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A further generalization of an SEIQRS-V (susceptible-exposed-infectious-quarantined-recovered-susceptible with vaccination)
computer virus propagation model is the main topic of the present paper. This paper specifically analyzes effects on the asymptotic
dynamics of the computer virus propagation model when two time delays are introduced. Sufficient conditions for the asymptotic
stability and existence of the Hopf bifurcation are established by regarding different combination of the two delays as the bifurcation
parameter. Moreover, explicit formulas that determine the stability, direction, and period of the bifurcating periodic solutions are
obtained with the help of the normal form theory and center manifold theorem. Finally, numerical simulations are employed for
supporting the obtained analytical results.

1. Introduction would enhance the probability that the user of a susceptible
computer will make his computer vaccinated [22, 23]. How-

Computer viruses, including conventional viruses and net-  ever, the mentioned models above neglect the influence of

work worms, can propagate among computers with no
human awareness and popularization of Internet has been
the major propagation channel of viruses [1, 2]. The past few
decades have witnessed the great financial losses caused by
computer viruses. Therefore, it is of considerable importance
to investigate the laws describing propagation of computer
viruses in order to provide some help with preventing
computer viruses. For that purpose and in view of the fact
that propagation of computer viruses among computers
resembles that of biological viruses among a population,
many dynamical models describing propagation of computer
viruses across the Internet have been established by the
scholars at home and abroad, such as conventional models
[3-8], stochastic models [9-12], and delayed models [13-18].
There are also some other computer virus models [19-21]
combined with network theory to investigate the impact of
the network topology, the patch forwarding, and the network
eigenvalue on the viral prevalence.

As is known, vaccination is regarded as one of the
most effective measures of preventing computer viruses and
the awareness that there exist many infected computers

vaccination strategy on the propagation of computer viruses.
Recently, considering the importance of vaccination, Kumar
et al. [24] proposed the following SEIQRS-V computer virus
propagation model:

% = A= BSHI(t)—dS(t) - pS(t) + OR (t)
+xV (),

LU _ g5y 160 -dB @ -yE®,

dI (t)

— YE@-dIO-al()-0I -0l (1),

d‘flt(” = 81 (t) - dQ (D) - aQ (1) - £Q (1),

% — Q) — dR () — R (8) + 71 (£),

% =pSt)—-dV () - xV (@),
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where S(t), E(t), I(t), Q(t), R(t), and V() denote the numbers
of the uninfected computers, the exposed computers, the
infected computers, the quarantined computers, recovered
computers, and vaccinated computers at time ¢, respectively.
A is the birth rate of new computers in the network; d is
the death rate of the computers due to the reason other than
the attack of viruses; « is the death rate of computers due to
the attack of viruses; f3 is the contact rate of the uninfected
computers; p, 0, x, ¥, 6, , and ¢ are the transition rates
between the states in system (1).

Obviously, system (1) neglects the delays in the procedure
of viruses propagation and it is investigated under the
assumption that the transition between the states is instan-
taneous. This is not reasonable with reality. For example, it
needs a period to clean the viruses in the infected and
quarantined computers for antivirus software and there is
usually a temporary immunity period for the recovered and
the vaccinated computers because of the effect of the antivirus
software. In addition, a stability switch occurs even when an
ignored delay is small for a dynamical system. Based on this,
we introduce two delays into system (1) and get the following
delayed system:

dzit) =A-BSE)I(t)-dS(t)— pS(t) +OR(t - 1,)
+XV(t_Tz),

% :ﬁs(t)l(t)—dE(t)—yE(t)’

d;it) =yE@)—dl(t)—al(t) =8I () -nI(t-1,), )

2

d?lt(t) =6I(t)-dQ((t) —aQ (t)_SQ(t—Tl),

dl;t(t) =eQ(t-1,)-dR(t)-OR(t-1,)
+’71(t_771)>

% =pSH)-dV () - xV(t-1,),

where 7, is the time delay due to the period that antivirus
software uses to clean the viruses in the infected and
quarantined computers and 7, is the time delay due to
the temporary immunity period of the recovered and the
vaccinated computers.

To the best of our knowledge, until now, there is no good
analysis on system (2). Therefore, it is meaningful to analyze
the proposed system with two delays.

The rest of this paper is organized as follows. In the
next section, we analyze the threshold of Hopf bifurcation
of system (2) by regarding different combination of the two
delays as the bifurcation parameter. In Section 3, by means
of the normal form theory and center manifold theorem,
direction and stability of the Hopf bifurcation for 7, > 0
and 7, > 0 are investigated. Simulation results of system
(2) are shown in Section 4. Finally, we finish the paper with
conclusions in Section 5.
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2. Analysis of Hopf Bifurcation

By direct computation, we know that if ARy(d + y) > d* +
(p+ x)d and B(d + 0)(d + a + &) > R,0e8 + RyOn(d +
a« + ¢), then system (2) has a unique viral equilibrium
P.(S,.E,.I,,Q,,R,,V,),where

s - (d+y)(d+a+d+n) _1

By R,
[ALALAL
Y
_&t+n(d+ate)
T d+0)dra+te)
p
V,= ———,
(d+X)RO (3)
5
T Trare”
I

~ (d+9)(d+(x+s)[d2+(p+X)d—AR0(d+X)]
~ (d+x) [RyPed + (d + a + ) (RyOy — pd - pO)]

R - By
" (d+y)(d+ra+d+n)

The linearized section of system (2) at P,(S,,E,,I,,Q,,
R,,V,) is as follows:

% =aSO+alt)+qR(t-1,)+oV(E-T1,),
% = 4, (1) + a,E(8) + as (1),
O e EO-al®+bI(-7),
dt
d?it(t) = agl (1) + asQ (1) + b,Q(t - 1,), @
””;t(t) — @R + b1 -7,) +bQ> - 1,)
+GR(t-1,),
% = ayS(8) +apV (1) + 6V (t-1,),
where

a, = _(ﬁl* +d+p)’
a, :_ﬁs*’
as = BI*’

a,=-(d+y),
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as = f3S,,

as =7
a,=-(d+a+d),
ag =90,

a9 =—(d+a),
ay, = —d,

a, = p

a,, = —d,

b, = -1,

b, = —¢,

by =1,

b, =¢,

¢ =0,

Q=X

¢ =-0,

¢ =—X-

Then, the characteristic equation for system (4) can be

obtained:

MrAN + AN + ALV + AN+ AL+ A,

+(BsA® + ByA* + B;AY + ByAY + BA + BO) e

+(C A +CA + CA + CA + C A + CO) e

+ (DAY + DA’ + DA + DA+ DO) g Mmn)

+(E;A° + E,A* + EA + EO) e Mmt2m)

