝐺𝑁2 ⋅ ⋅ ⋅ 𝐻𝑁), (19)

with 𝐻𝑗 ∈ 𝑅𝑃×𝑃, 𝑗 = 1, . . . , 𝑁, 𝐺𝑗𝜅 ∈ 𝑅𝑃×𝑃, and 𝑗, 𝜅 =1, . . . , 𝑁, 𝑗 ̸= 𝜅. The vector 𝑥 = (𝑥1, . . . , 𝑥𝑁)𝑇 ∈ 𝑅𝑁𝑃 is the
aggregate retailer order vector, where 𝑥𝑗 is the vector of the𝑗th retailer order vector 𝑥𝑗 = (𝑥𝑗1, . . . , 𝑥𝑗𝑃).

Retailers make their order quantity decision as follows:

max − 𝑁∑
𝑗=1

(𝑥𝑇𝑗 𝜋 + 𝑥𝑇𝑗 (𝑎𝑗 − 𝐵𝑗⋅𝑥)E [𝜉]) ,
min

𝑁∑
𝑗=1

𝑥𝑇𝑗 (𝑎𝑗 − 𝐵𝑗⋅𝑥) 𝜎 (𝜉) ,
s.t. 𝑥𝑗 ≥ 0,𝑗 = 1, . . . , 𝑁,

(20)

where 𝜋 = (𝜋1, . . . , 𝜋𝑃) is the vector of wholesale prices and𝐵𝑗⋅ = (𝐺𝑗1, . . . , 𝐻𝑗, . . . , 𝐺𝑗𝑁), for 𝑗th retailer whose first
objective is to maximize their mean profit and second
objective is to minimize their standard deviation for the
stochastic demand. We assume that the weight vector to the
two objectives 𝑥𝑇𝑗 𝜋+𝑥𝑇𝑗 (𝑎𝑗 −𝐵𝑗⋅𝑥)E[𝜉] and 𝑥𝑇𝑗 (𝑎𝑗 −𝐵𝑗⋅𝑥)𝜎(𝜉)
in (20) is 𝑤𝐿𝑗 := (𝑤𝐿𝑗1, 𝑤𝐿𝑗2) ∈ 𝑅2++.

Manufacturers choose their supply quantity to maximize
their profit in the wholesale market, anticipating the market
clearing wholesale market price as well as the retailer order
quantities. Mathematically, manufacturers face the following
decision problem:

min
𝑀∑
𝑖=1

(𝑤𝑈𝑖1𝑐𝑇𝑖 𝑦𝑖 − 𝑤𝑈𝑖2𝜋𝑇𝑦𝑖) ,
s.t.

𝑀∑
𝑘=1

𝑦𝑘 = 𝑁∑
𝑗=1

𝑥𝑗 (V) ,𝑦𝑖 ≥ 0,𝑖 = 1, . . . ,𝑀,
V ∈ 𝑅𝑃,

(21)

where 𝑐𝑖 ∈ 𝑅𝑃 is the 𝑖th manufacturer unit cost, 𝑦𝑖 ∈ 𝑅𝑃 is
the supply quantity of the 𝑖thmanufacturer and 𝑥𝑗(𝜋) : 𝑅𝑃 →𝑅𝑃 is the 𝑗th retailer order quantity for a given wholesale
price 𝜋, 𝑤𝑈𝑖 := (𝑤𝑈𝑖1, 𝑤𝑈𝑖2) ∈ 𝑅2++ is the weight vector to
manufacturer i’s profit and cost, and the first constraint is
the wholesale market clearing conditions. We assume that
all the uncertainty exists in the retail market and that the
wholesale market is deterministic except for the weight
choice. The reason for this is that the demand uncertainty
in the retail demand function is realized when all wholesale
market related decisions are made in our model. We also
assume that the weight vector𝑤𝑈𝑖 is uncertain and belongs to
a known convex and compact set. By this assumption, we can
utilize the proposed robust-weighted approach.

