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We consider the asymptotic behaviors of stochastic fractional long-short equations driven by a random force. Under a priori
estimates in the sense of expectation, using Galerkin approximation by the stopping time and the Borel-Cantelli lemma, we prove
the existence and uniqueness of solutions. Then a global random attractor and the existence of a stationary measure are obtained
via the Birkhoff ergodic theorem and the Chebyshev inequality.

1. Introduction

Long-short wave resonance equations arise in the study of
the interaction of the surface waves with both gravity and
capillary modes presence and also in the analysis of internal
waves, as well as Rossby wave in [1]. In the plasma physics,
they describe the resonance of the high-frequency electron
plasma oscillation and associated low-frequency ion density
perturbation in [2]. Longwave and short wave equations with
periodic boundary condition have attracted considerable
attention as a result of their rich physical and mathematical
properties. Guo [3, 4] proved the existence of global solutions
for long-short wave equations and generalized long-short
wave equations. The existence of global attractor was studied
in [5–9].

The stochastic partial differential equation (SPDE) is
a kind of partial differential equation with random term
and random coefficients, which come from the random
environmental effects and the errors of measurement. SPDE
is used to describe better complex phenomenon, for example,
quantum field theory, statistical mechanics, and financial
mathematics; see [10–12] and so on. In [13–19], the authors
obtained the existence and uniqueness of the solution and of
attractors for SPDEs.

In this paper, we consider that the random environmental
effects and the errors of measurement are included into

the model of fractional long-short wave equations. More
specifically, we study the following equations:

𝑖𝑢𝑡 − (−Δ)𝛼 𝑢 − 𝑛𝑢 + 𝑖𝛿𝑢 = 𝑓 + 𝑊̇1, (1)

𝑛𝑡 + 𝛽𝑛 + |𝑢|2𝑥 = 𝑔 + 𝑊̇2 (2)

with the initial condition

𝑢 (𝑥, 0) = 𝑢0 (𝑥) ,
𝑛 (𝑥, 0) = 𝑛0 (𝑥) , (3)

and periodic boundary condition

𝑢 (𝑥, 𝑡) = 𝑢 (𝑥 + 2𝜋, 𝑡) ,
𝑛 (𝑥, 𝑡) = 𝑛 (𝑥 + 2𝜋, 𝑡) = 0, (4)

where 𝑥 ∈ 𝐷 = [0, 2𝜋] in R1; 𝑡 ≥ 𝜏 ∈ R+; 𝛿, 𝛽, 𝛼 > 0.
Theunknown complex valued function𝑢(𝑥, 𝑡) is short surface
wave packet and the unknown real valued function 𝑛(𝑥, 𝑡) is a
long interfacial wave.𝑊1 and𝑊2 are independent𝐿2(𝐷) value
Wiener processes which are from the errors of measurement
or the random environmental effects and can be seen in detail
in the next section.
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Since the solution 𝑢(𝑥, 𝑡), if it exists, is a 2𝜋-periodic
function, we have the Fourier expansion

𝑢 (𝑥, 𝑡) = ∑
𝑘∈Z

𝑎𝑘 (𝑡) 𝑒𝑖𝑘𝑥, (5)

where 𝑎𝑘(𝑡) : R+ → R, 𝑥 ∈ R.
Hence,

𝜕𝑥𝑢 = ∑
𝑘∈Z

𝑖𝑘𝑎𝑘 (𝑡) 𝑒𝑖𝑘𝑥, (6)

and (−󳵻)𝛼𝑢 is defined by

(−󳵻)𝛼 𝑢 = ∑
𝑘∈Z

|𝑘|2𝛼 𝑎𝑘 (𝑡) 𝑒𝑖𝑘𝑥. (7)

Since 󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑟𝑥󵄨󵄨󵄨󵄨󵄨2 = 1,
∫
𝐷
𝑒𝑖𝑟𝑥𝑑𝑥 = 0,

∀𝑟 ∈ R,
(8)

the following definitions make sense. Let

𝐴 = {𝑢 | 𝑢 = ∑
𝑘∈Z

𝑎𝑘 (𝑡) 𝑒𝑖𝑘𝑥, ∑
𝑘∈Z

|𝑘|4𝛼 𝑎2𝑘 (𝑡)

< ∞, ∑
𝑘∈Z

󵄨󵄨󵄨󵄨𝑎𝑘 (𝑡)󵄨󵄨󵄨󵄨2 < ∞} ,
(9)

and let 𝐻2𝛼 be a complete distance space of the set 𝐴 under
the norm

‖𝑢‖𝐻2𝛼 = (2𝜋∑
𝑘∈Z

|𝑘|4𝛼 𝑎2𝑘 (𝑡))
1/2

+ (2𝜋∑
𝑘∈Z

󵄨󵄨󵄨󵄨𝑎𝑘 (𝑡)󵄨󵄨󵄨󵄨2)
1/2

.
(10)

It is easy to get it to be a Banach space, and that∀𝑢 ∈ 𝐻2𝛼, 𝑢 is
space-periodic with the period 2𝜋 and its 2𝛼 order derivatives
are in 𝐿2per(𝐷). And ∀𝑢, V ∈ 𝐻𝛼,

𝑑𝑑𝑡𝑢V = 𝑢 𝑑𝑑𝑡V + V
𝑑𝑑𝑡𝑢,

((−󳵻)𝛼 𝑢, V) = ((−󳵻)𝛼1 𝑢, (−󳵻)𝛼2 V) ,
(11)

when 𝛼1+𝛼2 = 𝛼, 0 ≤ 𝛼1, 𝛼2 ≤ 𝛼.𝐻2𝛼 is a Hilbert space with
the inner product

(𝑢, V)𝐻2𝛼 = ((−󳵻)𝛼 𝑢, (−󳵻)𝛼 V) . (12)

The rest of this paper is arranged as follows. In Section 2,
we present some preliminaries results. In Section 3, we give a
series of time uniform a priori estimates in different energy
spaces which will be used to prove our main results; see
[20]. In Section 4, we show the existence and uniqueness of
solutions for (1)-(2). In Section 5, the random weak attractor
and the stationary measure are constructed.

2. Preliminary

In this paper, we outline the variational framework for
studying problems (1)-(2) and list some preliminary lemmas
which will be used later.

We define a complete probability space (Ω,F, {F𝑡}𝑡≥0,
P). E denotes the expectation operator with respect to
P. Stochastic terms 𝑊1(𝑡) and 𝑊2(𝑡) are defined on(Ω,F, {F𝑡}𝑡≥0,P) by

𝑊1 (𝑡) = 𝑞1 (𝑥) 𝜔1 (𝑡) ,
𝑊2 (𝑡) = 𝑞2 (𝑥) 𝜔2 (𝑡) , (13)

where 𝜔1(𝑡) is a standard complex valued Wiener process,𝜔2(𝑡) is a standard real valued Winer process independent of𝜔1(𝑡), and 𝑞1(𝑥), 𝑞2(𝑥) are sufficiently smooth functions in a
manner. The different inner product spaces for the solution(𝑢, 𝑛) of (1)-(2) are defined as

𝑉0 = 𝐻𝛼0 (𝐷) × 𝐿2 (𝐷) ,
𝑉1 = (𝐻2𝛼 (𝐷) ∩ 𝐻𝛼0 (𝐷)) × 𝐻10 (𝐷) ,
𝑉2 = {𝜑 ∈ 𝐻3𝛼 (𝐷) ∩ 𝐻𝛼0 (𝐷) : (−Δ)𝛼 𝜑 ∈ 𝐻𝛼0 (𝐷)}

× (𝐻2 (𝐷) ∩ 𝐻10 (𝐷)) .

(14)

Endow each 𝑉𝑖 (𝑖 = 0, 1, 2) with the usual norm, and satisfy𝑉2 ⊂ 𝑉1 ⊂ 𝑉0 with compact embedding.
Let (X, ‖ ⋅ ‖X) ⊂ (Y, ‖ ⋅ ‖Y) ⊂ (Z, ‖ ⋅ ‖Z) be three

Banach reflective spaces which satisfyX ⊂ Y with compact
and dense embedding. The Banach space can be defined as
follows:

G = {V : V ∈ 𝐿2 (0, 𝑇;X) , 𝑑V𝑑𝑡 ∈ 𝐿2 (0, 𝑇;Z)} (15)

endowed with the natural norm

‖V‖2G = ∫𝑇
0

‖V‖X 𝑑𝑠 + ∫𝑇
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑑V𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

Z 𝑑𝑠, V ∈ G. (16)

We obtain the following lemma with regard to compactness
result by [21].

