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A set of sufficient conditions is obtained for the global attractivity of the following two-species discrete mutualism model with
infinite deviating arguments: 𝑥1(𝑘+1) = 𝑥1(𝑘) exp{𝑟1[(𝐾1+𝛼1∑+∞𝑠=0 𝐽2(𝑠)𝑥2(𝑘−𝑠))/(1+∑+∞𝑠=0 𝐽2(𝑠)𝑥2(𝑘−𝑠))−𝑥1(𝑘)]} and 𝑥2(𝑘+1) =𝑥2(𝑘) exp{𝑟2[(𝐾2 + 𝛼2∑+∞𝑠=0 𝐽1(𝑠)𝑥1(𝑘 − 𝑠))/(1 + ∑+∞𝑠=0 𝐽1(𝑠)𝑥1(𝑘 − 𝑠)) − 𝑥2(𝑘)]}, where 𝑟𝑖, 𝐾𝑖, 𝛼𝑖, 𝑖 = 1, 2, are all positive constants,∑+∞𝑗=1 𝐽𝑖(𝑛) = 1, and 𝛼𝑖 > 𝐾𝑖. Our results generalize the main result of Yang et al. (2014).

1. Introduction

The aim of this paper is to investigate the stability property
of the following two-species discrete mutualism model with
infinite deviating arguments:

𝑥1 (𝑘 + 1) = 𝑥1 (𝑘)
⋅ exp{𝑟1 [𝐾1 + 𝛼1∑+∞𝑠=0 𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠)

1 + ∑+∞𝑠=0 𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠) − 𝑥1 (𝑘)]} ,
𝑥2 (𝑘 + 1) = 𝑥2 (𝑘)

⋅ exp{𝑟2 [𝐾2 + 𝛼2∑+∞𝑠=0 𝐽1 (𝑠) 𝑥1 (𝑘 − 𝑠)
1 + ∑+∞𝑠=0 𝐽1 (𝑠) 𝑥1 (𝑘 − 𝑠) − 𝑥2 (𝑘)]} ,

(1)

together with the initial conditions

𝑥𝑖 (𝑠) = 𝜙𝑖 (𝑠) ≥ 0,
𝑥𝑖 (0) > 0, 𝑠 = ⋅ ⋅ ⋅ , −𝑘, −𝑘 + 1, . . . , −2, −1, 𝑖 = 1, 2. (2)

Li and Xu [1] studied the following two-species integrod-
ifferential model of mutualism:

𝑁󸀠1 (𝑡) = 𝑟1 (𝑡)𝑁1 (𝑡)
⋅ [
[
𝐾1 (𝑡) + 𝛼1 (𝑡) ∫∞0 𝐽2 (𝑠)𝑁2 (𝑡 − 𝑠) 𝑑𝑠

1 + ∫∞
0

𝐽2 (𝑠)𝑁2 (𝑡 − 𝑠) 𝑑𝑠

− 𝑁1 (𝑡 − 𝜎1 (𝑡))]]
,

𝑁󸀠2 (𝑡) = 𝑟2 (𝑡)𝑁2 (𝑡)
⋅ [
[
𝐾2 (𝑡) + 𝛼2 (𝑡) ∫∞0 𝐽1 (𝑠)𝑁1 (𝑡 − 𝑠) 𝑑𝑠

1 + ∫∞
0

𝐽1 (𝑠)𝑁1 (𝑡 − 𝑠) 𝑑𝑠

− 𝑁2 (𝑡 − 𝜎2 (𝑡))]]
.

(3)

Under the assumption 𝐾𝑖(𝑡), 𝛼𝑖(𝑡), 𝑖 = 1, 2, are all positive
periodic functions and𝛼𝑖 > 𝐾𝑖, 𝑖 = 1, 2, by applying the coin-
cidence degree theory, they showed that system (3) admits
at least one positive 𝜔-periodic solution. Chen and You [2]

Hindawi
Discrete Dynamics in Nature and Society
Volume 2017, Article ID 2912147, 8 pages
https://doi.org/10.1155/2017/2912147

https://doi.org/10.1155/2017/2912147


2 Discrete Dynamics in Nature and Society

argued that a general nonautonomous nonperiodic system is
more appropriate, and for the general nonautonomous case,
by using the differential inequality theory, they showed that
the system is permanent. It brings to our attention that both
[1, 2] did not consider the stability property of the system,
and in [3], under the assumption 𝑟𝑖, 𝐾𝑖, 𝛼𝑖, 𝑖 = 1, 2, are all
positive constants, 𝜎𝑖(𝑡) ≡ 0, we investigated the stability
property of the system, andwe showed that the system admits
a unique globally attractive positive equilibrium.At the end of
the paper, we pointed out “whether some parallel result could
be established for the discrete type mutualism system is still
unknown, we leave this for future investigation.”

