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In this paper, we propose a new hybrid direct search method where a frame-based PRP conjugate gradients direct search algorithm
is combined with radial basis function interpolation model. In addition, the rotational minimal positive basis is used to reduce
the computation work at each iteration. Numerical results for solving the CUTEr test problems show that the proposed method is
promising.

1. Introduction

In this paper, we consider the following problem:

min
𝑥∈R𝑛

𝑓 (𝑥) , (1)

where function𝑓 is assumed to be continuously differentiable
fromR𝑛 intoR, and the derivative information is unavailable
or untrustworthy, for example, because of noise and using
finite differences. Problem (1) has numerous applications in
engineering, such as the helicopter rotor blade design [1, 2],
the aeroacoustic shape design [3], groundwater community
problems [4], and medical image registration problems [5].

There are two main methods for solving (1). The first
class of methods is the model based methods, which are
constructed bymeans ofmultivariate interpolation, including
under and overdetermined. These methods were introduced
by Powell [6] and Winfield [7] and were developed by [8–
11]. The second class of methods is the direct search meth-
ods which are based on the comparison rules of objective
function values. These methods were pioneered by Hooke
and Jeeves [12]. The convergence theory was established
by Torczon [13, 14]. Audet and Dennis [15] proposed a
general framework for direct search method. Coope and
Price [16] extended the PRP method [17, 18] to solve (1) and
presented a frame-based conjugate gradients direct search

algorithm (Max-PRP for short). In each iteration, Max-
PRP employed the fixed maximal positive basis to estimate
the first and second gradients; then the search direction is
determined by employing the PRP formula. Numerical tests
showed that the Max-PRP was effective on a wide variety
of unconstrained optimization problem. In addition, some
classical and modern direct search methods were introduced
by Kolda et al. [19].

Generally, model based methods are more efficient than
direct searchmethods in that they are able to exploit structure
inherently in the problem. But direct search methods are
simpler to code and to parallelize. Therefore, it is natural to
try to combine both methods. In 2010, Custódio et al. [20]
proposed a hybrid method integrating minimum Frobenius
norm quadratic interpolation models in a direct search
framework and numerical results showed that the addition
of quadratic interpolationmodels improved the performance
of the direct search method. In 2013, Conn and Le Digabel
[21] showed that the use of quadratic interpolation models
can improve the efficiency of the mesh adaptive direct search
method.

The above hybrid algorithms were based on the quadratic
interpolation models. In 2008, Wild et al. [22] presented
a new derivative-free algorithm (ORBIT for short), which
employed radial basis function (RBF) interpolation models.
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The RBF interpolation models allowed ORBIT to interpolate
nonlinear functions using fewer function evaluations than
the quadratic interpolation models. In 2013, Wild and Shoe-
maker [23] proved the global convergence of the ORBIT
under somemild assumptions.Numerical results showed that
the method using RBF interpolation models outperformed
methods using quadratic interpolation models.

Motivated by the efficiency of the ORBIT, we propose
a new hybrid direct search method, which combines the
frame-based conjugate gradients strategies with the RBF
interpolation models. In each iteration, a minimal positive
basis is used to construct the frame. In a maximal positive
basis, 2𝑛 function values are computed, while, in a minimal
positive basis, 𝑛 + 1 function values are evaluated. So the
computation work in the new hybrid direct search method
can be reduced. In addition, when the trial point of RBF
interpolation models cannot satisfy the decrease condition,
we employ PRP formula to get the search direction, which is
similar to the Max-PRP. Furthermore, we rotate the minimal
positive basis according to the local topography of objective
function, making our method more effective in practice.
The convergence is established under some mild conditions.
Some numerical results show that the proposed method is
promising.

This paper is organized a s follows. In Section 2, we
present some basic notions for positive basis, frame, and
describe our method. In Section 3, we prove the convergence
of the proposedmethod. In Section 4, numerical results show
the efficiency of method derived in this paper compared to
Max-PRP [16]. Concluding remarks are given in Section 5.
The default norm used in this paper is Euclidean.

2. The New Hybrid Direct Search Method

We first state the definition about positive basis, which can be
found in [24].

Definition 1. Positive basisV inR𝑛 is a set of vectors with the
following two properties:

(i) Every vector in R𝑛 is a nonnegative linear combina-
tion of the members ofV.