4.2. Numerical Results. We now detail the numerical tests for
finding a robust-weighted manufacturer-retailer equilibrium
by using the numerical solver PATH [23].We present numer-
ical results for the robust-weighted manufacturer-retailer
equilibrium of models in the decentralized supply chain with
finite weights and general polyhedral weight regions, respec-
tively. Suppose𝑀 = 2, 𝑁 = 2, and 𝑃 = 2, that is, two man-
ufacturers, two retailers, and two products. We assume that
E[𝜉] = 1 and 𝜎(𝜉) = 0.5; that is, the mean and the
standard deviation of the stochastic variable 𝜉 are 1 and 0.5,
respectively.We give the following assumption for the param-
eters in supply chain:𝑎1 fl [ 911] ;𝑎2 fl [ 710] ;𝑐1 fl [0.60.6] ;𝑐2 fl [0.50.5]𝐻𝑗 = 𝐺𝑗𝜅 fl [ 1 0.50.5 1 ] , 𝑗, 𝜅 = 1, 2, 𝑗 ̸= 𝜅.

(22)



8 Discrete Dynamics in Nature and Society

Table 1: Numerical test results with finite weights for 𝑔11/𝑔12 = 0.3 and 𝑔21/𝑔22 = 0.5.𝑓11 /𝑓12 𝑓21 /𝑓22 𝑥 𝑦 𝜋
0.7 0.8 (0.583, 0.527, 0, 1.654) (0, 0, 0.583, 2.181) (1.851, 2.203)
0.7 1.28 (0, 0, 0.393, 1.893) (0, 0, 0.393, 1.893) (2.633, 3.547)
0.7 1.69 (0, 0, 0.430, 1.930) (0, 0, 0.430, 1.930) (2.964, 4.021)
1 1.28 (0.833, 0.923, 0, 1.554) (0, 0, 0.833, 2.476) (2.817, 3.384)
1 0.8 (0.833, 1.833, 0, 0) (0, 0, 0.833, 1.833) (2.750, 3.250)
1 1.69 (0.833, 0.513, 0, 2.000) (0, 0, 0.833, 2.513) (2.910, 3.570)
1.5 1.69 (0.917, 1.385, 0, 1.170) (0, 0, 0.917, 2.555) (3.465, 4.096)
1.5 1.28 (0.917, 1.801, 0, 0.717) (0, 0, 0.917, 2.518) (3.338, 3.843)
1.5 0.8 (0.917, 1.917, 0, 0) (0, 0, 0.917, 1.917) (3.500, 4.167)

Table 2: Numerical test results with finite weights for 𝑔11/𝑔12 = 0.3 and 𝑔21/𝑔22 = 1.2.𝑓11 /𝑓12 𝑓21 /𝑓22 𝑥 𝑦 𝜋
0.7 0.8 (0.769, 0.664, 0, 1.751) (0, 0, 0.769, 2.415) (1.692, 2.044)
0.7 1.28 (0.278, 0, 0.814, 1.980) (0, 0, 1.092, 1.980) (1.897, 3.099)
0.7 1.69 (0, 0, 0.505, 2.005) (0, 0, 0.505, 2.005) (2.805, 3.862)
1 1.28 (0.939, 0.995, 0, 1.622) (0, 0, 0.939, 2.617) (2.658, 3.625)
1 0.8 (0.939, 1.939, 0, 0) (0, 0, 0.939, 1.939) (2.591, 3.091)
1 1.69 (0.939, 0.597, 0, 2.045) (0, 0, 0.939, 2.642) (2.751, 3.411)
1.5 1.69 (0.996, 1.429, 0, 1.241) (0, 0, 0.996, 2.670) (3.305, 3.937)
1.5 1.28 (0.996, 1.833, 0, 0.812) (0, 0, 0.996, 2.654) (3.179, 3.684)
1.5 0.8 (0.966, 1.996, 0, 0) (0, 0, 0.996, 1.996) (3.341, 4.008)