+ (G +G AV +GA* + G A+ GO) e 2

(

(

(

+ (F4/\4 + F3A3 + Fz)tz +F A+ Fo) e n

(

+ (H3A3 +H A+ H A+ Ho)e*m“””
(

+ (LA + LA +1,) e Mmm) —
with

Ag = agay, (“1‘14“7“10 + aya5a6a,y — a,05a60,

- a3a6b3c1) >

©)

(6)

A = asag (ayaq (ayg + ay,) + ay0ay, (a; + ag))

+ ayagbyc; (ag + ayy) — aya3a5 (a9ayg + agar,
+ay0a12) — 1848,0 (a1 + a1)
= ayay (a0, (a; + ag) + aza4 (a; +ay))

A, = ayay06 (ag + ayy + ay,) + a,a,0,09 — a3a5bsc;
— asag (ayae + ajgar, + (a; + ag) (ayy + ay,))
+ay0ay, (a4 + ayaq + (a; + ay) (a, + ag)) + (ay
+ap,) (aa, (a; + a5) + a5 (a, + ay)),

Ay = asag (a) +ay +ay +ay,) - qa30, - aya, (a
+ag) — a;a5 (ay +a,) = ayay, (ay +a, +a; + ag)
= (ay + ap,) (aya + aza5 + (ay + a,) (a; + a9)),

A, = aja, + aay + a4a,, — asdg + (a; + ay) (a; + ay)
+(ay +ap,)(a +a,+a, +ay),

As=—(ay+a,+a,+ay+ay+a,),

By = a,a40,0a,, (a,b, + agb)) — aga,,a,,b, (a,as
+aya3),

B, = asagh, (a0, + a,a,, + a10ay,) — a,a5a4b, (ay
+ay,) = (asb, + aghy) (aya4 (ay + ar)
+ayar (a +ay))

— ayaza9ay; (b +by)

B, = (a;b, + agb,) (a,a, + ayya;,
+(ay +ay) (ap + a15)) + ayazasb, + (b + by)
(ayay (ayy + ay,) + ayar, (a; +ay)),

B, = asagh, — (a,b, + agb)) (a; + a, + a,y + ap,) — (b
+b) (aya, + ayay, + (a; +ay) (ayg +ap,)),

By = asby + agby + (by +by) (a) +ay +ay +ay,),

Bs=-(b +by),

Co = a10,0,05 (a10¢4 + A1,6;) + Aoa10a116, (a4,

— asdg) + agay (a,¢, + a1,6) (aya5 — ayas)

Cy = ay (63 + ¢) (10505 — A0305 — a,0,a;)

+ a5a5a116, (Ay + A1) + ag (4105 — a,05 + asag)
(@106 + a1265) = ay16 (a4a, (a9 + ayo)

+agay (a, +ay)),



C, = (g +¢)(aay (a, + ag) + ayay (a; +ay))

+ (a6 + a,6) (a1a, + asaq + (a; + ay) (a; + ag))
= a5ag (@106, + 126 — a116) + a4 (65 + ;) (a,05

—a a5 — asay) + a;,6, (a,a; + agay,

+(ay +a;) (a5 + ay)),

Cy =asag (¢ +¢;) — a6 (a, + a; +ag + ayg) — (a6
+a,6) (a, +a, +a, +ag) - (¢ +¢) (a,a4 + aya,
+(a, +a,)(a; +ag)),

Cy = ayey +anG tans +(g+q)(a +a,+a
+dy),

Cs=-(5+q),

Dy = ay (a,a,9¢, + 0101565 + a19a1,6,) (ab, + aghy)

+ ag (aya5a,,b,¢, — asa,0a,,b,6,) — agb, (a,as
- a,03) (a9¢4 + A1563)

D, = (¢ +¢) (ash, (a1a5 — aya3) — aya, (a,b, + aghy))
+ ag (asa, byo, — azagbyc,) + asagh, (a0c, + ap565)
- a6 (a,a, (b, +by) + (ag + ayg) (a0, + aghy))
= (@106 + a16) (@10, (by + by)
+(ay +a,) (a0, + aghy)),

D, = (ayocs + a1p65) (asby + agby + (b +b,) (ay + ay))
+(cs +¢) (@may (b +b,) + (ay +ay) (a,b, + asby))
+ay6 (a,by + aghy + (ay +ay,) (b + b))
—asagh, (¢ +¢4),

D; = (¢ +¢)(aby + aghy + (b +b,) (a; +ay))

— (b, + b)) (a9, + a6 +a156)

Dy = (b +b)(c; +cy)

Eq = ayc5 (a,by + agby) (a1¢4 + a116,) + agbycscy (a,05
- a,a5) — ag (aza9bsc,¢, + asa, b,6,65)

E, = agcy (ashyes + asbyey) — ay 665 (by (ay + aq)
+b(a,+a) - o (aa, (b +b)
+(a, + ay) (ab, + aghy)),

E, = cs¢4 (asby + agby + (ay +ay) (b + b))

+a,,66 (b +by),
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Ey=—cc (b +b),
F, = aya,4a,ya,,b,b,,
F, = -bb, (aa, (ayy + ay,) + aypar, (a; +ay)),
F, = bb, (aya, + aygay, + (a; +ay) (a9 + ay,))»
F, =-bb, (a, +a, +a;y+ay,),
F, = bb,
Gy = aycs¢4 (aa40, — a,a5a4 + a,a505)
+ a,07090,1 6,635
G, = ay16,6; (040, + 4409 + a,09) + asa5c36, (a; + ao)
= cs¢y (a4 (a7 + a9) + aza5 (a; + ay)),
G, = cs¢y (may + azay + (a, + ay) (a; + ay))
+ay,6,63 (a4 + a; + ag) — asagescys
G; =g (a) +a, +a; + ag) + 4,166,
Gy =iy,
Hy = a,byb, (ay (ay0¢s + a1565) + a1001,6,)
— a,asa,,b,b5¢,,
H, = ayagb,byc, — byb, (a0, (¢; +¢;)
+ay6, (a5 + ay)) — byby (a4 + ay) (@106, + a1,63) »
H, = byb, (a9¢, + a116 + apc + (ay + a,) (6 + ) »
Hy=-bb(c+cy),
Iy = abybycs (ay,6, + a1¢) — asagbybscicy,
I, = bbee, (a, + a,) + a1 b byoc,

I, = b bcey.

Casel(ty =1, =0). When 1, =1, =0, (6) becomes

/\6+A15/\5+A14/\4+A13)L3+A12)L2+AH}L+A10
=0,

where
A=Ay +By+Cy+Dy+Ej+F,+Gy+Hy+ I,
A,=A,+B +C +D, +E, +F +G, +H, +1,
A,=A,+B,+C,+D,+E, +F, +G, + H, + I,
A3=A;+B;+Cy;+D;+E; +F, +G; + Hs,
Ay=A,+B,+Cy+ D, +E, +F,+Gy, A

=A;+B; +Cs.