Lemma 1. If 𝐾 is bounded in G, then 𝐾 is precompact in𝐿2(0, 𝑇;Y).
In order to get maximal estimates on stochastic integrals,

we need another lemma. 𝑈 and 𝐻 are Hilbert spaces which
are separable and 𝑊 is a 𝑄-Wiener process on 𝑈0 with 𝑈0 =𝑄1/2. Let 𝐿02 = 𝐿02(𝑈0, 𝐻) be the space of Hilbert-Schmidt
operators from 𝑈0 to 𝐻. For such operators, we obtain the
following lemma by [22].
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Lemma 2. For any 𝑟 ≥ 1 and any 𝐿02-valued predictable
process Φ(𝑡), 𝑡 ∈ [0, 𝑇], we get

E∫𝑇
0

Φ (𝑠) 𝑑𝑊 (𝑠) = 0, (17)

E(sup 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑠

0
Φ (𝜎) 𝑑𝑊 (𝜎)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑟)
≤ 𝑐𝑟 supE(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫

𝑠

0
Φ (𝜎) 𝑑𝑊 (𝜎)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑟)
≤ 𝐶𝑟E(∫𝑡

0
‖Φ (𝑠)‖2𝐿0

2

) ,
(18)

where 𝑐𝑟 and 𝐶𝑟 are some positive constants dependent on 𝑟.
3. Uniform A Priori Estimates in Time

3.1. A Priori Estimates in 𝑉0
Lemma 3. Provided that 𝑢0, 𝑓, 𝑞1 ∈ 𝐿2(𝐷), then for any 𝑇 >0 and 𝑝 ≥ 1, we obtain 𝑢 ∈ 𝐿2𝑝(Ω; 𝐿∞([0, 𝑇]; 𝐿2(𝐷))) ∩𝐿∞([0,∞); 𝐿2𝑝(Ω; 𝐿2(𝐷))).
Proof. Taking the inner product of (1) with 2𝑢, we get

(𝑖𝑢𝑡 − (−Δ)𝛼 𝑢 − 𝑛𝑢 + 𝑖𝛿𝑢, 2𝑢) = (𝑓 + 𝑊̇1, 2𝑢) . (19)

Taking the imaginary part of (19) and applying the Itô formula
to ‖𝑢‖2, one gets

𝑑𝑑𝑡 ‖𝑢‖2 = −2𝛿 ‖𝑢‖2 + 2 Im∫
𝐷
𝑓𝑢𝑑𝑥

+ 2 Im∫
𝐷
𝑢𝑊̇1𝑑𝑥 + 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩2 .

(20)

By (20), using Hölder’s and Young’s inequalities, we can
obtain

𝑑𝑑𝑡 ‖𝑢‖2 + 𝛿 ‖𝑢‖2 ≤ 1𝛿 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩2 + 2 Im∫
𝐷
𝑢𝑊̇1𝑑𝑥. (21)

On the one hand, multiplying by 𝑒𝛿𝑡 and integrating from 0
to 𝑡 on both sides of (21), we get

E ‖𝑢‖2 ≤ 𝑒−𝛿𝑡E 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2 + 1𝛿2 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2 + 1𝛿 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩2 ≤ 𝐶,
𝑡 > 0,

(22)

where 𝐶 is independent of 𝑇.
On the other hand, integrating from 0 to 𝑡 and taking the

supremum and the expectation on both sides of (21), we can
obtain

E sup
0≤𝑡≤𝑇

‖𝑢‖2 ≤ E
󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2 + (1𝛿 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩2)𝑇

+ E sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
Im∫
𝐷
𝑢𝑊̇1𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 + 1.
(23)

By Lemma 2, for any positive constant 𝐶, we obtain
E sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
Im∫
𝐷
𝑢𝑊̇1𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩2 E∫𝑇
0

‖𝑢‖2 𝑑𝑠. (24)

From (24), for any 𝑇 > 0, there exists a positive constant 𝐶𝑇
such that

E sup
0≤𝑡≤𝑇

‖𝑢‖2 ≤ E
󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2 + (1𝛿 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩2)𝑇

+ 𝐶 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩2 E∫𝑇
0

‖𝑢‖2 𝑑𝑠 + 1
≤ 𝐶𝑇 (E 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩4 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩4 + 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩4 + 1) .

(25)

On the basis of the above estimates, we can further give an
estimate of ‖𝑢(𝑡)‖2𝑝0 for any 𝑝 ≥ 1. Applying the Itô formula
and Hölder’s inequality, we obtain

𝑑𝑑𝑡 ‖𝑢‖2𝑝 ≤ −𝛿𝑝2 ‖𝑢‖2𝑝 + 𝑐 (󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝑝 + 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩2𝑝)
+ 2𝑝 ‖𝑢‖2(𝑝−1) Im∫

𝐷
𝑢𝑊̇1𝑑𝑥.

(26)

On the one hand, multiplying by 𝑒(𝛿𝑝/2)𝑡, integrating from 0
to 𝑡, and taking the expectation on both sides of (26), we can
have

E ‖𝑢‖2𝑝 ≤ 𝑒−(𝛿𝑝/2)𝑡E 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝑝 + 𝑐 (󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝑝 + 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩2𝑝) ≤ 𝐶,
𝑡 > 0, (27)

where 𝐶 is independent of 𝑇.
On the other hand, by (26), we have

𝑑𝑑𝑡 ‖𝑢‖2𝑝 ≤ 𝑐 (󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝑝 + 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩2𝑝)
+ 2𝑝 ‖𝑢‖2𝑝−1 Im∫

𝐷
𝑢𝑊̇1𝑑𝑥.

(28)

Integrating from 0 to 𝑡 and taking the supremum and the
expectation on both sides of (28), we get

E sup
0≤𝑡≤𝑇

‖𝑢‖2𝑝
≤ E ‖𝑢 (0)‖2𝑝 + 𝑐 (󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝑝 + 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩2𝑝) 𝑇 + 1

+ E sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
𝑝 ‖𝑢‖2(𝑝−1) Im∫

𝐷
𝑢𝑊̇1𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 .
(29)

By Lemma 2, for any positive constant 𝐶, we have
E sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
𝑝 ‖𝑢‖2(𝑝−1) Im∫

𝐷
𝑢𝑊̇1𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐶𝑝2 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩2 E∫𝑇
0

‖𝑢‖4𝑝−2 𝑑𝑠,
(30)
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where 2𝑝 − 1 ≥ 1. Then inserting (30) into (29), and by (27),
for any 𝑇 > 0, we obtain

E sup
0≤𝑡≤𝑇

‖𝑢‖2𝑝 ≤ 𝐶𝑇 (𝑢0, 𝑓, 𝑞1) , (31)

where 𝐶𝑇(𝑢0, 𝑓, 𝑞1) is a positive constant depending on𝑢0, 𝑓, 𝑞1, and 𝑇.
Lemma 4. Provided that (𝑢0, 𝑛0) ∈ 𝑉0, 𝑞1 ∈ 𝐻𝛼0 (𝐷), 𝑞2 ∈𝐿2(𝐷), 𝑓, 𝑔 ∈ 𝐿2(𝐷), then for any 𝑇 > 0 and 𝑝 ≥ 1, we have(𝑢, 𝑛) ∈ 𝐿∞((0,∞); 𝐿2𝑝(Ω; 𝑉0)) ∩ 𝐿2𝑝(Ω; 𝐿∞(0, 𝑇; 𝑉0)).
Proof. Taking the inner product of (2) with 2𝑛, we have

(𝑛𝑡 + 𝛽𝑛 + |𝑢|2𝑥 , 2𝑛) = (𝑔 + 𝑊̇2, 2𝑛) . (32)

Applying the Itô formula to ‖𝑛‖2, since 𝑛𝑡 = −|𝑢|2𝑥 − 𝛽𝑛 +𝑔 + 𝑊̇2, we get
𝑑𝑑𝑡 ‖𝑛‖2 − 󵄩󵄩󵄩󵄩𝑞2󵄩󵄩󵄩󵄩2 + 2∫

𝐷
𝑛 |𝑢|2𝑥 𝑑𝑥 + 2𝛽 ‖𝑛‖2

− 2∫
𝐷
𝑔𝑛 𝑑𝑥 − 2∫

𝐷
𝑛𝑊̇2𝑑𝑥 = 0.

(33)

From (1), we get that

∫
𝐷
𝑛 |𝑢|2𝑥 𝑑𝑥 = 2Re∫

𝐷
𝑢𝑥 (𝑢𝑛) 𝑑𝑥

= −2Re∫
𝐷
𝑢𝑥 (−𝑖𝑢𝑡 + (−Δ)𝛼 𝑢 − 𝑖𝛿𝑢 + 𝑓 − 𝑊̇1) 𝑑𝑥

= ∫
𝐷
𝑖𝛿 (𝑢𝑥𝑢 − 𝑢𝑥𝑢) 𝑑𝑥 − 2Re∫

𝐷
𝑢𝑓𝑥𝑑𝑥

− 2Re∫
𝐷
𝑢𝑊̇1𝑥𝑑𝑥.

(34)

Notice that
𝑑𝑑𝑡 ∫𝐷 𝑖 (𝑢𝑥𝑢 − 𝑢𝑢𝑥) 𝑑𝑥

= 2∫
𝐷
𝑖 (𝑢𝑥𝑢𝑡 − 𝑢𝑡𝑢𝑥) 𝑑𝑥 + 2 Im∫

𝐷
𝑞1𝑞1𝑥𝑑𝑥.