(ii) No proper subset ofV satisfies (𝑖).
It is easy to know that cardinality of any positive basisV

satisfies 𝑛 + 1 ≤ |V| ≤ 2𝑛. Two famous and simple examples
of positive bases are

Vmin = {V1, . . . , V𝑛, − 𝑛∑
𝑖=1

V𝑖} ,
Vmax = {V1, . . . , V𝑛, −V1, . . . , −V𝑛} ,

(2)

where {V1, . . . , V𝑛} is a basis for R𝑛, Vmin represents the
minimal positive basis, and Vmax represents the maximal
positive basis.

In addition, we give some concepts about frames, which
were proposed by Coope and Price [25, 26].

Definition 2. A frame can be defined as

Φ = {𝑥 + ℎV: V ∈V} , (3)

where 𝑥 ∈ R𝑛 is a central point of a frame, ℎ > 0 is frame size,
andV is a positive basis in R𝑛.

Definition 3. A frameΦ is a minimal frame, if and only if

𝑓 (𝑥) ≤ 𝑓 (𝑦) , ∀𝑦 ∈ Φ. (4)

Definition 4. A frameΦ is a quasi minimal frame if and only
if

𝑓 (𝑥) ≤ 𝑓 (𝑦) + 𝜖, ∀𝑦 ∈ Φ, (5)

where 𝜖 = ℎ1+𝜇, 𝜇 is a positive constant, and the correspond-
ing central point 𝑥 is called a quasi minimal point.

Let 𝑥𝑘 be 𝑘th iterate. We will discuss the strategy of RBF
interpolationmodel, search direction, and rotation of positive
basis in detail below.

2.1. RBF Interpolation Model. Choose a positive basis V𝑘 ={V𝑘1 , V𝑘2 , . . . , V𝑘𝑞} (𝑞 ≥ 𝑛 + 1) and obtain a set of interpolate data
points 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛𝑞} ∈ R𝑛 (𝑛𝑞 ≥ 𝑞+1), where 𝑦1 = 𝑥𝑘,𝑦2 = 𝑥𝑘 + ℎ𝑘V𝑘1 , . . . , 𝑦𝑞+1 = 𝑥𝑘 + ℎ𝑘V𝑘𝑞, ℎ𝑘 > 0 is the frame
size, and the other points of set 𝑌 are chosen in the subset of
previously evaluated points.

RBF interpolationmodel is a popularmodel for optimiza-
tion, and some theory and implementations can be found in
[27]. Corresponding to the set of interpolate data points 𝑌,
we get the following RBF interpolation model:

�̂�𝑘 (𝑥) =
𝑛𝑞∑
𝑖=1

𝜆𝑖𝜙 (𝑥 − 𝑦𝑖) + 𝑟∑
𝑗=1

𝛾𝑗𝑝𝑗 (𝑥) , (6)

where 𝜙 : R+ → R is a radial basis function and 𝜆1, . . .,𝜆𝑛𝑞 , 𝛾1, . . . , 𝛾𝑟 ∈ R are parameters to be determined.𝑝1, . . . , 𝑝𝑟
are polynomial tails used in the context of RBF interpolation
models, which most frequently are linear.

In addition, coefficients 𝜆1, . . . , 𝜆𝑛𝑞 are required to satisfy
𝑛𝑞∑
𝑖=1

𝜆𝑖𝑝𝑗 (𝑦𝑖) = 0, 𝑗 = 1, . . . , 𝑟. (7)

These, in conjunction with 𝑛𝑞 interpolation conditions�̂�𝑘(𝑦𝑙) = 𝑓(𝑦𝑙), 𝑙 = 1, . . . , 𝑛𝑞.
We define the linear system:

[Φ 𝑃
𝑃𝑇 0][

Λ
Γ] = [

f
0
] , (8)

where Λ = [𝜆1, . . . , 𝜆𝑛𝑞]𝑇, Γ = [𝛾1, . . . , 𝛾𝑟]𝑇, f = [𝑓(𝑦1),. . . , 𝑓(𝑦𝑛𝑞)]𝑇, and Φ𝑙𝑖 = 𝜙(‖𝑦𝑙 − 𝑦𝑖‖) for 𝑙, 𝑖 ∈ {1, . . . , 𝑛𝑞},𝑃𝑖𝑗 = 𝑝𝑗(𝑦𝑖) for 𝑖 ∈ {1, . . . , 𝑛𝑞}, 𝑗 ∈ {1, . . . , 𝑟}. We employ
null-space method to solve system (8), which is similar to the
approach of [22].
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Then, we minimize the RBF interpolation model by
solving the following problem:

min
𝑥∈𝐵(𝑥𝑘;Δ 𝑘)