7)

(8)

€
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Clearly, D, = A5 = Bl +p+y+8+n+e+0+xy+2a+6d >
0. Thus, if condition (H,;) (see (10)) holds, then system (2)

without delay is locally asymptotically stable:

A 1
D, = det >0,
A Ay
As 10
Dy=det| Ay Ay Ay | >0,
An Ap A
Aps 1 0 0
Ay Ay A 1
D, = det 03 A Ais S0,
Ag Ap Az Ay
0 Ay Ay Ap
As 1 0 0 0
Ap Ay A 10
Ds=det| A, A A Ay A > 0,
0 Ay Ap Ap Ap
0 0 0 Ay Ay
Dy=A, > 0.

Case 2 (1, > 0; 7, = 0). Equation (6) equals
A%+ Azs/\5 + A24/\4 + A23/\3 + A22/\2 +AuA+ Ay
+ (st)t5 + 324){4 + 323/\3 + Bzzx\2 + ByA + Bzo)

ey (F24/\4 + Fy A’ + FpyA® + Fy A + on)

-2
e Aty =0,

where

Ayy=A,+Cy+ Gy,
A, =A+C+Gy,
Ay =A,+C+G,,
Ay = A3+ C5+ Gy,
Ayy=A,+C,+Gy,
A=A +G;,

B,, = By + Dy + E,
B, =B, +D, +E,,
B,,=B,+D, +E,,
B,; = B; + D5 + Ej,
B,, =B, +D,+E,,

B,s = Bs.

(10)

(11)

(12)

Multiplying M on left and right of (11), one has
BZSAS + BZ4A4 + 323)&3 + 322/\2 + ByyA + By + 2°
+ (A25A5 + AN AL AL+ A

(13)
+ Azo) i (Fzél)t4 + Fp A’ + FpA® + Fy A

+ on) e =0,
Assume that A = iw,; (w; > 0) is the root of (13):
Ly (“-’1) cosTyw; — Ly, (‘Ul) sinTyw; = Ly (wl) > (14)
Loy (“’1) SinTyw; + Ls (wl) cosTyw; = Lyg (wl) >
with
Ly (w;) = (Ayy + Fy) w;l - wf — (A, +Fy) wf
+ A,y + Fyps
Ly (w) = Azs‘“f — (A — Fy) wf +(Ay — Fy) w),
Ly () = Bzz“-’% - Bz4“"11 - By,
4 6 2 (15)
Ly (w,) = (Ayy — Fyy) W) —wy — (Ay - Fy) W,
+ Ay — Fyps
Lys(w) = Azswi ~ (A +Ey) ‘Uf +(Ay + By oy,
Ly (@;) = Bysw] — Bysw) — Byay.

Thus, one can obtain the expressions of cos 7w, and sin 7;w,
as follows:

COS T, w;

_ Ly, (@;) X Lyg (@) + Los () X Ly (w;)
Ly (@) X Lyy (@) + Ly (@) X Lys (@;)’

(16)
sin 7w,
_ Ly (w;) X Lyg (@;) = Lys (w;) X Lys (w;)
Ly (@) X Lyg (@) + Ly (@) X Lys ()
Then, we can get
cos’ 1w, +sin’1yw, = 1. 17)

Suppose that (H,;) (see (17)) has at least one positive root.
If condition (H,,) holds, then there exists w;, > 0 such
that (13) has a pair of purely imaginary roots +iw, . For w,,,

S 1
0= o1
(18)
% {Lzz (w19) X Lag (w19) + Ly (wyg) X Loy (wy0) }
arccos .
Ly (w19) X Ly (@3) + Ly (w19) X Lys (wyo)
Differentiating (13) with respect to 7;, one has
-1
[d_/\] =F21 (A)_ﬂ, (19)
dr, F,(A) A



where

Ey (A) = 5BysA* + 4By, A" + 3By30° + 2By,A + By,
5 4 3 2
+ (6/1 +5A,507 +4A,,07 + 3A,507 +2A,,A
+ A21) e (4F24/\3 +3FA° + 2F,,A + le)
e, (20)
Fyy () = (4FyA* + 3,500 + 25,07 + FyA) e ™™

— (A7 4+ AgsA® + A A + App)t + ALY + AN

+ AZOA) e
Thus,
-1
Re [ﬂ] _ Gor X Hyp + Gyr X Hy; 1)
ar Iycie, Hp + Hj;
with

Gor = 5stwfo - 3Bz3wf0 + By + (5A25w?0
~3(Ay +EFy) wfo +Ay + le) COS T1pWyg
3
- (6“’?0 ~4 (A~ Fyy) wig +2(Ay — Fy) wlO)
- 8in Ty W s
3 4
Gy = 2By,w;y — 4By w7, + (5A25w10
~3(Ay - Fy) “’fo + Ay - le) §in 71w
3
+ (6w§0 —4(Ay +Fy)w)y+2(Ay + Fy) ww)
+ COS T1gWg» (22)
Hyp = ((le + Ayg) Wy + A24w?0 - “)Zo
3\ . 4
~(3F; + Ay,) “’10) SIN Ty + ((4F24 — Ays) wy
2 6
~(2Fy, — Ay) wyy — Azs“’w) COS TyoWp»
Hy = ((Fn — Ayy) wio — A24wf0 + “)Io
3
~(3F; - Ay,) “)10) COS TjpWyg
4 2
- ((4F24 +Ay) Wy ~ (2F,, - Ay) Wi
6\
- A25“)1o) SIN T39Wyg-

Thus, if condition (H,,) G,g X Hyg + G,y x Hyp # 0 holds,
then Re[dA/dT,])_,, # 0. Based on the Hopf bifurcation
theorem in [25], we have the following results.