(35)

From (33), (34), and (35), we can have
𝑑𝑑𝑡 (‖𝑛‖2 + ∫

𝐷
𝑖 (𝑢𝑥𝑢 − 𝑢𝑢𝑥) 𝑑𝑥) + 2𝛽 ‖𝑛‖2

= −2∫
𝐷
𝑖𝛿 (𝑢𝑥𝑢 − 𝑢𝑥𝑢) 𝑑𝑥 + 4Re∫

𝐷
𝑢𝑓𝑥𝑑𝑥

+ 2 Im∫
𝐷
𝑞1𝑞1𝑥𝑑𝑥 + 󵄩󵄩󵄩󵄩𝑞2󵄩󵄩󵄩󵄩2 + 4Re∫

𝐷
𝑢𝑊̇1𝑥𝑑𝑥

+ 2∫
𝐷
𝑔𝑛 𝑑𝑥 + 2∫

𝐷
𝑛𝑊̇2𝑑𝑥.

(36)

Applying the Itô formula to ‖𝑢𝑥‖2, and taking the inner
product of (1) with (𝑢𝑡 + 𝛿𝑢), we obtain

(𝑖𝑢𝑡 − (−Δ)𝛼 𝑢 − 𝑛𝑢 + 𝑖𝛿𝑢, (𝑢𝑡 + 𝛿𝑢))
= 2 (𝑓 + 𝑊̇1, (𝑢𝑡 + 𝛿𝑢)) . (37)

Taking the real part of (37), we get

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩󵄩(−Δ)𝛼/2 𝑢󵄩󵄩󵄩󵄩󵄩2 + 2𝛿 󵄩󵄩󵄩󵄩󵄩(−Δ)𝛼/2 𝑢󵄩󵄩󵄩󵄩󵄩2 + 2Re∫
𝐷
𝑛𝑢𝑢𝑡𝑑𝑥

+ 2𝛿∫
𝐷
𝑛 |𝑢|2 𝑑𝑥 + 2Re∫

𝐷
(𝑢𝑡 + 𝛿𝑢) 𝑊̇1𝑑𝑥

+ 2Re∫
𝐷
𝑓𝑢𝑡𝑑𝑥 + 2𝛿Re∫

𝐷
𝑓𝑢𝑑𝑥 = 󵄩󵄩󵄩󵄩𝑞1𝑥󵄩󵄩󵄩󵄩2 .

(38)

It is easy to check that

𝑑𝑑𝑡 ∫𝐷 𝑛 |𝑢|2 𝑑𝑥 = ∫
𝐷
𝑛𝑡 |𝑢|2 𝑑𝑥 + 2Re∫

𝐷
𝑛𝑢𝑡𝑢 𝑑𝑥

+ 2∫
𝐷
𝑞2 Im (𝑞1𝑢) 𝑑𝑥.

(39)

Otherwise, by (2), we can have 𝑛𝑡 = −|𝑢|2𝑥 − 𝛽𝑛 + 𝑔 + 𝑊̇2.
So

∫
𝐷
𝑛𝑡 |𝑢|2 𝑑𝑥 = ∫

𝐷
(− |𝑢|2𝑥 − 𝛽𝑛 + 𝑔 + 𝑊̇2) |𝑢|2 𝑑𝑥

= −𝛽∫
𝐷
𝑛 |𝑢|2 𝑑𝑥 + ∫

𝐷
𝑔 |𝑢|2 𝑑𝑥 + ∫

𝐷
𝑊̇2 |𝑢|2 𝑑𝑥,

− 2Re∫
𝐷
(𝑢𝑡 + 𝛿𝑢) 𝑊̇1𝑑𝑥

= 2 Im∫
𝐷
(𝑖𝑢𝑡 + 𝑖𝛿𝑢) 𝑊̇1𝑑𝑥

= 2 Im∫
𝐷
(𝑓 + 𝑊̇1 + (−Δ)𝛼 𝑢 + 𝑛𝑢) 𝑊̇1𝑑𝑥

= 2 Im∫
𝐷
(−Δ)𝛼/2 𝑢 (−Δ)𝛼/2 𝑊̇1𝑑𝑥

+ 2 Im∫
𝐷
(𝑛𝑢 + 𝑓) 𝑊̇1𝑑𝑥.

(40)

From (2), we can obtain

𝑑𝑑𝑡 (󵄩󵄩󵄩󵄩󵄩(−Δ)𝛼/2 𝑢󵄩󵄩󵄩󵄩󵄩2 + 2Re∫
𝐷
𝑓𝑢𝑑𝑥 + ∫

𝐷
𝑛 |𝑢|2 𝑑𝑥)

+ 2𝛿 󵄩󵄩󵄩󵄩󵄩(−Δ)𝛼/2 𝑢󵄩󵄩󵄩󵄩󵄩2
= −2𝛿∫

𝐷
𝑛 |𝑢|2 𝑑𝑥 − 2𝛿Re∫

𝐷
𝑓𝑢𝑑𝑥 + 󵄩󵄩󵄩󵄩𝑞1𝑥󵄩󵄩󵄩󵄩2

+ 2 Im∫
𝐷
(−Δ)𝛼/2 𝑢 (−Δ)𝛼/2 𝑊̇1𝑑𝑥

+ 2 Im∫
𝐷
(𝑛𝑢 + 𝑓) 𝑊̇1𝑑𝑥 + 2∫

𝐷
𝑞2 Im (𝑞1𝑢) 𝑑𝑥

− 𝛽∫
𝐷
𝑛 |𝑢|2 𝑑𝑥 + ∫

𝐷
𝑔 |𝑢|2 𝑑𝑥 + ∫

𝐷
𝑊̇2 |𝑢|2 𝑑𝑥.

(41)

Using Hölder’s inequality, the Gagliardo-Nirenberg inequal-
ity, and Young’s inequality, we can estimate each term. Now,
let 𝐻0 = ‖(−Δ)𝛼/2𝑢‖2 + 2Re∫

𝐷
𝑓𝑢𝑑𝑥 + ∫

𝐷
𝑛|𝑢|2𝑑𝑥 + ‖𝑛‖2 +
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∫
𝐷
𝑖(𝑢𝑥𝑢 − 𝑢𝑢𝑥)𝑑𝑥 and take 𝜂 = min{𝛿, 𝛽}. Putting (36) and

(41) into the result, we get

𝑑𝑑𝑡𝐻0 + 𝜂𝐻0 ≤ 𝑐 (𝑓, 𝑔, 𝑞1, 𝑞2) + 𝑐 ‖𝑢‖6
+ ∫
𝐷
|𝑢|2 𝑊̇2𝑑𝑥 + 2∫

𝐷
𝑛𝑊̇2𝑑𝑥

− 2 Im∫
𝐷
(−Δ)𝛼/2 𝑢 (−Δ)𝛼/2 𝑊̇1𝑑𝑥

− 2 Im∫
𝐷
(𝑛𝑢 + 𝑓) 𝑊̇1𝑑𝑥

+ 4Re∫
𝐷
𝑢𝑊̇1𝑥𝑑𝑥.

(42)

Multiplying by 𝑒𝜂𝑡, integrating from 0 to 𝑡, and taking
expectation on both sides of (42) yield

E𝐻0 ≤ 𝑒−𝜂𝑡E𝐻0 (0) + 𝑐 (𝑓, 𝑔, 𝑞1, 𝑞2)
+ 𝑐E∫𝑡

0
𝑒−𝜂(𝑡−𝑠) ‖𝑢‖6 𝑑𝑠. (43)

From (27), we can estimate (43) and obtain

E𝐻0 (𝑡) ≤ 𝑒−𝛽𝑡E𝐻0 (0) + 𝑐 (𝑓, 𝑔, 𝑞1, 𝑞2, 𝑢0)
≤ 𝑐 (𝑓, 𝑔, 𝑞1, 𝑞2, 𝑢0) ≤ 𝐶, 𝑡 > 0, (44)

where 𝐶 is independent of 𝑇.
Since

𝐻0 (𝑡) ≥ 12 (󵄩󵄩󵄩󵄩󵄩(−Δ)𝛼/2 𝑢󵄩󵄩󵄩󵄩󵄩2 + ‖𝑛‖2)
− 𝑐 (‖𝑢‖2 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩2 + ‖𝑢‖6) ,

(45)

for any 𝑡 > 0, we obtain
E (󵄩󵄩󵄩󵄩󵄩(−Δ)𝛼/2 𝑢󵄩󵄩󵄩󵄩󵄩2 + ‖𝑛‖2)

≤ 𝑐E (‖𝑢‖2 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩2 + ‖𝑢‖6) + 𝑐E𝐻0 (𝑡) ≤ 𝐶, (46)

where 𝐶 is independent of 𝑇.
Besides, we estimate𝐻𝑝0 (𝑡) for 𝑝 ≥ 1. Firstly, applying the

Itô formula to𝐻𝑝0 (𝑡), we have
𝑑𝑑𝑡𝐻𝑝0 (𝑡) ≤ −𝜂𝑝2 𝐻𝑝0 (𝑡) + 𝑐 (‖𝑢‖6𝑝 + 𝑐) + 𝑝𝐻𝑝−10 (𝑡)

⋅ (∫
𝐷
|𝑢|2 𝑊̇2𝑑𝑥 + 2∫

𝐷
𝑛𝑊̇2𝑑𝑥) + 𝑝𝐻𝑝−10 (𝑡)

⋅ (−2 Im∫
𝐷
(−Δ)𝛼/2 𝑢 (−Δ)𝛼/2 𝑊̇1𝑑𝑥

− 2 Im∫(𝑛𝑢 + 𝑓) 𝑊̇1𝑑𝑥 + 4Re∫
𝐷
𝑢𝑊̇1𝑥𝑑𝑥) .