Analytical Hierarchy Process (for brief AHP) [26] is used
to assign weights for the two objectives in models (20) and
(21). We assume that retailer 𝑗 is unsure about the relative
importance of 𝑓𝑗1 (𝑥) := 𝑥𝑇𝑗 𝜋 − 𝑥𝑇𝑗 (𝑎𝑗 − 𝐵𝑗⋅𝑥)E[𝜉] and𝑓𝑗2 (𝑥) := 𝑥𝑇𝑗 (𝑎𝑗 − 𝐵𝑗⋅𝑥)𝜎(𝜉) for any 𝑗 = 1, 2. Consequently, we
first consider that there are finite weights to quantify the
relative importance for the two objective functions. Then
we generalize the finite weights to the weight set given by a
polytope. We first suppose that retailers allow three possible
scale indices for the two objective functions as𝑓11 /𝑓12 = 0.7, 1,
or 1.5 and𝑓21 /𝑓22 = 0.8, 1.28, or 1.69. Similar to the assumption
about the retailers’ weights, we also assume thatmanufacturer𝑖 is also unsure about the relative importance of 𝑔𝑖1 := −𝜋𝑇𝑦𝑖
and 𝑔𝑖2 := 𝑐𝑇𝑖 𝑦𝑖, 𝑖 = 1, 2. As such, manufacturers allow for
two possible scale indices to the two objective functions as𝑔11/𝑔12 = 0.3 or 1 and 𝑔22/𝑔22 = 0.5 or 1.2.

The numerical results are reported in Tables 1–4,
where (𝑥, 𝑦, 𝜋) (manufacturer-retailer equilibriums) are the
weighted Nash equilibrium by using the weighted approach
[9], and here the vector𝑦 = (𝑦1, . . . , 𝑦𝑀)𝑇 ∈ 𝑅𝑀𝑃 is the aggre-
gate manufacturer supply vector. The robust-weighted Nash
equilibrium (RWNE)with finiteweights is reported in the last
row of Table 4. There are different weighted manufacturer-
retailer equilibriums for a different choice of the weights.The

robust-weighted retailer equilibrium is computed by using
the weight region generated as the convex hull of the nine
weight vectors. It is easy to see that the robust-weighted
approach presents a unique equilibrium which mitigates
the conflict with different weighted manufacturer-retailer
equilibria for a different choice of the weights in Tables 1–4.
We note that, compared with the existing weighted approach
[9], our method is more “robust” in that there are different
solutions for choosing different weights by using weighted
approach [9], but there is a unique solution by using our
approach.

The managerial impact of the proposed method is as
follows. The proposed approach overcomes several short-
comings for the current approaches to the multicriteria
competition in a supply chain. There is no clear guidance to
a decision-maker (manufacturers or retailers) to choose a
solution among (possibly a very large number of) generated
Pareto optimal solutions. However, there is a unique solution
by using our approach. In the multicriteria competition in a
supply chain, since different decision-maker (manufacturers
or retailers) may have different opinions, the relative weights
given by different decision-maker can differ significantly.
Furthermore, there may be ambiguity in the weights given by
a decision-maker (manufacturer or retailer), because it is
often difficult to give relative weights for each objective.
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Table 3: Numerical test results with finite weights for 𝑔11/𝑔12 = 1 and 𝑔21/𝑔22 = 1.2.𝑓11 /𝑓12 𝑓21 /𝑓22 𝑥 𝑦 𝜋
0.7 0.8 (0.924, 0.778, 0, 1.832) (0, 0, 0.924, 2.610) (1.560, 1.911)
0.7 1.28 (0.515, 0, 0.768, 2.053) (0, 0, 1.283, 2.053) (1.764, 2.967)
0.7 1.69 (0.255, 0, 1.036, 2.068) (0, 0, 1.291, 2.068) (1.834, 3.310)
1 1.28 (1.028, 1.055, 0, 1.697) (0, 0, 1.028, 2.733) (2.525, 3.092)
1 0.8 (1.028, 2.028, 0, 0) (0, 0, 1.028, 2.028) (2.458, 2.958)
1 1.69 (1.028, 0.667, 0, 2.082) (0, 0, 1.028, 2.749) (2.618, 3.278)
1.5 1.69 (1.062, 1.466, 0, 1.300) (0, 0, 1.062, 2.766) (3.173, 3.804)
1.5 1.28 (1.062, 1.860, 0, 0.891) (0, 0, 1.062, 2.751) (3.046, 3.551)
1.5 0.8 (1.063, 2.062, 0, 0) (0, 0, 1.063, 2.062) (3.208, 3.875)