Theorem 1. Suppose that conditions (H,), (H,;), and
(Hy,) hold for system (2). The viral equilibrium P,(S,,E,,1,,
Q.,R,,V,) is locally asymptotically stable when 1, € [0,1,,)

and a Hopf bifurcation occurs at the viral equilibrium
P.(S,,E,,1,,Q,,R,,V,) when 1, = 1.
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Case 3 (1, = 0; T, > 0). Equation (6) becomes

A°+ A35A5 + A34/\4 + A33/13 + A32/\2 + A5+ Ag,

+ (C35)L5 + Cy A+ CuA + CuA2 + Cy A + C30)

e 4 (GyA* + G2 + GpA” + Gy A + Gy .
e g,
where
Az = Ay + By + Fy,
Ay =A, +B,+F,
Ay =A,+ B, +F,
A3 =A;+ B3+ F;,
Ayy=A,+B,+F,
Ajzs = As + Bs,
Cy9 =Cy + Dy + Hy,
C;,=C,+ D, +H,,
Cs5, =C,+ D, + Hy, (24)
Cs3=C;+D; + Hy,
Csy =C4+ Dy,
Cs5 = GCs,
Gyy = Ey + Gy + I,
Gy =E +G, + 1,
G;, = E, + Gy + I,
Gs3 = E5 + G,
Gy, =Gy
Multiplying e*™ on left and right of (23), one has
C35/\5 + C34)t4 + C33)L3 + C32A2 +CyA+Cyp + ()LG
+ A35A5 + A34A4 + A33A3 + A32)L2 + A5
+As) e + (Gyydt + Gy3A” + GuA? + Gy )
+ G3O) e =
Let A = iw, (w, > 0) be the root of (25):
Ly (w,) cos @, = Ly, (w;) sin Ty, = Lz (w,), (26)

Ly, (wz) sin 7,w, + L5 (wz) COS Tw, = L34 (wz) >
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with

Ly (w;) = (Asy +Gyy) wg - “-’g - (A3 +Gy) “-’g
+ Ay + Gsps

Ly (w,) = Ass“’; - (A3 - Gs3) w;
+ (A31 - G31) W,

2 4
Ly (w,) = Cpw) — Cyyw, — Csy,

(27)
Lsy (w,) = (Asy = Gsy) wg - wg - (A3, - Gyy) “é
+ Az — Gsop
Lys (w,) = Ass“)g — (A3 +Gy3) ‘U;
+ (A3 +Gy)) @y,
Lig (w;) = C33a)§ - C35w§ - G50,
Then,
COS T, W,
_ L3y (0,) X Lyg (@,) + Lz (w,) X L3y (w;)
Ly (0;) X Ly (@) + L3, (w,) X Ly (w,) (28)

sin T,w,

_ Ly (w,) X L (@) = L3z (,) X L5 (w,)
Ly (@;) X Ly (@,) + L3y (@) X Ls (w,)

And the equation following equation regarding 7, can be
obtained:

cos’T,w, + sin’T,w, = 1. (29)

Suppose that (Hj,) (see (29)) has at least one positive root.
If condition (H;;) holds, then there exists w,, > 0 such
that (25) has a pair of purely imaginary roots +iw,,. For w,,

Y
20 0 )
Ly (ws9) X Lig (@s9) + Lz (ws9) X Ly () }

31 (@) X Ly (o) + L, (o) X L5 (o)

X arccos {

Differentiate both sides of (25) with respect to 7,. Then,

(31)

& w3
dr,|  F,(A) A’

where

Fy (M) = 5C35A* + 4C5,A% + 3C33A° + 2C,,A + Cy,

+ (6)&5 +5A5 0% + 445,07 + 34,07 +24,,)

+ A31) e+ (4G34/\3 +3Gy3A° +2G3pd + G31)

e, (32)
Fyy () = (4G34A* +3G33A° +2G3pA% + Gy d) e '

— (M + AgsA® + AV + ALt + AL + AN

AT,
+ A3OA) e,

Thus,

Re [ di ]1 _ Gap X Hyp + Gy X H3I’ (33)

Aty Lyciw, Hiy + H3,
with
_ 4 2 4
Gig = 5C350y0 — Cy3wy + C3; + (5A35w20
2
=3 (A3 +Ga3) g + Ay + G31) COS Ty
5 3
- (6“’20 ~4 (A3 +Gyy) wyy +2 (A5 + Gyy) ‘*’20)
+ 81N T Wy
3 4
Gsp = 2C w0 — 4C,w50 + (5A35w20
2 .
=3 (A3 +Gy3) wyy + Ay — G31) SIN Ty Wy
5 3
+ (6“’20 —4(Asy +Gsy) Wy +2 (A3 +Gyy) wzo)
£ COS Ty Wy,
(34)
5 7
Hip = ((G31 + Aszg) Wy + Asywiy — W)y
3 .
- (3Gy; +Ay) wzo) SIN T5( Wy
4 2
+ ((4G34 — Ays) wyy — (2G5, — Asp) wig
6
- Asswzo) COS Ty Wy0>
5 7
Hyp = ((G31 = Ajp) yg — Asywi + W)
3
- (3G3; - Ay) wzo) COS Ty
4 2
+ ((4G34 + Ass) wy — (2Gs, + Ajp) wyy
6\ .
- A35w20) SIN T Wpo-
Similar to Case 2, we know that if condition (Hj,) Gsp X
Hyp + Gy X Hyp # 0 holds, then Re [dA/dT,])_,,, # 0.In
conclusion, we have the following results.

Theorem 2. Suppose that conditions (H,), (Hj), and
(Hs,) hold for system (2). The viral equilibrium P, (S,,E,, I,,



Q.,R,,V,) is locally asymptotically stable when T, € [0, T,;)
and a Hopf bifurcation occurs at the viral equilibrium
P.(S,.E,.1,,Q,,R,,V,) when T, = Ty,

Case 4 (1, > 0; 7, € (0,7,)). Regarding 7, as the bifurcation
parameter when 7, € (0,1,,), multiplying by '™, (6) be-
comes

BsA® + B\ + ByA’ + B,A” + BiA + By + (DA
+ DA + DA + DA+ DO) e 4 (E3/\3 + E,\
+E\A+E,) ey (A% + AL° + A0+ AN
+ AN+ AL+ AO) ey (CS)L5 +C A+ CA°

35
2 AT, —1,) ( )
+CA +CA+ Co)e

+ (F4/\4 +F\°
+E A+ F A+ FO) ey (G4)L4 + G50’ + GyA°
+G A+ GO) Mnm) (H3/\3 + H,A* + H|A

+ HO) e Mmrm) (IZ)L2 + LA+ 10) e Mmtan)

Let A = iw, (w; > 0) be the root of (35), and for the
convenience we still denote w; as w,; then,

Ly (wl) cosTyw; — Ly, (‘Ul) sinTyw; = Ly (“’1) >

(36)

Ly (w;)sintyw; + Lys (@) cos 1w, = Lyg (w;),

where

Ly (@) = (A4 +E) w0 — ) — (A, + E) 0! + A,
+Fy+ (C4w1 (C, + Hy) w} +Cy + HO) oS T,w,
+ (Cswf —(Cy + Hy)w} +(C, + H)) wl) sin 7, w,
+ (G4wf ~(Gy+ L) w! + Gy + 10) €08 27,w;