(47)

Multiplying by 𝑒(𝜂𝑝/2)𝑡, integrating from 0 to 𝑡, and taking
expectation on both sides of (47) yield

E𝐻𝑝0 (𝑡) ≤ 𝑒(−𝜂𝑝/2)𝑡E𝐻𝑝0 (0) + 𝑐
+ 𝑐E∫𝑡

0
𝑒(−𝜂𝑝/2)(𝑡−𝑠) ‖𝑢‖6𝑝 𝑑𝑠. (48)

From (27) and (48), we obtain

E (𝐻𝑝0 (𝑡)) ≤ 𝑒(𝜂𝑝/2)𝑡E𝐻𝑝0 (0) + 𝑐 ≤ 𝐶, 𝑡 > 0, (49)

where 𝐶 is independent of 𝑇.
Consequently, from (45), we obtain

E (󵄩󵄩󵄩󵄩󵄩(−Δ)𝛼/2 𝑢󵄩󵄩󵄩󵄩󵄩2 + ‖𝑛‖2) ≤ 𝐶, 𝑡 > 0. (50)

On the one side, integrating from 0 to 𝑡 on both sides of (42),
we can deduce

𝐻0 (𝑡) ≤ 𝐻0 (0) + 𝑐 (𝑓, 𝑔, 𝑞1, 𝑞2) 𝑡 + 𝑐 ∫𝑡
0
‖𝑢‖6 𝑑𝑠

+ ∫𝑡
0
(∫
𝐷
|𝑢|2 𝑊̇2𝑑𝑥 + 2∫

𝐷
𝑛𝑊̇2𝑑𝑥) 𝑑𝑠

+ ∫𝑡
0
(−2 Im∫

𝐷
(−Δ)𝛼/2 𝑢 (−Δ)𝛼/2 𝑊̇1𝑑𝑥

− 2 Im∫
𝐷
(𝑛𝑢 + 𝑓) 𝑊̇1𝑑𝑥

+ 4Re∫
𝐷
𝑢𝑊̇1𝑥𝑑𝑥) 𝑑𝑠.

(51)

Taking the supremum and expectation on both sides of (51)
yields

E sup
0≤𝑡≤𝑇

𝐻0 (𝑡) ≤ E𝐻0 (0) + 𝑐 (𝑓, 𝑔, 𝑞1, 𝑞2) 𝑇 + 𝑐E

⋅ sup
0≤𝑡≤𝑇

∫𝑡
0
‖𝑢‖6 𝑑𝑠 + E sup

0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
∫
𝐷
|𝑢|2 𝑊̇2𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+ E sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
∫
𝐷
𝑛𝑊̇2𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 + E

⋅ sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
Im∫
𝐷
Im∫
𝐷
(−Δ)𝛼/2 𝑢 (−Δ)𝛼/2 𝑊̇1𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+ E sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
Im∫
𝐷
(𝑛𝑢 + 𝑓) 𝑊̇1𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 + E

⋅ sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
Re∫
𝐷
𝑢𝑊̇1𝑥𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 .

(52)

And then by estimating each term of the right hand side of
(52), we obtain

E sup
0≤𝑡≤𝑇

𝐻0 (𝑡) ≤ 𝐶𝑇 (𝐸0, 𝑓, 𝑔, 𝑞1, 𝑞2) . (53)
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On the other side, for 𝐻𝑝0 (𝑡) (𝑝 ≥ 1), integrating from 0 to 𝑡
and taking the supremum and the expectation on both sides
of (47) yield

E sup
0≤𝑡≤𝑇

𝐻𝑝0 (𝑡) ≤ E𝐻𝑝0 (0) + 𝑐 (𝑞1, 𝑞2) 𝑇 + 𝑐E
⋅ sup
0≤𝑡≤𝑇

∫𝑡
0
‖𝑢‖6𝑝 𝑑𝑠 + 𝑐 + 𝑝2E sup

0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
𝐻𝑝−10 (𝑠)

⋅ ∫ |𝑢|2 𝑊̇2𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 + 𝑝2E sup

0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
2𝐻𝑝−10 (𝑠)

⋅ ∫ 𝑛𝑊̇2𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 + 𝑝2E sup

0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
𝐻𝑝−10 (𝑠) 4

⋅ Re∫
𝐷
(−Δ)𝛼/2 𝑢 (−Δ)𝛼/2 𝑊̇1𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 + 𝑝2E
⋅ sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
2𝐻𝑝−10 (𝑠) Im∫

𝐷
𝑢𝑊̇1𝑥𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 + 𝑝2E

⋅ sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
2𝐻𝑝−10 (𝑠) Im∫(𝑛𝑢 + 𝑓) 𝑊̇1𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 .

(54)

Now we estimate each term of (54). For the third term on the
right hand of (54),

𝑐E sup
0≤𝑡≤𝑇

∫𝑡
0
‖𝑢‖6𝑝 𝑑𝑠 ≤ 𝑐E∫𝑇

0
‖𝑢‖6𝑝 𝑑𝑠 ≤ 𝐶𝑇. (55)

For the fifth and sixth terms on the right hand of (54), we have

𝑝2E sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
𝐻𝑝−10 (𝑠) ∫ |𝑢|2 𝑊̇2𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 + 𝑝2E

⋅ sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
2𝐻𝑝−10 (𝑠) ∫ 𝑛𝑊̇2𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 ≤ 𝑐 󵄩󵄩󵄩󵄩𝑞2󵄩󵄩󵄩󵄩2

⋅ E∫𝑇
0

(𝐻2𝑝0 (𝑠) + ‖𝑢‖2𝑝 + ‖𝑢‖6𝑝 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝑝) 𝑑𝑠
≤ 𝐶𝑇.

(56)

For the seventh and eight terms on the right hand of (54),
using a similar method, we estimate

𝑝2E sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
𝐻𝑝−10 (𝑠) 4

⋅ Re∫
𝐷
(−Δ)𝛼/2 𝑢 (−Δ)𝛼/2 𝑊̇1𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 + 𝑝2E
⋅ sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
2𝐻𝑝−10 (𝑠) Im∫

𝐷
𝑢𝑊̇1𝑥𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑐 󵄩󵄩󵄩󵄩󵄩(−Δ)𝛼/2 𝑞1󵄩󵄩󵄩󵄩󵄩2 E∫𝑇
0

(𝐻2𝑝0 (𝑠) + ‖𝑢‖2𝑝 + ‖𝑢‖6𝑝
+ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝑝) 𝑑𝑠 ≤ 𝐶𝑇.

(57)

For the last term on the right hand of (54), we estimate

𝑝2E sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
2𝐻𝑝−10 (𝑠) Im∫(𝑛𝑢 + 𝑓) 𝑊̇1𝑑𝑥 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑐 󵄩󵄩󵄩󵄩󵄩(−Δ)𝛼/2 𝑞1󵄩󵄩󵄩󵄩󵄩2

⋅ E∫𝑇
0

(𝐻2𝑝0 (𝑠) + ‖𝑢‖2𝑝 + ‖𝑢‖6𝑝 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝑝) 𝑑𝑠
≤ 𝐶𝑇.

(58)

By the above estimates, we clearly obtain

E sup
0≤𝑡≤𝑇

𝐻𝑝0 (𝑡) ≤ E𝐻𝑝0 (0) + 𝐶𝑇 (𝑞1, 𝑞2, 𝐸0, 𝑛1, 𝑛0)
< 𝐶𝑇 (𝑞1, 𝑞2, 𝐸0, 𝑛1, 𝑛0) .

(59)

In addition, by (46), we can get

E sup
0≤𝑡≤𝑇

(󵄩󵄩󵄩󵄩󵄩(−Δ)𝛼/2 𝑢󵄩󵄩󵄩󵄩󵄩2𝑝 + ‖𝑛‖2𝑝)
≤ 𝑐E sup
0≤𝑡≤𝑇

𝐻𝑝0 (𝑡)
+ 𝑐E sup
0≤𝑡≤𝑇

(‖𝑢‖2𝑝 + ‖𝑢‖6𝑝 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝑝) ≤ 𝐶𝑇.
(60)

Then we obtain

E sup
0≤𝑡≤𝑇

‖(𝑢, 𝑛)‖2𝑝𝑉0 ≤ 𝐶𝑇 (𝑓, 𝑔, 𝑞1, 𝑞2, 𝑢0, 𝑛0) . (61)

Then the proof is complete.