Table 4: Numerical test results with finite weights for 𝑔11/𝑔12 = 1 and 𝑔21/𝑔22 = 0.5.𝑓11 /𝑓12 𝑓21 /𝑓22 𝑥 𝑦 𝜋
0.7 0.8 (0.817, 0.699, 0, 1.776) (0.817, 2.475, 0, 0) (1.651, 2.003)
0.7 1.28 (0.351, 0, 0.800, 2.003) (1.151, 2.003, 0, 0) (1.856, 3.059)
0.7 1.69 (0, 0, 0.525, 2.025) (0.525, 2.025, 0, 0) (2.764, 3.821)
1 1.28 (0.967, 1.013, 0, 1.639) (0.967, 2.653, 0, 0) (2.617, 3.184)
1 0.8 (0, 2.867, 0, 1.167) (0, 3.033, 0, 0) (3.100, 2.550)
1 1.69 (0.967, 0.619, 0, 2.056) (0.967, 2.675, 0, 0) (2.710, 3.370)
1.5 1.69 (1.017, 1.440, 0, 1.259) (1.017, 2.700, 0, 0) (3.265, 3.896)
1.5 1.28 (0, 2.650, 0, 0.836) (0, 3.186, 0, 0) (4.859, 3.643)
1.5 0.8 (1.017, 2.017, 0, 0) (1.017, 2.017, 0, 0) (3.300, 3.967)

(RWNE) (0.583, 0.527, 0, 1.654) (0, 0, 0.583, 2.181) (1.851, 2.203)

Table 5: Numerical test results with general polytope weight regions.𝛿 𝑥 𝑦 𝜋
0 (0.778, 1.444, 0.778, 1.444) (0, 0, 1.556, 2.889) (2.750, 3.250)
0.007 (0.777, 1.444, 0.777, 1.444) (0, 0, 1.544, 2.887) (2.748, 3.248)
0.02 (0.776, 1.442, 0.776, 1.442) (0, 0, 1.541, 2.884) (2.745, 3.245)
0.05 (0.772, 1.439, 0.772, 1.439) (0, 0, 1.544, 2.878) (2.737, 3.237)
0.1 (0.767, 1.433, 0.767, 1.433) (0, 0, 1.533, 2.867) (2.725, 3.225)
0.5 (0.722, 1.389, 0.722, 1.389) (0, 0, 1.444, 2.778) (2.625, 3.125)

For the general polytope weight region, we suppose the
reference point 𝑤𝑗 and matrices 𝐶𝑈𝑖 and 𝐶𝐿𝑗 are defined as
follows: 𝑤𝑈𝑖 := (1/2, 1/2), 𝑖 = 1, 2, 𝑤𝐿𝑗 := (1/3, 2/3), 𝑗 = 1, 2,
and 𝐶𝑈𝑖 fl [1 21 2] , 𝑖 = 1, 2

𝐶𝐿𝑗 fl [1 01 1] , 𝑗 = 1, 2. (23)

The perturbation subsets are defined as𝑉𝑈𝑖 fl {V𝑈𝑖 ∈ 𝑅2 | 𝑒𝑇V𝑈𝑖 ≤ 1 − 𝛿} , 𝑖 = 1;𝑉𝐿𝑗 fl {V𝐿𝑗 ∈ 𝑅2 | 𝑒𝑇V𝐿𝑗 ≤ 1 − 𝛿} , 𝑗 = 1, 2, (24)

where 𝛿 is a parameter defined in [0, 1). With the above
data the robust-weighted manufacturer-retailer equilibrium
with different 𝛿 can be calculated by utilizing the method
developed in Section 5. The stability results are shown in
Table 5 which contains small data errors due to the small
changes in 𝛿.
5. Conclusion

This paper introduces a robust-weighted approach to mul-
ticriteria bilevel problems. The computation of the robust-
weighted Pareto optimal point, with the polyhedral weight
sets, can be equivalently transformed into solving MPEC.
As an application, the new approach is used to analyze
supply chainmulticriteria bilevel competition.The numerical
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tests show that our method is more robust than existing
approaches and a unique robust-weighted Pareto optimum
can always be obtained for general polyhedral weight sets.
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