+ ((G1 +1;) w, - G3wf) sin 27, Wy,
Fy) ) + (A,

Ly (w)) = AS“’1 (A; - -F)w

+ (C5a)f -(Cy - Hy) wf +(C, - H)) wl) oS T,w,
(C4a)1 ~H,))w: +Cy - HO) sin 1,w,
+ ((G1 -1)w, - G3wf) €08 27,w,

(G} — (G, - L) @} + G, — 10) sin 21,0,

Discrete Dynamics in Nature and Society

Ly (@) = Byw] — Bw! - B,

+ (D3wf - Dlwl) sin T,w,;

+ (Dzwf - D4w;1 - DO) COS T,w;

+ (Eswi - Elwl) sin T,w; + (Eza)f - EO) COS T, Wy,
Ly (w)) = (A, - F,) 0, - (A, - F)w} + 4,
-F,+ ((?4(4)‘11 ~(Cy — Hy) @} +Cy - HO) COS T,w;
+ (Csw‘;’ -(Cy - Hy) wf +(C, - H)) wl) sin T,w,
+ (G4w;1 (G, — L)’ + G, - IO) €08 21,0,

+ ((G1 -I) w, - Gyw, )sm 21,w,,

Lys () (A, +F)w1+(A +F)w

+ (Cswf —(C; + Hy) @} +(C, + H)) wl) COS T,w,

= As“’l

- (C4a)‘1l - (C, + Hy) w; + Cy + Hy) sin 1,0,

+ ((G1 +1) w, - G3wf) €08 2T,w,

- (G4w;1 —(Gy+ L) w: + Gy + IO) sin 27,w;,
Ly (w;) = Byw] - Byw, — Byw,

+ (D3a)‘;’ - Dlwl) COS T,w,;

- (Dzwf - D4w;1 - DO) sin T,w,;

+ (E3w1 E wl) COS T,w; — (Ezwf - EO) sin T,w; .
(37)
Thus,
COS Ty,
_ Ly (0) X Lyg (@) + Lys (@1) X Ly (@;)
Ly (@) X Ly (@) + Ly (0,) X Lys (@;)
sin 7, w,;
Ly (w;) x Lyg (1) = Lyz (@) X Lys (w;)
Ly (07) X Ly (@) + Ly (@) X Lys (0,)°
Then, we get

(38)

2 .2
cos Tyw; +sin“Tw; = 1. (39)

Suppose that (H,;) (see (39)) has at least one positive root.
If (H4,) holds, then there exists w,, > 0 such that (35) has
a pair of purely imaginary roots +iw;,. For w;,,

07 L *0)}' (40)

10) X Lys (@)

12 (@]) X Lyg (@) + Lys (@]
Ly (wfy) X Lyg (@5y) + Ly (@

X arccos {



Discrete Dynamics in Nature and Society

Differentiating both sides of (25) with respect to 7,

(@] -3
dr,]  F,(A) A’

where
F, (A) = 5B;A* + 4B,A° + 3B;A° + 2B,A + B,
+((4D4 - 1,D5) A’ - DA + (3D; - 1,D,) A2
+(2D, ~ D)) A+ Dy - 1,Dg) e + (61°
+5A0" +4A,0° + 34,07 + 24,0 + Al) e
+((3E; - 21,E,) A* = 21,E;A° + 2 (E, - 1,E) A
+E, - 2121:“0) ey ((SC5 - 1,C) A = 1,C A
+(4C, - 1,C5) A + (3C; — 1,Cy) A2
+(2C, - 1,C)) A + Cy = 1,Cy) 477+ (4F,1°
+3E0° + 26,0 + F ) e " + ((3H, - 1,H,) A’
- ,H,\’ + (2H, - 7,H,) A + H, — 1,H,)
e M) ((4G4 -21,G;) A’ - 21,G,\*
+ (3G, - 1,G,) A* +2(G, - ,G,) A + G,
- ZTZGO) eMnm) (2 (I, - 1,1)) A = 20, L,A* + 1,
- 21'210) e Mn¥m),
Fyp (V) = (FA° + FA + B2 + FAY + Fyd) e ™
+ (HaA* + HyA + HyA? + Hyh) e M)y (LA
+ LA+ IA) e M — (174 AN + AN
+ AN AN F AN+ AO/\) e (CS/\6
+C A +C A + G +C A + CO/\) M)
— (G2 + G3A* + G2 + GIA® + Gyd ) M2,

Define

[d/\ ]_1 _ Gyr X Hyp + Gy X Hyy

2 2
ary e, Hip + Hy;

(42)

(43)

Similar to Case 2, we know that if condition (H,,) G, X
H,p + Gy X Hy; # 0 holds, then Re[d/\/d‘rl])L:iwf0 # 0. Thus,

we have the following results.

Theorem 3. Let T, € (0, T,,) and suppose that conditions (H,),
(Hy,), and (Hy,) hold for system (2). The viral equilibrium
P.(S,,E,,I,,Q,,R,,V,) is locally asymptotically stable when
7, € [0,7),) and a Hopf bifurcation occurs at the viral

equilibrium P,(S,, E,,1,,Q,,R,,V,) when 1, = 1},

Case 5 (1, € (0,1y); T, > 0). Regarding 7, as the bifurcation
parameter when 7, € (0, 1)), multiplying by ", (6) be-
comes

CsA’ + C A+ C3A° + A% + A + Gy + (D,

+ DA + DA% + DA+ DO) e+ (H3/\3

+ HyA> + H A + HO) ey (G4/\4 + G,

+ GV +GiA+Gy)e ™ + (A0 + AL + AN

+ AN + AN+ AL+ Ag) e + (BsA + BA' (44)
+B;A° + B,A” + BA + Bo) M) (E3)t3

+ E,1 + By A+ Eg) e M 4 (FA* + F3A°

+ KA+ F A+ FO) M) (Iz/\2 + LA+ IO)

e—/\(rz+2‘rl).