3.2. A Priori Estimates in 𝑉1
Lemma 5. Provided that 𝑓, 𝑔 ∈ 𝐻1(𝐷), (𝑢0, 𝑛0) ∈ 𝑉1, 𝑞1 ∈𝐻2𝛼, 𝑞2 ∈ 𝐻1(𝐷), then for any 𝑇 > 0 and 𝑝 ≥ 1, we have(𝑛, 𝑢) ∈ 𝐿∞((0,∞); 𝐿2𝑝(Ω; 𝑉1)) ∩ 𝐿2𝑝(Ω; 𝐿∞(0, 𝑇; 𝑉1)).
Proof. Taking the inner product of (1) with (−Δ)𝛼𝑢𝑡, we get

(𝑖𝑢𝑡 − (−Δ)𝛼 𝑢 − 𝑛𝑢 + 𝑖𝛿𝑢, (−Δ)𝛼 𝑢𝑡)
= (𝑓 + 𝑊̇1, (−Δ)𝛼 𝑢𝑡) . (62)

Applying the Itô formula to ‖(−Δ)𝛼𝑢‖2, we have
𝑑𝑑𝑡 󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑢󵄩󵄩󵄩󵄩2 = 2Re∫

𝐷
(−Δ)𝛼 𝑢 (−Δ)𝛼 𝑢𝑡𝑑𝑥

+ 󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑞1󵄩󵄩󵄩󵄩2 .
(63)

Since 𝑢𝑡 = 𝑖(−(−Δ)𝛼𝑢 − 𝑛𝑢 + 𝑖𝛿𝑢 − 𝑓 − 𝑊̇1) and
𝑑𝑑𝑡 Re∫𝑛𝑢 (−Δ)𝛼 𝑢 𝑑𝑥 = Re∫

𝐷
(𝑛𝑡𝑢 (−Δ)𝛼 𝑢

+ 𝑛𝑢𝑡 (−Δ)𝛼 𝑢 + 𝑛𝑢 (−Δ)𝛼 𝑢𝑡 + 𝑞2 (−Δ)𝛼 𝑞1
+ 𝑖 (𝑞2 (−Δ)𝛼 𝑞1𝑢 − 𝑞2𝑞1 (−Δ)𝛼 𝑢)) 𝑑𝑥,

(64)
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we obtain

𝑑𝑑𝑡 (󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑢󵄩󵄩󵄩󵄩2

− 2Re∫
𝐷
𝑛𝑢 (−Δ)𝛼 𝑢 𝑑𝑥 + 2Re∫

𝐷
𝑓 (−Δ)𝛼 𝑢 𝑑𝑥)

+ 2𝛼 󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑢󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑞1󵄩󵄩󵄩󵄩2 + 2 󵄩󵄩󵄩󵄩𝑞1𝑥󵄩󵄩󵄩󵄩2 + 2
⋅ Re∫
𝐷
𝑖 (𝑞2𝑞1 (−Δ)𝛼 𝑢 − 𝑞2 (−Δ)𝛼 𝑞1𝑢) 𝑑𝑥 − 2

⋅ Re∫
𝐷
𝑛𝑢𝑡 (−Δ)𝛼 𝑢 𝑑𝑥 + 2𝛿Re∫

𝐷
𝑛𝑢 (−Δ)𝛼 𝑢 𝑑𝑥

− 2𝛿Re∫
𝐷
𝑓 (−Δ)𝛼 𝑢 𝑑𝑥 − 2

⋅ Re∫
𝐷
𝑊̇1 ((−Δ)𝛼 𝑢𝑡 + 𝛿 (−Δ)𝛼 𝑢) 𝑑𝑥 − 2

⋅ Re∫
𝐷
𝑛𝑡𝑢 (−Δ)𝛼 𝑢 𝑑𝑥.

(65)

According to the above inequality, we can estimate each
term on the right hand side of (65) using Höder’s inequality,
the Gagliardo-Nirenberg, and Young’s inequality. So, by (65),
we get

𝑑𝑑𝑡 (󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑢󵄩󵄩󵄩󵄩2 − 2Re∫
𝐷
𝑛𝑢 (−Δ)𝛼 𝑢 𝑑𝑥 + 2

⋅ Re∫
𝐷
𝑓 (−Δ)𝛼 𝑢 𝑑𝑥) + 2𝛼 󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑢󵄩󵄩󵄩󵄩2

≤ 𝛿2 󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑢󵄩󵄩󵄩󵄩2 + 𝛽2 󵄩󵄩󵄩󵄩𝑛𝑥󵄩󵄩󵄩󵄩2 + 𝑐 (󵄩󵄩󵄩󵄩𝑞2󵄩󵄩󵄩󵄩4𝐻1 + 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩2𝐻2𝛼
+ 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩4 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩8 + ‖𝑢‖8𝐻1 + ‖𝑛‖12) − 2
⋅ Re∫
𝐷
𝑊̇1 (−Δ)𝛼 𝑢𝑡𝑦 − 2Re∫

𝐷
𝑢 (−Δ)𝛼 𝑢𝑊̇2𝑑𝑥

+ 2Re∫
𝐷
𝑖𝑛 (−Δ)𝛼 𝑢𝑊̇1𝑑𝑥.

(66)

Otherwise, applying the Itô formula to ‖𝑛𝑥‖2, we have
𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑛𝑥󵄩󵄩󵄩󵄩2 = 2∫

𝐷
𝑛𝑥𝑛𝑥𝑡𝑑𝑥 + 󵄩󵄩󵄩󵄩𝑞2𝑥󵄩󵄩󵄩󵄩2 . (67)

Since 𝑛𝑡 = 𝑔 + 𝑊̇2 − 𝛽𝑛 − |𝑢|2𝑥 and
𝑑𝑑𝑡 𝑖 ∫𝐷 (𝑢𝑥 (−Δ)𝛼 𝑢 − (−Δ)𝛼 𝑢𝑢𝑥) 𝑑𝑥

= 2𝑖 ∫
𝐷
(𝑢𝑥𝑡 (−Δ)𝛼 𝑢 − 𝑢𝑥𝑡 (−Δ)𝛼 𝑢) 𝑑𝑥

+ 2𝑖Re∫
𝐷
𝑞1𝑥 (−Δ)𝛼 𝑞2𝑑𝑥,

(68)

we obtain

𝑑𝑑𝑡 (󵄩󵄩󵄩󵄩𝑛𝑥󵄩󵄩󵄩󵄩2 + 𝑖 ∫
𝐷
(𝑢𝑥 (−Δ)𝛼 𝑢 − (−Δ)𝛼 𝑢𝑢𝑥) 𝑑𝑥)

+ 2𝛽 󵄩󵄩󵄩󵄩𝑛𝑥󵄩󵄩󵄩󵄩2
≤ 𝛿2 󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑢󵄩󵄩󵄩󵄩2 + 𝛽2 󵄩󵄩󵄩󵄩𝑛𝑥󵄩󵄩󵄩󵄩2

+ 𝑐 (󵄩󵄩󵄩󵄩𝑔𝑥󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑓𝑥󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩2𝐻2𝛼 + 󵄩󵄩󵄩󵄩𝑞2𝑥󵄩󵄩󵄩󵄩2)
+ 2∫
𝐷
𝑛𝑥𝑊̇2𝑥𝑑𝑥 + 4Re∫

𝐷
(−Δ)𝛼 𝑢𝑊̇1𝑥𝑑𝑥.

(69)

Thus, by (66) and (69), taking 𝜂 = min{𝛿, 𝛽}, and letting

𝐻1 (𝑡) = 󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑢󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑛𝑥󵄩󵄩󵄩󵄩2 − 2Re∫
𝐷
𝑛𝑢 (−Δ)𝛼 𝑢 𝑑𝑥

+ 2Re∫
𝐷
𝑓 (−Δ)𝛼 𝑢 𝑑𝑥

+ 𝑖 ∫
𝐷
(𝑢𝑥 (−Δ)𝛼 𝑢 − (−Δ)𝛼 𝑢𝑢𝑥) 𝑑𝑥,

(70)

we get

𝑑𝑑𝑡𝐻1 (𝑡) + 𝜂𝐻1 (𝑡) ≤ 𝑐 (‖𝑢‖8𝐻1 + ‖𝑛‖12 + 󵄩󵄩󵄩󵄩𝑞2󵄩󵄩󵄩󵄩4𝐻1
+ 󵄩󵄩󵄩󵄩𝑞1󵄩󵄩󵄩󵄩4𝐻2𝛼 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩4𝐻1 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩8𝐻1 + 1) − 2
⋅ Re∫
𝐷
𝑊̇1 (−Δ)𝛼 𝑢𝑡𝑦 − 2Re∫

𝐷
𝑢 (−Δ)𝛼 𝑢𝑊̇2𝑑𝑥

+ 2Re∫
𝐷
𝑖𝑛 (−Δ)𝛼 𝑢𝑊̇1𝑑𝑥 + 2∫

𝐷
𝑛𝑥𝑊̇2𝑥𝑑𝑥 + 4

⋅ Re∫
𝐷
(−Δ)𝛼 𝑢𝑊̇1𝑥𝑑𝑥.