Previously, corresponding to system (3), Li and Yang [4]
and Li [5] proposed the following two-species discrete model
of mutualism with infinite deviating arguments:

𝑥1 (𝑘 + 1) = 𝑥1 (𝑘) exp{𝑟1 (𝑘)

⋅ [𝐾1 (𝑘) + 𝛼1 (𝑘)∑+∞𝑠=0 𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠)
1 + ∑+∞𝑠=0 𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠)

− 𝑥1 (𝑘 − 𝛿1 (𝑘))]} ,

𝑥2 (𝑘 + 1) = 𝑥2 (𝑘) exp{𝑟2 (𝑘)

⋅ [𝐾2 (𝑘) + 𝛼2 (𝑘)∑+∞𝑠=0 𝐽1 (𝑠) 𝑥1 (𝑘 − 𝑠)
1 + ∑+∞𝑠=0 𝐽1 (𝑠) 𝑥1 (𝑘 − 𝑠)

− 𝑥2 (𝑘 − 𝛿2 (𝑘))]} ,

(4)

where 𝑥𝑖(𝑘), 𝑖 = 1, 2, is the density of mutualism species 𝑖
at the 𝑘th generation and {𝑟𝑖(𝑘)}, {𝐾𝑖(𝑘)}, {𝛼𝑖(𝑘)}, {𝐽𝑖(𝑘)}, and{𝛿𝑖(𝑘)}, 𝑖 = 1, 2, are bounded nonnegative sequences such
that

0 < 𝑟𝑙𝑖 ≤ 𝑟𝑢𝑖 ,
0 < 𝑎𝑙𝑖 ≤ 𝑎𝑢𝑖 ,
0 < 𝐾𝑙𝑖 ≤ 𝐾𝑢𝑖 ,
0 < 𝛿𝑙𝑖 ≤ 𝛿𝑢𝑖 ,

+∞∑
𝑗=1

𝐽𝑖 (𝑛) = 1,
𝛼𝑖 > 𝐾𝑖.

(5)

They showed that, under the above assumption, system (4) is
permanent. Again, none of the papers [4, 5] considered the
stability property of the system. To make an intensive study

on this direction, in [6], we investigated the dynamic behav-
iors of the following autonomous mutualism system:

𝑥1 (𝑘 + 1)
= 𝑥1 (𝑘) exp{𝑟1 [𝐾1 + 𝛼1𝑥2 (𝑘)1 + 𝑥2 (𝑘) − 𝑥1 (𝑘)]} ,

𝑥2 (𝑘 + 1)
= 𝑥2 (𝑘) exp{𝑟2 [𝐾2 + 𝛼2𝑥1 (𝑘)1 + 𝑥1 (𝑘) − 𝑥2 (𝑘)]} ,

(6)

where 𝑥𝑖(𝑘) (𝑖 = 1, 2) are the population density of the 𝑖th
species at 𝑘-generation. We showed that if

(𝐻1) 𝑟𝑖, 𝐾𝑖, 𝛼𝑖 (𝑖 = 1, 2) are all positive constants and 𝛼𝑖 >𝐾𝑖 (𝑖 = 1, 2);
(𝐻2) 𝑟𝑖𝛼𝑖 ≤ 1, (𝑖 = 1, 2)

hold, system (6) admits a unique positive equilibrium (𝑥∗1 ,𝑥∗2 ), which is globally asymptotically stable. Our result shows
that the dynamic behavior of the discrete type mutualism
model is more complicated, and one could not expect to
establish parallel result as that of continuous ones. Also, at
the end of the paper, we pointed out “it seems interesting to
incorporate the time delay to the system (6) and investigate
the dynamic behaviors of the system, we leave this for future
study.” However, to this day, we still did not study the corre-
spondence topic on this area. Formore background of system
(3), (4), and (6) one could refer to [1–24] and the references
cited therein. We mention here that, with 𝜎𝑖(𝑘) ̸= 0, 𝑖 = 1, 2,
and all the coefficients being time-dependent, system (4) is a
nonautonomous pure-delay system, and it is not an easy thing
to investigate the stability property of the system. This moti-
vated us to discuss the simple one, that is, the autonomous
simple non-pure-delay system (1).

Concerned with the stability property of system (1)-(2),
we have the following result.

Theorem 1. Assume that (𝐻1) and (𝐻2) hold, and then system
(1)-(2) admits a unique positive equilibrium (𝑥∗1 , 𝑥∗2 ), which is
globally attractive.

Remark 2. Obviously,Theorem 1 generalizes the main results
of Yang et al. [6] to the infinite deviating arguments case.The-
orem 1 can also be seen as the parallel result of the continuous
one in [3]. Thus, we push on the study of the mutualism
model.

2. Existence and Uniqueness of
Positive Equilibrium

This section focuses on the existence and uniqueness of
positive equilibrium of system (1). More precisely, we will
prove the following result.

Theorem3. Under the assumption ofTheorem 1, system (1)-(2)
admits a unique positive equilibrium.
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Proof. The positive equilibrium of system (1) satisfies

𝐾1 + 𝛼1𝑥21 + 𝑥2 − 𝑥1 = 0,
𝐾2 + 𝛼2𝑥11 + 𝑥1 − 𝑥2 = 0,

(7)

which is equivalent to

𝐴1𝑥21 + 𝐴2𝑥1 + 𝐴3 = 0,
𝐵1𝑥22 + 𝐵2𝑥2 + 𝐵3 = 0, (8)

where

𝐴1 = 𝛼2 + 1,
𝐴2 = −𝛼1𝛼2 − 𝐾1 + 𝐾2 + 1,
𝐴3 = −𝐾2𝛼1 − 𝐾1,
𝐵1 = 𝛼1 + 1,
𝐵2 = −𝛼1𝛼2 + 𝐾1 − 𝐾2 + 1,
𝐵3 = −𝐾1𝛼2 − 𝐾2.