Let A = iw; (w;, > 0) be the root of (44), and for the
convenience we still denote w;‘ as w,; then,

Lg (“’2) COS T,w, — Ls, (wl) Sin 7w, = L3 (wz)’

(45)

Ls, (wz) sin T,w, + Lss (‘01) Cos T,w, = Lsg (“’2) >

where

L, (w,)

= (A + G w;, — S — (A, +Gy)ws + Ay + G,

( w5 — (B, + E,) ws + By +E)cos1’1w2
(B5a)2 (B; + E3) @] + (Bl—El)wz) sin 7, w,
(F4w2 (F,+ L) w, + Fy + 10) €08 27, ,

((F +1)w, - 3w2)sm21'1w2,

Ls, (w,)

= As0) — (A3 - G3) @y + (A, - G)) @,

+ ((32 — E,) @) — Byw; + Ey — BO) sin 7, w,
+ (B w, - (B; - E3) @) + (B, - El)wz)cosrla)2
(F4w2 -I )w2 +Fy -1 )sm 27T W,
(

+((F, - L) wy — F3wg)c052‘rlw2,
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Lss (w,)
= Czwg - C4w;1 -Cy+ (D3w§’ - Dlwz) sin 7, w,
+ (D2w§ - D4a);1 - DO) COS T{w,
+ (HSwg - lez) sin 27, w,
+ (szg - HO) COS 2T, W,,
Lsy (w,)
= (A4 -Gy @) ) — (A, - Gy) ) + Ay = Gy
+ (B4w§ — (B, - E,) w} + B, — EO) COS T, W,
+ (BSwg ~(B; - E;)w) + (B, - E;) wz) sin 1w,
+( Wy — (Fy - L) ws + F, —I)cosZ‘rlw2
+ ((F1 -1)w, - F3a);) sin 27y w,,
Lss (w,)
= Asw; — (A3 + Gy) ) + (A} +G)) w,
- (B4w;1 ~ (B, + Ey) @) + Ey + BO) sin 1, w,
+ (Bsw2 (By; + E;) w; + (B, + E )wz) €08 T W,
— (Fywy = (Fy + L) w; + F, — I) sin 27y,
+ ((F1 +1)) w, - F3w;) €08 2T, w5,
Lss (w,)
= C3w§ - Cswg -Ciw,
+ (D3w; -D- lwz) COS Ty W,
(D2w2 D4a)2 DO) sin 7, w,
+ (H3w2 H wz) COS 2T W,
(sz2 )sin 27T, w,.
Thus,

COS T,Ww,
_ Ls; (w,) X Lsg (@,) + Lss (w,) X Ly (w,)
Ls; (;) X Lsg (@) + L5, (@) X Lss (w,)

sin T,w,

_ Ls; (w;) X Lsg (@,) = Lss (w;) % Lss (w,)
Ls; (wy) X Ly (@) + L (w,) X Lss (wz)'

>
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Then, we get
2 .2
cos T,w, + sin"T,w, = 1. (48)

If (Hs, ) holds, then there exists w,, > 0 such that (35) has
a pair of purely imaginary roots +iw,,. For w;,

Ty = *
Wy
Ls, (wj) X Lsg (@) + Lz (w5) X Ly (w3) }

Ly (w3y) X Ly (@3y) + Ly (w3) X Lss (w3)

X arccos {
Differentiating (25) with respect to 7,, one can get

(50)

AR =oR
dr,]  F,(A) A’

where
Fi  (A) = 5C AT +4C,A° +3C50% +2C,A + C,

+((4D, - 7,D;) A’ = 7, D,A* + (3D; - 7,D,) 2
+(2D, - 1,Dy) A+ Dy - 1,Dy) e
+((3H, - 21,H,) A* = 21, H, AP
+2(Hy -y Hy) A+ Hy = 20,Hp ) e 47 + (4G,A°
+3G5A% +2G,A + Gl) e 4 (6A5 +5A,0*
+4A N + 34507 + 24,1 + Al) e
+((5Bs — 1,B,) A* = 7, BsA° + (4B, — 7,B;) A’
+(3B; - 1,B,) A’ + (2B, - 7,B,) A + B, — 7, B
- 4 ((3E; - 1,E,)) A — 1 E,N

(51)
+(2E, - 1,E,) A + B, — 1,Eg) e

(
+ (( -21,F;) 2 - 211F4)t4 + (3F, - 21,F,) 12
+(2F, - 21,F)) A+ F, - 213 po) AME2m)
(46)
+ (2 (L -1 L)A- 21112A2 +1, - 21“110) AMEt2n)
F, (V) = (GMS +GA + G +G A+ Go/\) e
+(EsA* + E;2° + E\A° + Eg)) e MEtT) (L2’
# LA+ M) e M0 - (FA° 4 FA* 4 By
(47) * FIAZ + POA) M) (Bs}t6 + B4}t5 + B3)L4
+ B2+ BAR + BpA) 7 — (A + A0

+ AN+ AM AN AN+ AOA) e,
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Thus,

Re[ﬂ]_l =GSRXH3R+G31><H3I

52
ar, H2, + H2, (52)

A=iwy,

Therefore, we know that if condition (Hs,) Gsg X Hsp +
Gs; X Hs; # 0 holds, then Re[dA/dT,])_;,; # 0. Then, we
have the following results.

Theorem4. Let 1, € (0, 1,,) and suppose that conditions (H,),
(Hs,), and (Hg,) hold for system (2). The viral equilibrium
P.(S,,E,,I.,Q,,R,,V,) is locally asymptotically stable when
7, € [0,75) and a Hopf bifurcation occurs at the viral
equilibrium P,(S,, E,,1,,Q,,R,,V,) when 7, = 7y,

3. Properties of the Hopf Bifurcation

In this section, we shall investigate direction and stability of
the Hopf bifurcation under the case where 7, € (0, 1y,) and
T, > 0.Setu, (t) = S(t)-S,,u,(t) = E(t)-E,,us(t) = I(t)-1I,,
(£ = QUO-Q,, us(t) = RO-R,, u5(t) = V(H)-V,,and t —
(t/1,). For convenience, we assume that 7; € (0,7y) < 75,
throughout this section. Then, system (2) becomes functional
differential equations in C = C([-1, 0], R®):

u(t) = Lu +F (1), (53)

with

L,¢ = (13 +p) (A¢> (0) + Bp (—Z—‘) +Co (—1)>,

20

—B¢; (0) ¢5 (0)
0 0
B1 (0) 3 (0) 50

0

F(u ) = (10 + 1) 0 ,
0
0

where
a 0a 0 0 O
a; a4 a; 0 0 0
A 0 aga, 0 0 O ,

0 0 agag 0 O

0 0 0 0ay O

a, 00 0 0 ap
000 0O0OO0
000 O0O0OO
00b 000

B= ,
000Db 0O
00b b 00
000 O0O0OO

11
0000 ¢ ¢
0000O0O
Co 0000O0O
0000O0O
000c¢g 0O
0000 0 ¢

(55)

Based on the Riesz representation theorem, there exists a 6x6
function 5(6, u) : [-1,0] — R such that

0
L= J dn(6,4)$(©6), ¢eC. (56)
-1
In fact, we choose

1 (6, u)

(150 + 1) (A+B+B), 0=

! o
(159 + 1) (B+C), ¢ —%,0) (57)

0
(10 + 1) B, e (—1,—:—1),

0, 0=-1.

For ¢ € C([-1,0], R%), we define

d¢ (9)
do °

0
L dn(0.u)$(0), 6=0,

-1<6<0,

A(u) ¢ =

(58)
0, -1<6<0,

R(u)¢= {F(Wp), .