(71)

Multiplying by 𝑒𝜂𝑡, integrating from 0 to 𝑡, and taking
expecting on both sides of (71), by (46), we obtain

E𝐻1 (𝑡) ≤ 𝑒−𝛽𝑡E𝐻1 (0) + 𝑐 (𝑓, 𝑔, 𝑞1, 𝑞2, 𝑢0)
≤ 𝑐 (𝑓, 𝑔, 𝑞1, 𝑞2, 𝑢0) ≤ 𝐶, 𝑡 > 0, (72)

where 𝐶 is independent of 𝑇. Since
𝐻1 (𝑡) ≥ 12 (󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑢󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑛𝑥󵄩󵄩󵄩󵄩2)

− 𝑐 (󵄩󵄩󵄩󵄩𝑢𝑥󵄩󵄩󵄩󵄩8 + ‖𝑛‖4 + 1 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2) ,
(73)

for any 𝑡 > 0, we obtain
E (󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑢󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑛𝑥󵄩󵄩󵄩󵄩2)

≤ 𝑐E (󵄩󵄩󵄩󵄩𝑢𝑥󵄩󵄩󵄩󵄩8 + ‖𝑛‖4 + 1 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2) + 𝑐E𝐻1 (𝑡) ≤ 𝐶. (74)

where 𝐶 is independent of 𝑇.
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Next step, we estimate𝐻𝑝1 (𝑡) for 𝑝 ≥ 1. On the one hand,
applying the Itô formula to𝐻𝑝1 (𝑡), we obtain
E𝐻𝑝1 (𝑡)
≤ 𝑒(−𝜂𝑡/2)𝑡E𝐻𝑝1 (0) + 𝑐

+ 𝑐E∫𝑡
0
𝑒(−𝜂𝑡/2)(𝑡−𝑠) (󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑢󵄩󵄩󵄩󵄩8𝑝 + ‖𝑛‖12𝑝 + 1) 𝑑𝑠.

(75)

By (45), we obtain

E𝐻𝑝0 (𝑡) ≤ 𝑒−(𝜂𝑝/2)𝑡E𝐻𝑝0 (0) + 𝑐 ≤ 𝐶, 𝑡 > 0, (76)

where 𝐶 is independent of 𝑇. Thus, from (73), for any 𝑡 > 0,
we get

E (󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑢󵄩󵄩󵄩󵄩2𝑝 + 󵄩󵄩󵄩󵄩𝑛𝑥󵄩󵄩󵄩󵄩2𝑝) ≤ 𝐶. (77)

Integrating from 0 to 𝑡 and taking the supremum and
expectation on both sides of (71), as with the estimates in
Lemma 4 for each term, we deduce

E sup
0≤𝑡≤𝑇

𝐻1 (𝑡) ≤ 𝐶𝑇 (𝑓, 𝑔, 𝑞1, 𝑞2, 𝑢0) . (78)

On the other hand, for𝐻𝑝0 (𝑡) (𝑝 ≥ 1), integrating from 0 to 𝑡
and taking the supremum and the expectation on both sides
of (71), and estimating each term, we get

E sup
0≤𝑡≤𝑇

𝐻𝑝1 (𝑡) ≤ E𝐻𝑝1 (0) + 𝐶𝑇 (𝑓, 𝑔, 𝑞1, 𝑞2, 𝑢0, 𝑛0)
≤ 𝐶𝑇 (𝑓, 𝑔, 𝑞1, 𝑞2, 𝑢0, 𝑛0) .

(79)

Therefore, from (73), it is inferred that for 𝑝 ≥ 1
E sup
0≤𝑡≤𝑇

(󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑢󵄩󵄩󵄩󵄩2𝑝 + 󵄩󵄩󵄩󵄩𝑛𝑥󵄩󵄩󵄩󵄩2𝑝)
≤ 𝐶𝑇 (𝑓, 𝑔, 𝑞1, 𝑞2, 𝑢0, 𝑛0) .

(80)

So then, we have

E sup
0≤𝑡≤𝑇

‖(𝑢, 𝑛)‖2𝑝𝑉1 ≤ 𝐶𝑇 (𝑓, 𝑔, 𝑞1, 𝑞2, 𝑢0, 𝑛0) , (81)

and the proof is complete.

3.3. A Priori Estimates in 𝑉2. By using the similar method
and idea as Sections 3.1 and 3.2, we can achieve a priori
estimates in𝑉2. For simplicity, we only provide the idea of the
proof.Using (1)-(2) and applying the Itô formula to ‖(−Δ)𝛼𝑛‖2
and ‖(−Δ)𝛼𝑢𝑥‖2, respectively, we can get some inequalities
by Höder’s inequality, the Gagliardo-Nirenberg, and Young’s
inequality. After that, taking the supremum and expectation
for inequalities and estimating on ‖(−Δ)𝛼𝑛‖2 and ‖(−Δ)𝛼𝑢𝑥‖2
by Gronwall-type, we can deduce the following lemma.

Lemma 6. Provided that (𝑢0, 𝑛0) ∈ 𝑉2, 𝑞2 ∈ 𝐻2(𝐷), 𝑞1 ∈𝐻3𝛼(𝐷), and 𝑓, 𝑔 ∈ 𝐻2(𝐷), then for any 𝑇 > 0 and 𝑝 ≥ 1, we
have (𝑢, 𝑛) ∈ 𝐿∞(0,∞; 𝐿2𝑝(Ω; 𝑉2)) ∩ 𝐿2𝑝(Ω; 𝐿∞(0, 𝑇; 𝑉2)).

4. Proofs of Theorems 7 and 8

Based on the prior estimate, we acquire the existence and
uniqueness of a solution for the stochastic fractional long-
short wave equations (1)-(2) in spaces 𝑉1.
Theorem 7. If (𝑢0, 𝑛0) ∈ 𝑉1, 𝑞2 ∈ 𝐻1(𝐷), 𝑞1 ∈ 𝐻2𝛼(𝐷),
and 𝑓, 𝑔 ∈ 𝐻1(𝐷), then there exists a unique solution (𝑢, 𝑛) ∈(R+; 𝑉1), almost surely satisfying (1)-(2). In addition, (𝑢, 𝑛) is
continuous from R+ to 𝑉1.
Proof. First, we know that (𝑛0, 𝑢0) ∈ 𝑉1. Let {𝑒𝑖(𝑥)}∞𝑖=1 be an
orthonormal basis of eigenvectors of the Laplace operator on𝐷, which is an orthonormal basis of 𝐿2(𝐷). Consider 𝑃𝑘 as
the projection from 𝐿2(𝐷) onto the space spanned by {𝑒𝑖 : 𝑖 =1, 2, . . . , 𝑘}. Then the approximation solution (𝑢𝑘, 𝑛𝑘) solves
the approximation problem

𝑖𝑢𝑘𝑡 − (−Δ)𝛼 𝑢𝑘 − 𝑃𝑘 (𝑛𝑘𝑢𝑘) + 𝑖𝛿𝑢𝑘 = 𝑊̇𝑘1 + 𝑓𝑘,
𝑛𝑘𝑡 + 𝑃𝑘 (󵄨󵄨󵄨󵄨󵄨𝑢𝑘󵄨󵄨󵄨󵄨󵄨2)𝑥 + 𝛽𝑛𝑘 = 𝑔𝑘 + 𝑊̇𝑘2 ,

(82)

where 𝑃𝑘 is the projector onto the first 𝑘 vectors 𝑒𝑖, 𝑊̇𝑘1 =𝑃𝑘𝑊̇1, 𝑊̇𝑘2 = 𝑃𝑘𝑊̇2, and 𝑃𝑘 commutes with the operator(−Δ)𝛼. We will treat the above equations pathwise by intro-
ducing the following random processes solving

𝑖𝜉𝑘𝑡 − (−Δ)𝛼 𝜉𝑘 + 𝑖𝛿𝜉𝑘 = 𝑊̇𝑘1 ,
𝜁𝑘 + 𝛽𝜁𝑘 = 𝑊̇𝑘2 ,

(83)

with periodic boundary conditions and initial conditions

𝜁 (𝑥, 𝑡) = 𝜂 (𝑥 + 2𝜋, 𝑡) ,
𝜉 (𝑥, 𝑡) = 𝜉 (𝑥 + 2𝜋, 𝑡) = 0,
𝜁𝑡 (𝑥, 0) = 0,
𝜁 (𝑥, 0) = 0,
𝜉 (0, 𝑡) = 0,

𝑥 ∈ 𝐷,
where 𝛿 > 0, 𝛽 > 0.

(84)

In accordance with the same method as in Section 3, for
any 𝑇 > 0 and almost all 𝜔 ∈ Ω, we have

𝜁 ∈ 𝐶 (0, 𝑇;𝐻10 (𝐷)) ,
𝜉 ∈ 𝐶 (0, 𝑇;𝐻2𝛼 (𝐷) ∩ 𝐻𝛼0 (𝐷)) . (85)

Therefore, we can get the following estimate:

E (󵄩󵄩󵄩󵄩𝜂𝑥󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩(−Δ)𝛼 𝜉󵄩󵄩󵄩󵄩2) ≤ 𝐶, (86)

where a positive constant 𝐶 is independent of 𝑇. Moreover,
for any 𝑇 > 0,

E sup
0≤𝑡≤𝑇

(󵄩󵄩󵄩󵄩𝜂𝑥󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩(−Δ)𝛼 𝜉󵄩󵄩󵄩󵄩2) ≤ 𝐶𝑇 (87)
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holds for a positive constant 𝐶𝑇 dependent on 𝑇. Set 𝐵𝑘,𝑀 =(𝑈𝑘,𝑀, 𝑁𝑘,𝑀) as the solution of the following equations:

𝑖𝑈𝑘,𝑀𝑡 − (−Δ)𝛼𝑈𝑘,𝑀 − 𝜒𝑀 (󵄩󵄩󵄩󵄩󵄩𝐵𝑘,𝑀󵄩󵄩󵄩󵄩󵄩𝑉1)𝑃𝑘 (𝑛𝑘,𝑀𝑢𝑘,𝑀)
+ 𝑖𝛿𝑈𝑘,𝑀 = 𝑓𝑘, (88)

𝑁𝑘,𝑀𝑡 + 𝜒𝑀 (󵄩󵄩󵄩󵄩󵄩𝐵𝑘,𝑀󵄩󵄩󵄩󵄩󵄩𝑉1)𝑃𝑘 (󵄨󵄨󵄨󵄨󵄨𝑢𝑘,𝑀󵄨󵄨󵄨󵄨󵄨2)𝑥 + 𝛽𝑁𝑘,𝑀 = 𝑔𝑘, (89)

𝑁𝑘,𝑀 (𝑥, 0) = 𝑃𝑘𝑛0,
𝑈𝑘,𝑀 (𝑥, 0) = 𝑃𝑘𝑢0.