(9)

Now let us consider the function

𝐹1 (𝑥1) = 𝐴1𝑥21 + 𝐴2𝑥1 + 𝐴3, (10)

and since 𝐴1 > 0, 𝐴3 < 0, it follows that 𝐹1(−∞) =+∞, 𝐹1(0) = 0, 𝐹1(+∞) = +∞, and, hence, from the
continuity of 𝐹1, there exist two points 𝑥∗∗1 and 𝑥∗1 , 𝑥∗∗1 <0 < 𝑥∗1 , such that 𝐹1(𝑥∗∗1 ) = 𝐹1(𝑥∗1 ) = 0, and since 𝐹1(𝑥1) = 0
has at most two solutions, it means that 𝐹1(𝑥1) = 0 admits
unique positive solution 𝑥∗1 . Similarly, from 𝐵1 > 0, 𝐵3 < 0,
one could prove 𝐹2(𝑥2) = 𝐵1𝑥22 + 𝐵2𝑥2 + 𝐵3 = 0 admits
unique positive solution 𝑥∗2 . By simple computation, system
(7) admits a unique positive solution 𝐸+(𝑥∗1 , 𝑥∗2 ), where

𝑥∗1 = −𝐴2 + √𝐴22 − 4𝐴1𝐴3
2𝐴1 ,

𝑥∗2 = −𝐵2 + √𝐵22 − 4𝐵1𝐵3
2𝐵1 .

(11)

This ends the proof of Theorem 3.

3. Proof of Theorem 1

Nowwe state several lemmaswhichwill be useful in the proof
of Theorem 1.

Lemma 4 (see [25]). Let𝑓(𝑢) = 𝑢 exp(𝛼−𝛽𝑢), where 𝛼 and 𝛽
are positive constants, and then 𝑓(𝑢) is nondecreasing for 𝑢 ∈(0, 1/𝛽].

Lemma 5 (see [25]). Assume that sequence {𝑢(𝑘)} satisfies
𝑢 (𝑘 + 1) = 𝑢 (𝑘) exp (𝛼 − 𝛽𝑢 (𝑘)) , 𝑘 = 1, 2, . . . , (12)

where 𝛼 and 𝛽 are positive constants and 𝑢(0) > 0. Then

(i) If 𝛼 < 2, then lim𝑘→+∞𝑢(𝑘) = 𝛼/𝛽.
(ii) If 𝛼 ≤ 1, then 𝑢(𝑘) ≤ 1/𝛽, 𝑘 = 2, 3, . . . .

Lemma 6 (see [26]). Suppose that functions 𝑓, 𝑔 : 𝑍+ ×[0,∞) → [0,∞) satisfy 𝑓(𝑘, 𝑥) ≤ 𝑔(𝑘, 𝑥)(𝑓(𝑘, 𝑥) ≥ 𝑔(𝑘, 𝑥))
for 𝑘 ∈ 𝑍+ and 𝑥 ∈ [0,∞) and 𝑔(𝑘, 𝑥) is nondecreasing with
respect to 𝑥. If {𝑥(𝑘)} and {𝑢(𝑘)} are the nonnegative solutions
of the following difference equations:

𝑥 (𝑘 + 1) = 𝑓 (𝑘, 𝑥 (𝑘)) ,
𝑢 (𝑘 + 1) = 𝑔 (𝑘, 𝑢 (𝑘)) , (13)

respectively, and 𝑥(0) ≤ 𝑢(0)(𝑥(0) ≥ 𝑢(0)), then
𝑥 (𝑘) ≤ 𝑢 (𝑘) (𝑥 (𝑘) ≥ 𝑢 (𝑘)) , ∀𝑘 ≥ 0. (14)

Lemma 7 (see [27]). Let 𝑥 : 𝑍 → 𝑅 be nonnegative bounded
sequences, and let𝐻 : 𝑁 → 𝑅 be nonnegative sequences such
that ∑∞𝑛=0𝐻(𝑛) = 1.Then

lim inf
𝑛→+∞

𝑥 (𝑛) ≤ lim inf
𝑛→+∞

𝑛∑
𝑠=−∞

𝐻(𝑛 − 𝑠) 𝑥 (𝑠)

≤ lim sup
𝑛→+∞

𝑛∑
𝑠=−∞

𝐻(𝑛 − 𝑠) 𝑥 (𝑠)
≤ lim sup
𝑛→+∞

𝑥 (𝑛) .
(15)

Lemma 8. Let 𝑔𝑖(𝑥) = (𝐾𝑖 + 𝛼𝑖𝑥)/(1 + 𝑥), 𝑖 = 1, 2, assume
that 𝛼𝑖 > 𝐾𝑖, and then 𝑔𝑖(𝑥) are the strictly increasing function
of 𝑥.
Proof. Since

𝑔󸀠𝑖 (𝑥) = −(𝐾𝑖 − 𝛼𝑖)(1 + 𝑥)2 > 0, 𝑖 = 1, 2, (16)

the conclusion of Lemma 8 immediately follows.