Then, system (53) becomes
i(t)=A(u)u, + R(u)u, (59)

where 1,(0) = u(t + 0) for 6 € [-1,0].
Define A* as follows:

_de(s)
ds ’

0
J dr]T(s,O)(p(—s), s=0,
-1

0<s<l1,

A (g)= (60)

and a bilinear form

(9().40) =90 ¢(0)
0o (0 (61)
[ ] se-oamos©d
0=—1 Je=0

where #(0) = (0, 0).
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Let g0) = (1,45 G5 Gu»qsrq6) 2™’ be the eigen-
vector of A(0) with +iw,7,, and let g*(s) = D(1,q;,q;,
459 )ei“n™° be the eigenvector of A*(0) with —iW5)Tyy-
Then, according to the definition of A(0) and A*(0), we
obtain

_ 03 tasq;
qz - . % >
Wy ~ a5
a3ds
q3 = 7. ; — >
(1“’;0 - a) (“";o —a, —bje M) — asag
_ agds
q4 - . - _ ittt ?
iwag — bye M0
.ok —iT5, W5,
10,0 — A — g3 — Ge %
a5 = cle_ifz*o‘”;o ’
.ok
4 = Wy — Ay
6 ay, + ce B
.ok
.yt a
b=
asz
- s
- (iwyy + ay) (iw), + ay) (62)
q5 = >
a3ds
.ok i W}
X (1w20+a7+b1e 1 2°)q3
qy =~
4 a
.ok
+ a,a; + (iw), + a;) as
asdg
b, (iwz‘o +ag + bye'n “)20)
b
agb,
.ok i’ W}
(1(4)20 +ay + be™ 20) s
%= by o :
ity w,
" _ (ae 2020
96 =~

i}, + g, + e
In addition, from (61), we have
(4" (),9(6) =q(0)q(0)
[ ] c-omeqe

= —k —% —k —k — T
= D(1,9,.95-43-95-95) (1,92, 93 44 95> 96)

0 0
_J J D(l"b’%"h’%’%)
-1 Je=0

Wy 0) = M()e”zowzoe + Me iTyyw500 " EleZITZ"wZOe

*

* * *
T30%20 315,w3

Wll (9) _ _igl*lq 20) ei‘rz*ow;oe + igllq (O) e—i‘rz*ow;oe +E

* *
T20Wa0 T50%20
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—it) w5y (§-0 T it wy,
+e 0y 0) (1,4, 95 44> 45 G6) € 20 dE
0o (0
_J J. D(l’qz’%’%’%’%)
-1 Je=o
_iTz*ow;o -0 T iTz*owzo
+e 0Oy 0) (1,45, 45, 44> G5, G6) €00 dE

=D [1 +q,q, + %ZI; +q,q, + ‘1521; + qeds

* 1T W
+Tet

0

|| aaaa.a)
T

'3(17‘12#13)%’ ‘15»%)

0
+1/e J_l(l,é;‘,éé‘,?liﬁ;@é‘)

-C (I’QZ’Q3)‘14"15>‘16)T] =D 1+, +a:3;
+ 449y + 4595 + 9eds
+1] ¢ MW (bs (0g; +bygs) + b, (b7, +b,45))
+ T;oe_irz*ﬂw;o (ads + s +3q5q5 + C4964s )] .
(63)
Thus, we can choose
D= [1 +ay0, + 35 + 94y + 9595 + deds
+1] e (bs (b,q5 +byq5) + by (bygy +b,g5))  (64)
)

-1
T Ty€ (645 + ©qs +6q535 + 4964 )] >

such that {(g*,q) = 1,(gq",g) = 0.

Then, using the algorithms from Hassard et al. [25] and
the similar computation process in [26-29], we obtain

920 = zﬂTz*oE% (EQ‘ -1),
9gu = ﬁT;OERe {as} (ﬁ; -1),
Yo2 = 2[31’;05@3 (ﬁ; -1), (65)
_ * T~ [f—k (1) 1 (1) —
9a1 = 2P15yD (qZ -1) (Wn (0)g; + EWZO (0) g,
1
+ W (0) + zw;(? (0)) ,

with

>

2>
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a{ 0 —a, 0 - e—2i1'2*0a7;0 _cze—Zi‘rz*ow;O 1 —ﬁQ3
—ay  a, —4s 0 0 0 Bas
0 -a a, 0 0 0 0
E =2 ° ’ , x :
0 0 —ag a, 0 0 0
0 0 _b3e—2i‘rl*w;0 _b4e—2i11*w;0 a; 0 0
—ay 0 0 0 0 a, 0
-1
a 0 a 0 G ) ~BRe{gs}
a; a, as 0 0 0 BRe{gs}
0 a5 a,+b, 0 0 0 0
E,=- X ,
0 0 a3 ag+bh 0 0 0
0 0 b by ap+a 0 0
a;, 0 0 0 0 ay,t¢ 0
(66)

where
I_2. *
a, = 2wy, — a,
!_2. *
a, = 2wy, — ay,

I ek —2it] wy,
a; = 2iw,, —a; — be ,

s (67)
a, = 2iws, — ag — be 1,
TP —2iT;w3
a; = 2iw,; — ayg — ;e >
I —2iTy0;,
ag = 2iw,; — dyy — e .
Then, we can get the following coefficients:
¢ = = gugn -2lg |2—M
1 205wy, \ 9190 11 3
+ 9
2
Re {C, (0)} (68)

2 T Re V(1))
pr=2Re {Cl (0)}’

Im{C, (0)} + 4, Im {)L' (12*0)}

* *
Tr0Wh0

h =

Thus, we have the following results.

Theorem 5. The sign of u, determines direction of the Hopf
bifurcation: if u, > 0 (u, < 0), then the Hopf bifurcation is
supercritical (subcritical); the sign of p, determines stability of
the bifurcating periodic solutions: if p, < 0 (p, > 0), then
the bifurcating periodic solutions are stable (unstable); the sign
of T, determines period of the bifurcating solutions: if T, > 0

(T, < 0), then the period of the bifurcating periodic solutions
increases (decreases).