(90)

Let 𝑛𝑘,𝑀 = 𝑁𝑘,𝑀+𝑃𝑘𝜁, 𝑢𝑘,𝑀 = 𝑈𝑘,𝑀+𝑃𝑘𝜉, and 𝜒𝑀 ∈ 𝐶∞0 (R)
satisfy 𝜒𝑀(𝑟) = 1 for |𝑟| ≤ 𝑀 and 𝜒𝑀(𝑟) = 0 for |𝑟| ≥ 2𝑀. It
is easy to see that (88)-(89) are random differential equations
with Lipschitz nonlinearity in finite dimension. Afterwards,
for almost all 𝜔 ∈ Ω, we have a unique solution (𝑈𝑘,𝑀, 𝑁𝑘,𝑀)
for (88)-(89). We define the stopping time as follows:

𝜏𝑀 = inf {𝑡 > 0 : ‖𝐵‖𝑘,𝑀𝑉1 ≥ 𝑀} , (91)

if the set {‖𝐵‖𝑘,𝑀𝑀 ≥ 𝑀} is nonempty, or else 𝜏𝑀 = ∞. Because𝜏𝑀 is increasing in𝑀, let 𝜏∞ = lim𝑀→∞𝜏𝑀 almost surely. For𝑡 < 𝜏𝑀, we obtain
(𝑈𝑘,𝑀, 𝑁𝑘,𝑀) + (𝑃𝑘𝜉, 𝑃𝑘𝜁) , (92)

satisfying (82). On the basis of the estimates given in Sec-
tion 3.2 and (86)-(87), for any 𝑡 ≥ 0, we obtain

E
󵄩󵄩󵄩󵄩󵄩(𝑈𝑘,𝑀, 𝑁𝑘,𝑀)󵄩󵄩󵄩󵄩󵄩2𝑉1 ≤ 𝐶 (𝑓, 𝑔, 𝑞1, 𝑞2, 𝑛0, 𝑢0) , (93)

where the positive constant 𝐶(𝑓, 𝑔, 𝑞1, 𝑞2, 𝑛0, 𝑢0), which is
dependent on 𝑇 and𝑀. And for 𝑇 > 0, we obtain

E sup
0≤𝑡≤𝑇∧𝜏𝑀

󵄩󵄩󵄩󵄩󵄩(𝑈𝑘,𝑀, 𝑁𝑘,𝑀)󵄩󵄩󵄩󵄩󵄩2𝑉1
≤ 𝐶𝑇 (𝑓, 𝑔, 𝑞1, 𝑞2, 𝑛0, 𝑢0) ,

(94)

with the positive constant 𝐶(𝑓, 𝑔, 𝑞1, 𝑞2, 𝑛0, 𝑢0), which is
dependent on 𝑇 but independent of 𝑀. Let 𝑇 ∧ 𝜏𝑀 =
min{𝑇, 𝜏𝑀}. On the other side, we get

E
󵄩󵄩󵄩󵄩󵄩𝑈𝑘,𝑀 (𝑇 ∧ 𝜏𝑀) ,𝑁𝑘,𝑀 (𝑇 ∧ 𝜏𝑀)󵄩󵄩󵄩󵄩󵄩2𝑉1
≥ E [𝐼 (𝜏𝑀 ≤ 𝑇)
⋅ 󵄨󵄨󵄨󵄨󵄨(𝑈𝑘,𝑀 (𝑇 ∧ 𝜏𝑀) ,𝑁𝑘,𝑀 (𝑇 ∧ 𝜏𝑀))󵄨󵄨󵄨󵄨󵄨2𝑉1] ≥ 𝑀2P (𝜏
≤ 𝑇) ,

(95)

where 𝐼(𝜏𝑀 ≤ 𝑇) = 1 for 𝜏𝑀 ≤ 𝑇 and 𝐼(𝜏𝑀 ≤ 𝑇) = 0 for𝜏𝑀 > 𝑇. Then, by (93), we get

P (𝜏𝑀 ≤ 𝑇) ≤ 1𝑀2𝐶 (𝑓, 𝑔, 𝑞1, 𝑞2, 𝑛0, 𝑢0) . (96)

In the light of the above estimate and the Borel-Cantelli
lemma, for any 𝑇 > 0, we obtain

P (𝜏∞ > 𝑇) = 1. (97)

So we know that

(𝑈𝑘, 𝑁𝑘) = lim
𝑀→∞

(𝑈𝑘,𝑀, 𝑁𝑘,𝑀) (98)

satisfies the following random differential equations:

𝑖𝑈𝑘𝑡 − (−Δ)𝛼𝑈𝑘 − 𝑃𝑘 (𝑛𝑘, 𝑢𝑘) + 𝑖𝛿𝑈𝑘 = 𝑓𝑘, (99)

𝑁𝑘𝑡 + 𝑃𝑘 (󵄨󵄨󵄨󵄨󵄨𝑢𝑘,𝑀󵄨󵄨󵄨󵄨󵄨2)𝑥 + 𝛽𝑁𝑘 = 𝑔𝑘, (100)

with initial conditions

𝑈𝑘 (0) = 𝑃𝑘𝑢0,
𝑁𝑘 (0) = 𝑃𝑘𝑛0.

(101)

Then (𝑈𝑘, 𝑁𝑘) satisfies the estimates (93) and (94), and for
any 𝑡 ≥ 0, we find that (𝑢𝑘, 𝑛𝑘) = (𝑈𝑘, 𝑁𝑘) + (𝑃𝑘𝜉, 𝑃𝑘𝜁) is the
unique global solution of (82).

And then, we will investigate (99)-(100) for fixed 𝜔.
Firstly, by (94), for any 𝑇 > 0, we can know that

P( ∞⋃
𝐿=1

∞⋂
𝑙=1

∩∞𝑘=𝑙 { sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩(𝑈𝑘, 𝑁𝑘)󵄩󵄩󵄩󵄩󵄩2𝑉1 ≥ 𝐿}) = 0. (102)

We let

Ω̃ = ∞⋃
𝐿=1

∞⋂
𝑙=1

∩∞𝑘=𝑙 { sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩(𝑈𝑘, 𝑁𝑘)󵄩󵄩󵄩󵄩󵄩2𝑉1 ≤ 𝐿} . (103)

Then P(Ω \ Ω̃) = 0. Thus, for any fixed 𝜔 ∈ Ω̃, there exists𝑟(𝜔) with 0 < 𝑟(𝜔) < ∞ such that

sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩(𝑈𝑘, 𝑁𝑘)󵄩󵄩󵄩󵄩󵄩2𝑉1 ≤ 𝑟 (𝜔) . (104)

Thenwe can extract a subsequence of (𝑈𝑘, 𝑁𝑘), which are still
denoted by (𝑈𝑘, 𝑁𝑘), such that

𝑈𝑘 ∗⇀𝑈 in 𝐿∞ (0, 𝑇;𝐻2𝛼 (𝐷) ∩ 𝐻𝛼0 (𝐷)) ,
𝑁𝑘 ∗⇀𝑁 in 𝐿∞ (0, 𝑇;𝐻10 (𝐷)) . (105)

These convergences are sufficient to pass the limit 𝑘 → ∞ in
linear terms; however, in fact, for nonlinear terms, we need a
strong convergence of𝑈𝑘. From (100) and the estimate (104),
it is easy to get 𝑈𝑘𝑡 ∈ 𝐿∞(0, 𝑇; 𝐿2(𝐷)). Further, we can extract
a subsequence of 𝑈𝑘 which is still denoted by 𝑈𝑘 such that

𝑈𝑘 󳨀→ 𝑈 strongly in 𝐿∞ (0, 𝑇;𝐻10 (𝐷)) . (106)

For the nonlinear term, we can pass the limit 𝑘 → ∞
by a standard procedure. Thus, we prove that (𝑈,𝑁) ∈𝐿∞(0, 𝑇; 𝑉1) is a weak solution of

𝑖𝑈𝑡 − (−Δ)𝛼𝑈 − 𝑛𝑢 + 𝑖𝛿𝑈 = 𝑓,
𝑁𝑡 + (|𝑢|2)

𝑥
+ 𝛽𝑁 = 𝑔 (107)
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with initial conditions

𝑈 (0) = 𝑢0,
𝑁 (0) = 𝑛0,

𝑥 ∈ 𝐷.
(108)

Then (𝑢, 𝑛) = (𝑈,𝑁) + (𝜉, 𝜁) is a solution of (1)-(2) and
satisfies the estimates given in Section 3.2. The continuity
of the solution can be proved in the following. For any𝜔 ∈ Ω̃, (|𝑢|2)𝑥 ∈ 𝐿∞(0, 𝑇;𝐻01 (𝐷)), it is obvious that 𝑁𝑡 =−(|𝑢|2)𝑥 − 𝛽𝑁 + 𝑔 ∈ 𝐻10 (𝐷). Then, we obtain that there is𝑁 ∈ 𝐶(0, 𝑇;𝐻10 (𝐷)) for almost all 𝜔 ∈ Ω by Lemma 3 in [23].
Noticing 𝑈𝑡 ∈ 𝐿∞(0, 𝑇; 𝐿2(𝐷)) almost surely and applying
similar methods, we can get 𝑈 ∈ 𝐶(0, 𝑇;𝐻2𝛼(𝐷) ∩ 𝐻𝛼0 (𝐷))
according to [21]. So we get (𝑢, 𝑛) ∈ 𝐶(0, 𝑇; 𝑉1) almost
surely by definition of 𝑈 and 𝑁. Thus, the solution (𝑢, 𝑛) is
continuous from [0, 𝑇] to 𝑉1 almost surely.