Nowwe are in the position to prove themain result of this
paper.

Proof of Theorem 1. Let (𝑥1(𝑘), 𝑥2(𝑘)) be arbitrary solution of
system (1) with initial condition (2). Denote

𝑈𝑖 = lim sup
𝑘→+∞

𝑥𝑖 (𝑘) ,
𝑉𝑖 = lim inf
𝑘→+∞

𝑥𝑖 (𝑘) ,
𝑖 = 1, 2.

(17)

We claim that 𝑈1 = 𝑉1 = 𝑥∗1 and 𝑈2 = 𝑉2 = 𝑥∗2 .
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From the first equation of system (1), we obtain

𝑥1 (𝑘 + 1) = 𝑥1 (𝑘)
⋅ exp{𝑟1 [𝐾1 + 𝛼1∑+∞𝑠=0 𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠)

1 + ∑+∞𝑠=0 𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠)
− 𝑥1 (𝑘)]} ≤ 𝑥1 (𝑘)

⋅ exp{𝑟1 [𝛼1 + 𝛼1∑+∞𝑠=0 𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠)
1 + ∑+∞𝑠=0 𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠)

− 𝑥1 (𝑘)]} ≤ 𝑥1 (𝑘) exp {𝑟1𝛼1 − 𝑟1𝑥1 (𝑘)} ,
𝑘 = 0, 1, 2, . . . ,

(18)

considering the auxiliary equation as follows:

𝑢 (𝑘 + 1) = 𝑢 (𝑘) exp {𝑟1𝛼1 − 𝑟1𝑢 (𝑘)} ,
𝑘 = 0, 1, 2, . . . . (19)

Because of 0 < 𝑟1𝛼1 ≤ 1, according to (ii) of Lemma 5, we
can obtain 𝑢(𝑘) ≤ 1/𝑟1 for all 𝑘 ≥ 2, where 𝑢(𝑘) is arbitrary
positive solution of (18) with initial value 𝑢(0) > 0. From
Lemma 4, 𝑓(𝑢) = 𝑢 exp(𝑟1𝛼1 − 𝑟1𝑢) is nondecreasing for 𝑢 ∈(0, 1/𝑟1]. According to Lemma 6 we can obtain 𝑥1(𝑘) ≤ 𝑢(𝑘)
for all 𝑘 ≥ 2, where 𝑢(𝑘) is the solution of (19) with the initial
value 𝑢(2) = 𝑥1(2). According to (i) of Lemma 5, we can
obtain

𝑈1 = lim sup
𝑘→+∞

𝑥1 (𝑘) ≤ lim
𝑘→+∞

𝑢 (𝑘) = 𝛼1. (20)

From (20) and Lemma 7 we have

lim sup
𝑘→+∞

+∞∑
𝑠=0

𝐽1 (𝑠) 𝑥1 (𝑘 − 𝑠)

= lim sup
𝑛→+∞

𝑘∑
𝑠=−∞

𝐽1 (𝑘 − 𝑠) 𝑥1 (𝑠) ≤ lim sup
𝑘→+∞

𝑥1 (𝑘)
≤ 𝛼1.

(21)

From the second equation of system (1), we obtain

𝑥2 (𝑘 + 1) ≤ 𝑥2 (𝑘) exp {𝑟2𝛼2 − 𝑟2𝑥2 (𝑘)} ,
𝑘 = 0, 1, 2, . . . . (22)

Similar to the above analysis, we have

𝑈2 = lim sup
𝑘→+∞

𝑥2 (𝑘) ≤ 𝛼2. (23)

From (23) and Lemma 7 we have

lim sup
𝑘→+∞

+∞∑
𝑠=0

𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠)

= lim sup
𝑛→+∞

𝑘∑
𝑠=−∞

𝐽2 (𝑘 − 𝑠) 𝑥2 (𝑠) = lim sup
𝑘→+∞

𝑥2 (𝑘)
≤ 𝛼2.

(24)

For 𝜀 > 0 enough small, without loss of generality, we may
assume that 𝜀 < (1/2)min{𝐾1, 𝐾2}, and it follows from (20)–
(24) that there is an integer 𝑘1 > 2 such that, for all 𝑘 > 𝑘1,

𝑥1 (𝑘) < 𝛼1 + 𝜀 def= 𝑀𝑥11 ,
𝑥2 (𝑘) < 𝛼2 + 𝜀 def= 𝑀𝑥21 ,

(25)

+∞∑
𝑠=0

𝐽1 (𝑠) 𝑥1 (𝑘 − 𝑠) < 𝛼1 + 𝜀 def= 𝑀𝑥11 ,
+∞∑
𝑠=0

𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠) < 𝛼2 + 𝜀 def= 𝑀𝑥21 .
(26)