4. Numerical Simulation

In this section, we present some numerical results of system
(2) in order to validate the analytical predictions obtained in
Sections 2 and 3. We choose a set of parameters as follows:
A =100, 8 =0.009,d = 0.05, p = 0.65,0 = 0.05, y = 0.55,
y = 045, « = 0.035,8 = 0.1, = 0.35, and ¢ = 0.07, and
consider the following special case of (2):

% =100 — 0.009S (t) I () — 0.05S (t) — 0.65S (t)
+0.05R (t — 7,) + 0.55V (t — 7,),

% =0.009S () I (t) — 0.05E (t) — 0.45E (t),

% = 0.45E (t) — 0.051 (t) — 0.035I (t) — 0.11 (¢)
- 0351 (t-1,),

(69)

d(flt(t) = 81 () - 0.05Q (1) - 0.035Q (t)
-0.07Q(t-1,),

dl; t(t) =0.07Q(t — ;) — 0.05R (t) — 0.05R (t — 7,)
+0.351 (t —1y),

% = 0.65S (t) — 0.05V (t) — 0.55V (t - 1,),

from which we can get the unique viral equilibrium
P,(66.0494,277.7978, 233.6617, 150.7495, 923.3406, 71.7439).
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FIGURE 1: The projection of the phase portrait of system (69) in
(S, E, V)-space with 7, = 3.605.
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FIGURE 2: The projection of the phase portrait of system (69) in
(I, Q, R)-space with 7, = 3.605.
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FIGURE 3: The projection of the phase portrait of system (69) in
(S, E, V)-space with 7; = 4.60.

It can be easily verified that condition (H,) is satisfied when
7,=17,=0.

By computation, we have w;, = 0.8554 and 1;, =
4.1056. Then, we get A'(1),) = 2.3686 + i1.0212. Thus, we
know that conditions (H,;) and (H,,) hold. We can
conclude that all roots that cross the imaginary axis at
iw;, cross from left to right as 7, increases by the
theory in [22]. According to Theorem 1, P,(66.0494,
277.7978,233.6617,150.7495, 923.3406, 71.7439) is asymp-
totically stable when 7, € (0,7,). This property can be
illustrated by Figures 1 and 2. In this case, spreading law
of the computer viruses can be predicted and the viruses
can be controlled and eliminated. However, once the
value of 7, passes through the critical value 1,,, P, (66.0494,
277.7978,233.6617, 150.7495, 923.3406, 71.7439) loses its sta-
bility and a Hopf bifurcation occurs, which can be shown
in Figures 3 and 4. The occurrence of a Hopf bifurcation
means that the state of computer viruses propagation changes
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FIGURE 4: The projection of the phase portrait of system (69) in
(I, Q, R)-space with 7, = 4.60.
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FIGURE 5: The projection of the phase portrait of system (69) in
(S, E, V)-space with 7, = 3.65.
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FIGURE 6: The projection of the phase portrait of system (69) in
(I, Q, R)-space with 7, = 3.65.

from the viral equilibrium point to a limit cycle. This makes
spreading of the computer viruses be out of control.
Similarly, we have the following: w,, = 1.8255 and 7,, =
3.7424when 1, = 0and 7, > 0; w, = 0.9665 and 7, = 3.1862
when 7, > Oand 7, = 225 € (0,7,); wy, = 2.4217 and
75, = 3.0254 when 7, > 0 and 7, = 2.45 € (0,7y). The
corresponding phase plots are shown in Figures 5-8, Figures
9-12, and Figures 13-16, respectively. In addition, for 7, > 0
and 1, = 2.45 € (0, 1,,), we have C,(0) = —17.2982+i13.5056
and /\'(T;O) = 0.3796+i2.0581 by some complex computation.
Based on (68), we get p, = 45.5692 > 0, p, = —34.5964 < 0,
and T, = —14.6441 < 0. Therefore, the Hopf bifurcation is
supercritical, the bifurcating periodic solutions are stable, and
the period of the bifurcating periodic solutions decreases.
According to the numerical simulation results, we know
that the time delay should remain less than the corresponding
threshold in order to control and predict the viruses’ propa-
gation by decreasing the period that antivirus software uses



Discrete Dynamics in Nature and Society

120
100
80
60
40

20
80

V(t)

=30
- 50 290 300
270

70

65
S(@) 0 557250

FIGURE 7: The projection of the phase portrait of system (69) in
(S, E, V)-space with 7, = 3.805.
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FIGURE 8: The projection of the phase portrait of system (69) in
(I, Q, R)-space with 7, = 3.805.
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FIGURE 9: The projection of the phase portrait of system (69) in
(S, E,V)-space with 7, = 2.86 and 7, = 2.25 € (0, 7,,).
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FIGURE 10: The projection of the phase portrait of system (69) in
(I, Q, R)-space with 7, = 2.86 and 7, = 2.25 € (0, 7y).

to clean the computer viruses and the temporary immunity
period of the recovered and the vaccinated computers. To
this end, we can adjust the parameters of our proposed
model in real-world networks, such as timely updating the
antivirus software on computers, properly controlling the
number of computers attached to the network, and timely
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FIGURE 11: The projection of the phase portrait of system (69) in
(S, E, V)-space with 7, = 3.574 and 7, = 2.25 € (0, 7,,).
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FIGURE 12: The projection of the phase portrait of system (69) in
(I,Q, R)-space with 7, = 3.574 and 7, = 2.25 € (0, 7y).
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FIGURE 13: The projection of the phase portrait of system (69) in
(S, E, V)-space with 7, = 2.862 and 7, = 2.45 € (0, 7y,).
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FIGURE 14: The projection of the phase portrait of system (69) in
(I, Q, R)-space with 7, = 2.862 and 7, = 2.45 € (0, 7}).

disconnecting computers from the network when the con-
nections are unnecessary. Of course, in the next step, we also
need to collect large amount of relevant data and estimate
the parameters involved in our proposed model through
statistical analysis in real-world networks. Namely, we have
to adjust the parameters in the model so as to control viruses’
propagation effectively if it is necessary.
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FIGURE 15: The projection of the phase portrait of system (69) in
(S, E, V)-space with 7, = 3.225 and 7, = 2.45 € (0, 7).
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5. Conclusions

It is definitely an interesting work to consider the effect of
delays on dynamical systems, because a stability switch occurs
even when an ignored delay is small for a dynamical system.
Based on this fact, we introduce the time delay due to the
period that antivirus software uses to clean the computer
viruses in the infectious and quarantined computers (7,) and
the time delay due to the temporary immunity period of
the recovered and the vaccinated computers (z,) into the
SEIQRS-V computer virus propagation model considered in
[21]. We obtain some conditions for local stability and Hopf
bifurcation occurring by analyzing distribution of roots of the
associated characteristic equation.

By computation, there exists a corresponding critical
value of the time delay below which system (2) is stable and
above which system (2) is unstable. When the system is stable,
the characteristics of the propagation of computer viruses
can be easily predicted and then the computer viruses can
get eliminated. Otherwise, the propagation of the computer
viruses is out of control. Therefore, stability of the computer
virus propagation system must be guaranteed in practice.
In addition, we find that the effect of 7, on system (2) is
marked compared with 7, because the critical value of 7, is
much smaller when we only consider it. At last, we have also
derived the explicit formula which can determine direction
and stability of the Hopf bifurcation under the case where
7, € (0,7y) and 7, > 0.
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