Because the noise is additive, we can use the same
approach as [7].Therefore, the solution (𝑢, 𝑛) is unique almost
surely in 𝐿∞(0, 𝑇; 𝑉1).
Theorem 8. If (𝑢0, 𝑛0) ∈ 𝑉2, 𝑞2 ∈ 𝐻2(𝐷), 𝑞1 ∈ 𝐻3𝛼(𝐷),
and 𝑓, 𝑔 ∈ 𝐻2(𝐷), then there exists a unique solution(𝑢, 𝑛) ∈ (R+; 𝑉2) almost surely satisfy (1)-(2). Moreover, (𝑢, 𝑛)
is continuous from R+ to 𝑉2.

As a matter of fact, fromTheorems 7 and 8, a continuous
random dynamical system can be defined in 𝑉1 and 𝑉2,
respectively. Then we can, respectively, construct a random
attractor endowed with the weak topology for the continuous
random dynamical system in 𝑉1 and 𝑉2.

The proof of Theorem 8 is similar to that of Theorem 7.
Here we omit the detail of the proof.

5. Proofs of Theorems 10 and 11

In this section, the asymptotic behavior of solution for
the corresponding problem is studied. We will construct a
random attractor for stochastic fractional long-short wave
equations in V1 equipped with the weak topology. In [13–
16], we can obtain some basic concepts related to random
attractors for random dynamical systems.

Motivated by [13, 14], we can find the following existence
result for a random attractor for a continuous RDS. It is a
sufficient condition for the existence of random attractors.

Theorem9 (see [13, 14]). AssumeΦ is a RDS on a Polish space(𝐸, 𝑑) and there exists a random compact set 𝐾(𝜔) absorbing
every bounded deterministic set𝐷 ⊂ 𝐸.Thenwe define a global
random attractor for RDS Φ by

A (𝜔) = ⋂
𝜏≥0

⋃
𝑡≥𝜏

Φ(𝑡, 𝜃−𝑡𝜔,𝐾 (𝜃−𝑡𝜔)). (109)

Next step, according to Theorem 9 and the priori esti-
mates in Section 3, we research the random attractors for the
stochastic long-short wave equations in 𝑉1 and 𝑉2.

Theorem 10. If (𝑢0, 𝑛0) ∈ 𝑉1, 𝑞1 ∈ 𝐻1(𝐷), 𝑞2 ∈ 𝐻2𝛼(𝐷),
and 𝑓, 𝑔 ∈ 𝐻1(𝐷), then (1)-(2) have a global random weak
attractorA(𝜔) which is a random tempered compact set in 𝑉1
endowed with the weak topology.

Proof. On the basis of the former analysis, we can consider
the properties of solution a (𝑈,𝑁) of the system and it (107)
has a unique solution (𝑈,𝑁) ∈ 𝐶(0, 𝑇; 𝑉1) for almost all𝜔 ∈ Ω. Noticing that system (107) has coefficients driven by𝜃𝑡, a random dynamical system can be defined by (𝑈,𝑁) on𝑉1. Thus, (𝑢, 𝑛) = (𝑈 + 𝜉,𝑁 + 𝜁) also defines a continuous
randomdynamical systemon𝑉1, which is denoted byΦ(𝑡, 𝜔),
andΦ(𝑡, 𝜔) is weakly continuous almost surely on 𝑉1. 𝐵(0, 𝑟)
denotes the ball center at 0with radius 𝑟 in𝑉1. Using estimates
made in accordancewith Section 3, there is a randomvariable𝑅(𝜔) such that, for any 𝑟 > 0, (𝑢, 𝑛) ∈ 𝐵(0, 𝑟).Therefore, there
exists a random time 𝑡𝑟(𝜔) > 0, such that, for all 𝑡 > 𝑡𝑟(𝜔) and
almost all 𝜔 ∈ Ω,󵄩󵄩󵄩󵄩Φ (𝑡, 𝜃−𝑡𝜔) (𝑢0, 𝑛0)󵄩󵄩󵄩󵄩𝑉1 ≤ 𝑅 (𝜔) . (110)

We define the random attractorA(𝜔) as follows:
A (𝜔) = ⋂

𝜏≥0

⋃
𝑡≥𝜏

Φ(𝑡, 𝜃−𝑡𝜔,𝐾 (𝜃−𝑡𝜔))𝑉𝜔1 , (111)

where the closure is taken with respect to the weak topology
of𝑉1. Next we prove thatA(𝜔) is tempered. According to the
estimates obtained in Section 3, we obtain

E sup
0≤𝑡≤1

𝑅2 (𝜃𝑡𝜔) < ∞. (112)

Then, from Birkhoff ’s ergodic Theorem [24],

lim
𝑠→±∞

sup𝑡∈[0,1]𝑅2 (𝜃𝑡+𝑠𝜔)
𝑠 = 0 (113)

on a 𝜃-invariant subset of Ω with full probability measure;
that is, 𝑅(𝜔) is tempered. So we get that A(𝜔) is tempered.
The proof is completed.

Theorem 11. If (𝑢0, 𝑛0) ∈ 𝑉2, 𝑞1 ∈ 𝐻2(𝐷), 𝑞2 ∈ 𝐻3𝛼(𝐷),
and 𝑓, 𝑔 ∈ 𝐻2(𝐷), then (1)-(2) have a global random weak
attractorA(𝜔) which is a random tempered compact set in 𝑉2
endowed with the weak topology.

Based on Theorem 10, we can prove Theorem 11 using
the same methods and ideas of proof. More precisely, there
exists a random attractor for the stochastic fractional long-
short wave equations in 𝑉2.
Theorem 12. If (𝑢0, 𝑛0) ∈ 𝑉2, 𝑞1 ∈ 𝐻2(𝐷), 𝑞2 ∈ 𝐻4𝛼(𝐷),
then (1)-(2) have one stationary measure on 𝑉1 and 𝑉2.
Proof. If (𝑢0, 𝑛0) ∈ 𝑉2, (1)-(2) has a unique solution (𝑢, 𝑛)with(𝑢(0), 𝑛(0)) = (𝑢0, 𝑛0) by the results given in Sections 3 and 4,
which, for any 𝑡 > 0, satisfies

E (󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩(−Δ)𝛼 𝑢𝑥󵄩󵄩󵄩󵄩2) ≤ 𝐶, (114)

for a positive constant 𝐶 > 0 which is independent of 𝑡 > 0.
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Let 𝜇𝑡 be the distribution of (𝑛𝑡, 𝑛, 𝐸) for 𝑡 ≥ 0. According
to the classical Bogolyubov-Krylov argument [22], we define

𝜇𝑡 = 1𝑡 ∫𝑡
0
𝜇𝑠𝑑𝑠 (115)

as

𝜇𝑡 (Γ) = 1𝑡 ∫𝑡
0
𝜇𝑠 (Γ) 𝑑𝑠 (116)

for any Borel set Γ of 𝑉1: namely, Γ ∈ B(𝑉1). From (114), we
obtain

∫
𝑉1

‖(𝑢, 𝑛)‖2𝑉2 𝜇𝑡 (𝑑V) = 1𝑡 ∫𝑡
0
E ‖(𝑢 (𝑠) , 𝑛 (𝑠))‖2𝑉2 𝑑𝑠

≤ 𝐶.
(117)

According to Chebyshev’s inequality and the fact that𝑉2 has a
compact embedding into 𝑉1, {𝜇𝑡}𝑡≥0 is tight in 𝑉1. Then there
exists a sequence {𝜇𝑡𝑘} with 𝑡𝑘 → ∞ as 𝑘 → ∞ and a
probability measure 𝜇 on 𝑉1 such that {𝜇𝑡𝑘} → 𝜇 weakly as𝑘 → ∞. Thus, using the standard argument as in [24], 𝜇
is a stationary measure for stochastic fractional long-short
wave equations on 𝑉1. In addition, from (114), 𝜇 is in fact
supported on 𝑉2; that is to say, 𝜇 is a stationary measure for
stochastic fractional long-short wave equations on 𝑉2. The
proof is completed.
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