For 𝑘 ≥ 𝑘1, according to the first equation of system (1) we
can obtain

𝑥1 (𝑘 + 1) = 𝑥1 (𝑘)
⋅ exp{𝑟1 [𝐾1 + 𝛼1∑+∞𝑠=0 𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠)

1 + ∑+∞𝑠=0 𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠)
− 𝑥1 (𝑘)]} ≥ 𝑥1 (𝑘)

⋅ exp{𝑟1 [𝐾1 + 𝐾1∑+∞𝑠=0 𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠)
1 + ∑+∞𝑠=0 𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠)

− 𝑥1 (𝑘)]} ≥ 𝑥1 (𝑘) exp {𝑟1𝐾1 − 𝑟1𝑥1 (𝑘)} ,

(27)

considering the auxiliary equation as follows:

𝑢 (𝑘 + 1) = 𝑢 (𝑘) exp {𝑟1𝐾1 − 𝑟1𝑢 (𝑘)} . (28)

According to (ii) of Lemma 5, we can obtain 𝑢(𝑘) ≤ 1/𝑟1
for all 𝑘 ≥ 𝑘2, where 𝑢(𝑘) is arbitrary positive solution
of (28) with initial value 𝑢(𝑘2) > 0. From Lemma 4,𝑓(𝑢) = 𝑢 exp(𝑟1𝐾1 − 𝑟1𝑢) is nondecreasing for 𝑢 ∈ (0, 1/𝑟1].
According to Lemma 6 we can obtain 𝑥1(𝑘) ≥ 𝑢(𝑘) for all𝑘 ≥ 2, where 𝑢(𝑘) is the solution of (28) with the initial value𝑢(𝑘2) = 𝑥1(𝑘2). According to (i) of Lemma 5, we have

𝑉1 = lim inf
𝑘→+∞

𝑥1 (𝑘) ≥ lim
𝑘→+∞

𝑢 (𝑘) = 𝐾1. (29)

From (29) and Lemma 7 we can obtain

lim inf
𝑘→+∞

+∞∑
𝑠=0

𝐽1 (𝑠) 𝑥1 (𝑘 − 𝑠) ≥ lim inf
𝑘→+∞

𝑥1 (𝑘) ≥ 𝐾1. (30)

From the second equation of system (1), we obtain

𝑥2 (𝑘 + 1) ≥ 𝑥2 (𝑘) exp {𝑟2𝐾2 − 𝑟2𝑥2 (𝑘)} . (31)

Similar to the analysis of (27)–(30), we have

𝑉2 = lim inf
𝑘→+∞

𝑥2 (𝑘) ≥ 𝐾2,
lim inf
𝑘→+∞

+∞∑
𝑠=0

𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠) ≥ 𝐾2.
(32)
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Then, for the above 𝜀 > 0, there is an integer 𝑘2 > 𝑘1 such
that, for all 𝑘 > 𝑘2,

𝑥1 (𝑘) > 𝐾1 − 𝜀 def= 𝑚𝑥11 ,
𝑥2 (𝑘) > 𝐾2 − 𝜀 def= 𝑚𝑥21 ;

+∞∑
𝑠=0

𝐽1 (𝑠) 𝑥1 (𝑘 − 𝑠) > 𝐾1 − 𝜀 def= 𝑚𝑥11 ,
+∞∑
𝑠=0

𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠) > 𝐾2 − 𝜀 def= 𝑚𝑥21 .

(33)

Noting that, from Lemma 8, 𝑔𝑖(𝑥) = (𝐾𝑖 + 𝛼𝑖𝑥)/(1 + 𝑥) (𝛼𝑖 >𝐾𝑖) is a strictly increasing function, then, from the first and
second equations of system (1) and (26), we have

𝑥1 (𝑘 + 1) = 𝑥1 (𝑘)
⋅ exp{𝑟1 [𝐾1 + 𝛼1∑+∞𝑠=0 𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠)

1 + ∑+∞𝑠=0 𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠)
− 𝑥1 (𝑘)]} ≤ 𝑥1 (𝑘) exp{𝑟1 [𝐾1 + 𝛼1𝑀𝑥211 +𝑀𝑥21
− 𝑥1 (𝑘)]} ,

𝑥2 (𝑘 + 1) = 𝑥2 (𝑘)
⋅ exp{𝑟2 [𝐾2 + 𝛼1∑+∞𝑠=0 𝐽1 (𝑠) 𝑥1 (𝑘 − 𝑠)

1 + ∑+∞𝑠=0 𝐽1 (𝑠) 𝑥1 (𝑘 − 𝑠)
− 𝑥2 (𝑘)]} ≤ 𝑥2 (𝑘) exp{𝑟2 [𝐾2 + 𝛼2𝑀𝑥111 +𝑀𝑥11
− 𝑥2 (𝑘)]} .

(34)

From (34), similarly to the analysis of (18)–(24), we can finally
obtain

lim sup
𝑘→+∞

+∞∑
𝑠=0

𝐽1 (𝑠) 𝑥1 (𝑘 − 𝑠) ≤ lim sup
𝑘→+∞

𝑥1 (𝑘)

≤ 𝐾1 + 𝛼1𝑀𝑥211 +𝑀𝑥21 ,

lim sup
𝑘→+∞

+∞∑
𝑠=0

𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠) ≤ lim sup
𝑘→+∞

𝑥2 (𝑘)

≤ 𝐾2 + 𝛼2𝑀𝑥111 +𝑀𝑥11 .

(35)

For the above 𝜀 > 0, it follows from (35) that there exists an
integer 𝑘3 > 𝑘2 such that, for all 𝑘 > 𝑘3,

𝑥1 (𝑘) < 𝐾1 + 𝛼1𝑀𝑥211 +𝑀𝑥21 + 𝜀2 def= 𝑀𝑥12 ,

𝑥2 (𝑘) < 𝐾2 + 𝛼2𝑀𝑥111 +𝑀𝑥11 + 𝜀2 def= 𝑀𝑥22 ;
+∞∑
𝑠=0

𝐽1 (𝑠) 𝑥1 (𝑘 − 𝑠) < 𝐾1 + 𝛼1𝑀𝑥211 +𝑀𝑥21 + 𝜀2 def= 𝑀𝑥12 ,
+∞∑
𝑠=0

𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠) < 𝐾2 + 𝛼2𝑀𝑥111 +𝑀𝑥11 + 𝜀2 def= 𝑀𝑥22 .

(36)

It then follows from (25), (26), and (36) that

𝑀𝑥𝑖2 < 𝑀𝑥𝑖1 , 𝑖 = 1, 2. (37)

For 𝑘 ≥ 𝑘3, from the strictly increasing function 𝑔𝑖(𝑥) = (𝐾𝑖+𝛼𝑖𝑥)/(1 + 𝑥), 𝛼𝑖 > 𝐾𝑖, 𝑖 = 1, 2, and (33), we can obtain

𝑥1 (𝑘 + 1)
≥ 𝑥1 (𝑘) exp{𝑟1 [𝐾1 + 𝛼1𝑚𝑥211 + 𝑚𝑥21 − 𝑥1 (𝑘)]} ,

𝑥2 (𝑘 + 1)
≥ 𝑥2 (𝑘) exp{𝑟2 [𝐾2 + 𝛼2𝑚𝑥111 + 𝑚𝑥11 − 𝑥2 (𝑘)]} .

(38)

From (38), similar to the analysis of (27)–(32), we can obtain

𝑉1 = lim inf
𝑘→+∞

𝑥1 (𝑘) ≥ 𝐾1 + 𝛼1𝑚𝑥211 + 𝑚𝑥21 ,

lim inf
𝑘→+∞

+∞∑
𝑠=0

𝐽1 (𝑠) 𝑥1 (𝑘 − 𝑠) ≥ 𝐾1 + 𝛼1𝑚𝑥211 + 𝑚𝑥21 ,

𝑉2 = lim inf
𝑘→+∞

𝑥2 (𝑘) ≥ 𝐾2 + 𝛼2𝑚𝑥111 + 𝑚𝑥11 ,

lim inf
𝑘→+∞

+∞∑
𝑠=0

𝐽1 (𝑠) 𝑥1 (𝑘 − 𝑠) ≥ 𝐾2 + 𝛼2𝑚𝑥111 + 𝑚𝑥11 .

(39)

For the above 𝜀 > 0, it follows from (39) that there is an integer𝑘4 > 𝑘3 such that, for all 𝑘 > 𝑘4,
𝑥1 (𝑘) > 𝐾1 + 𝛼1𝑚𝑥211 + 𝑚𝑥21 − 𝜀2 def= 𝑚𝑥12 ,

𝑥2 (𝑘) > 𝐾2 + 𝛼2𝑚𝑥111 + 𝑚𝑥11 − 𝜀2 def= 𝑚𝑥22 ,
+∞∑
𝑠=0

𝐽1 (𝑠) 𝑥1 (𝑘 − 𝑠) > 𝐾1 + 𝛼1𝑚𝑥211 + 𝑚𝑥21 − 𝜀2 def= 𝑚𝑥12 ,
+∞∑
𝑠=0

𝐽2 (𝑠) 𝑥2 (𝑘 − 𝑠) > 𝐾2 + 𝛼2𝑚𝑥111 + 𝑚𝑥11 − 𝜀2 def= 𝑚𝑥22 .

(40)
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Noting that

𝐾1 + 𝛼1𝑚𝑥211 + 𝑚𝑥21 > 𝐾1,
𝐾2 + 𝛼2𝑚𝑥111 + 𝑚𝑥11 > 𝐾2,

𝑖 = 1, 2.

(41)

Then from (33) and (40) we have

𝑚𝑥𝑖2 > 𝑚𝑥𝑖1 , 𝑖 = 1, 2. (42)

Continuing the above steps, we can get four sequences {𝑀𝑥1
𝑘
},{𝑀𝑥2

𝑘
}, {𝑚𝑥1
𝑘
}, and {𝑚𝑥2

𝑘
} such that

𝑀𝑥1
𝑘

= 𝐾1 + 𝛼1𝑀𝑥2𝑘−11 +𝑀𝑥2
𝑘−1

+ 𝜀𝑘 ,

𝑀𝑥2
𝑘

= 𝐾2 + 𝛼2𝑀𝑥1𝑘−11 +𝑀𝑥1
𝑘−1

+ 𝜀𝑘 ;

𝑚𝑥1
𝑘
= 𝐾1 + 𝛼1𝑚𝑥2𝑘−11 + 𝑚𝑥2

𝑘−1

− 𝜀𝑘 ,

𝑚𝑥2
𝑘
= 𝐾2 + 𝛼2𝑚𝑥1𝑘−11 + 𝑚𝑥1

𝑘−1

− 𝜀𝑘 .

(43)

Clearly, we have

𝑚𝑥1
𝑘
< 𝑉1 ≤ 𝑈1 < 𝑀𝑥1

𝑘
,

𝑚𝑥2
𝑘
< 𝑉2 ≤ 𝑈2 < 𝑀𝑥2

𝑘
,
𝑘 = 0, 1, 2, . . . .

(44)

Now, we will prove {𝑀𝑥𝑖
𝑘
}(𝑖 = 1, 2) is monotonically

decreasing and {𝑚𝑥𝑖
𝑘
}(𝑖 = 1, 2) is monotonically increasing by

means of inductive method.
First of all, from (37) and (42) we have𝑀𝑥𝑖2 < 𝑀𝑥𝑖1 , 𝑚𝑥𝑖2 >𝑚𝑥𝑖1 (𝑖 = 1, 2). For 𝑘 ≥ 2, we assume that 𝑀𝑥𝑖

𝑘
< 𝑀𝑥𝑖
𝑘−1

and 𝑚𝑥𝑖
𝑘

> 𝑚𝑥𝑖
𝑘−1

, 𝑖 = 1, 2, holds, and then from the strictly
increasing of function 𝑔𝑖(𝑥) = (𝐾𝑖 + 𝛼𝑖𝑥)/(1 + 𝑥), 𝑖 = 1, 2, it
immediately follows that

𝑀𝑥1
𝑘+1

= 𝐾1 + 𝛼1𝑀𝑥2𝑘1 +𝑀𝑥2
𝑘

+ 𝜀𝑘 + 1 < 𝐾1 + 𝛼1𝑀𝑥2𝑘−11 +𝑀𝑥2
𝑘−1

+ 𝜀𝑘
= 𝑀𝑥1
𝑘
;

𝑀𝑥2
𝑘+1

= 𝐾2 + 𝛼2𝑀𝑥1𝑘1 +𝑀𝑥1
𝑘

+ 𝜀𝑘 + 1 < 𝐾2 + 𝛼2𝑀𝑥1𝑘−11 +𝑀𝑥1
𝑘−1

+ 𝜀𝑘
= 𝑀𝑥2
𝑘
,

𝑚𝑥1
𝑘+1

= 𝐾1 + 𝛼1𝑚𝑥2𝑘1 + 𝑚𝑥2
𝑘

− 𝜀𝑘 + 1 > 𝐾1 + 𝛼1𝑚𝑥2𝑘−11 + 𝑚𝑥2
𝑘−1

− 𝜀𝑘
= 𝑀𝑥1
𝑘
;

𝑚𝑥2
𝑘+1

= 𝐾2 + 𝛼2𝑚𝑥1𝑘1 + 𝑚𝑥1
𝑘

− 𝜀𝑘 + 1 > 𝐾2 + 𝛼2𝑚𝑥1𝑘−11 + 𝑚𝑥1
𝑘−1

− 𝜀𝑘
= 𝑀𝑥2
𝑘
.

(45)

Equations of (45) show that {𝑀𝑥𝑖
𝑘
}(𝑖 = 1, 2) is monotonically

decreasing and {𝑚𝑥𝑖
𝑘
}(𝑖 = 1, 2) is monotonically increasing.

Consequently, lim𝑘→+∞{𝑀𝑥𝑖𝑘 } and lim𝑘→+∞{𝑚𝑥𝑖𝑘 } (𝑖 = 1, 2)
both exist. Let

lim
𝑘→+∞

𝑀𝑥𝑖
𝑘
= 𝑋𝑖,

lim
𝑘→+∞

𝑚𝑥𝑖
𝑘
= 𝑋𝑖,

𝑖 = 1, 2.
(46)

From (43), we have

𝑋1 = 𝐾1 + 𝛼1𝑋21 + 𝑋2 ;

𝑋2 = 𝐾2 + 𝛼2𝑋11 + 𝑋1 ;
𝑋1 = 𝐾1 + 𝛼1𝑋21 + 𝑋2 ;
𝑋2 = 𝐾2 + 𝛼2𝑋11 + 𝑋1 ;

(47)

Here, (47) shows that (𝑋1, 𝑋2) and (𝑋1, 𝑋2) are all solutions
of system (7). However, system (7) has unique positive
solution (𝑥∗1 , 𝑥∗2 ). Therefore

𝑈𝑖 = 𝑉𝑖 = lim
𝑘→+∞

𝑥𝑖 (𝑘) = 𝑥∗𝑖 , 𝑖 = 1, 2; (48)

that is, 𝐸+(𝑥∗1 , 𝑥∗2 ) is globally attractive. The proof of the
theorem is completed.

4. Examples

In this section we shall give an example to illustrate the
feasibility of the main result.

Example 1. Consider the following example:

𝑥1 (𝑘 + 1) = 𝑥1 (𝑘)
⋅ exp{3[0.2 + 0.3∑∞𝑠=0 ((𝑒 − 1) /𝑒) 𝑒−𝑠𝑥2 (𝑛 − 𝑠)

1 + ∑∞𝑠=0 ((𝑒 − 1) /𝑒) 𝑒−𝑠𝑥2 (𝑛 − 𝑠)
− 𝑥1 (𝑘)]} ,
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𝑥2 (𝑘 + 1) = 𝑥2 (𝑘)
⋅ exp{0.5 [0.5 + 1.5∑∞𝑠=0 ((𝑒 − 1) /𝑒) 𝑒−𝑠𝑥1 (𝑛 − 𝑠)

1 + ∑∞𝑠=0 ((𝑒 − 1) /𝑒) 𝑒−𝑠𝑥1 (𝑛 − 𝑠)
− 𝑥2 (𝑘)]} .

(49)

Corresponding to system (1), we have 𝑟1 = 3, 𝐾1 = 0.2, 𝛼1 =0.3, 𝑟2 = 0.5, 𝐾2 = 0.5, 𝛼2 = 1.5, and hence

𝛼𝑖 > 𝐾𝑖, 𝑖 = 1, 2. (50)

Also,

𝑟1𝛼1 = 0.9 < 1,
𝑟2𝛼2 = 0.75 < 1. (51)

Hence, all the conditions of Theorem 1 hold, and it follows
from Theorem 1 that system (49) admits a unique globally
attractive positive equilibrium. Figure 1 supports this asser-
tion.

Example 2. Consider the following example:

𝑥1 (𝑘 + 1) = 𝑥1 (𝑘)
⋅ exp{5[0.2 + 0.3∑∞𝑠=0 ((𝑒 − 1) /𝑒) 𝑒−𝑠𝑥2 (𝑛 − 𝑠)

1 + ∑∞𝑠=0 ((𝑒 − 1) /𝑒) 𝑒−𝑠𝑥2 (𝑛 − 𝑠)
− 𝑥1 (𝑘)]} ,

𝑥2 (𝑘 + 1) = 𝑥2 (𝑘)
⋅ exp{1[0.5 + 1.5∑∞𝑠=0 ((𝑒 − 1) /𝑒) 𝑒−𝑠𝑥1 (𝑛 − 𝑠)

1 + ∑∞𝑠=0 ((𝑒 − 1) /𝑒) 𝑒−𝑠𝑥1 (𝑛 − 𝑠)
− 𝑥2 (𝑘)]} .

(52)

Corresponding to system (1), we have 𝑟1 = 5, 𝐾1 = 0.2, 𝛼1 =0.3, 𝑟2 = 1, 𝐾2 = 0.5, 𝛼2 = 1.5, and, obviously,
𝛼𝑖 > 𝐾𝑖, 𝑖 = 1, 2. (53)

However,

𝑟1𝛼1 = 1.5 > 1,
𝑟2𝛼2 = 1.5 > 1. (54)

Hence, condition (𝐻2) in Theorem 1 could not be satisfied,
andTheorem 1 could not be applied to this example.However,
numeric simulation (Figure 2) also shows that system (52)
admits a unique globally attractive positive equilibrium.

x
1
,x

2

Time n

x1

x2

60504030200 10

0

0.5

1

1.5

Figure 1: Dynamic behaviors of the solution (𝑥1(𝑛), 𝑥2(𝑛)) of system
(49), with the initial conditions (𝑥1(𝑠), 𝑥2(𝑠)) = (0.8, 0.4), (0.5, 0.5),
and (1.5, 1.5), 𝑠 = ⋅ ⋅ ⋅ , −𝑛, −𝑛 + 1, . . . , −1, 0, respectively.
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Figure 2:Dynamic behaviors of the solution (𝑥1(𝑛), 𝑥2(𝑛))of system
(52), with the initial conditions (𝑥1(𝑠), 𝑥2(𝑠)) = (0.8, 0.4), (0.5, 0.5),
and (1.5, 1.5), 𝑠 = ⋅ ⋅ ⋅ , −𝑛, −𝑛 + 1, . . . , −1, 0, respectively.

5. Discussion

In [6], Yang et al. proposed system (6); under the assumption𝛼𝑖 > 𝐾𝑖, 𝑖 = 1, 2, they showed that if 𝑟𝑖𝛼𝑖 ≤ 1, then the
mutualism model admits a unique globally asymptotically
stable positive equilibrium.

In this paper, we try to incorporate the infinite deviating
arguments, and, by developing the analysis technique of Yang
et al. [6] and using the difference inequality of Chen [7], we
also obtain the sufficient conditions which ensure the global
attractivity of the positive equilibrium. Example 1 shows the
feasibility of our main result.
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Since condition (𝐻2) is the most important restriction on
the coefficients of the system, one interesting issue is whether
the result of Theorem 3 could hold if (𝐻2) is not satisfied.
Example 2 shows that our result (Theorem 3) still have room
to improve. We leave this for future investigation.
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