�̂�𝑘 (𝑥) , (9)

where 𝐵(𝑥𝑘; Δ 𝑘) = {𝑥 ∈ R𝑛: ‖𝑥 − 𝑥𝑘‖ ≤ Δ 𝑘}, Δ 𝑘 =𝛿𝑘ℎ𝑘max {‖V𝑘1‖, . . . , ‖V𝑘𝑞‖}, and 𝛿𝑘 is the radius factor parame-
ter.

2.2. PRP Direction. Consider the following linear model:

𝑚𝑘 (𝑥) = 𝑓 (𝑥𝑘) + 𝑔𝑇𝑘 (𝑥 − 𝑥𝑘) , (10)

where 𝑔𝑘 ∈ R𝑛. The coefficients can be determined by 𝑞
regression interpolation conditions:

𝑚𝑘 (𝑥𝑘 + ℎ𝑘V𝑘𝑙 ) = 𝑓 (𝑥𝑘 + ℎ𝑘V𝑘𝑙 ) , 𝑙 = 1, . . . , 𝑞. (11)

Then, we have that

𝑓 (𝑥𝑘 + ℎ𝑘V𝑘𝑙 ) = 𝑓 (𝑥𝑘) + ℎ𝑘𝑔𝑇𝑘 V𝑘𝑙 , 𝑙 = 1, . . . , 𝑞. (12)

This system can be solved by the method of least squares. For
example, if we choose the positive basisV𝑘 asVmin, and V𝑖 =𝑒𝑖 (𝑖 = 1, . . . , 𝑛), where 𝑒𝑖 is 𝑖th unit vector, then 𝑖th element
of 𝑔𝑘 is calculated according to the following formula:

(𝑔𝑘)𝑖 = 1ℎ𝑘 (𝑓 (𝑥𝑘 + ℎ𝑘𝑒𝑖)

− 𝑓 (𝑥𝑘 − ℎ𝑘𝑒) + ∑𝑛𝑗=1 𝑓 (𝑥𝑘 + ℎ𝑘𝑒𝑗)𝑛 + 1 ) ,
(13)

where 𝑒 = ∑𝑛𝑗=1 𝑒𝑗. The PRP direction is obtained by

𝑑𝑘
= {{{{{{{
−𝑔𝑘 if 𝑘 = 0
−𝑔𝑘 +max{0, 𝑔𝑇𝑘 (𝑔𝑘 − 𝑔𝑘−1)𝑔𝑘−12 }𝑑𝑘−1 if 𝑘 > 0.

(14)

2.3. Rotation of the Positive Basis. In order to modify the
positive basis such that at least one of the new directions is
more closely conformed to the local behavior of the function,
we rotate the positive basis at each step.This idea is similar to
that in [28].

Suppose that

V𝑘 = {V𝑘1 , . . . , V𝑘𝑛, . . . , V𝑘𝑞} , (15)

where {V𝑘1 , . . . , V𝑘𝑛} is a basis for R𝑛. Denote
𝛿𝑥 = 𝑥𝑘+1 − 𝑥𝑘 = (𝛿𝑥1, . . . , 𝛿𝑥𝑛)𝑇 , (16)

where 𝛿𝑥𝑖 ∈ R (𝑖 = 1, . . . , 𝑛) describe the movements per-
formed along the vectors V𝑘𝑖 (𝑖 = 1, . . . , 𝑛) in previous
iterations.

We get positive basis V𝑘+1 by rotating V𝑘. Firstly, we
obtain 𝑛 linearly independent vectors according toV𝑘:

V 𝑘+1𝑖 =
{{{{{{{
V𝑘𝑖 if 𝛿𝑥𝑖 = 0
𝑛∑
𝑙=𝑖

𝛿𝑥𝑙V𝑘𝑙 if 𝛿𝑥𝑖 ̸= 0, (17)

where V 𝑘+1𝑖 represents the sum of all the movements made
in the directions V𝑘𝑙 for 𝑙 = 𝑖, . . . , 𝑛.The lemma 8.5.4 of [29]
proved that {V 𝑘+11 , . . . , V 𝑘+1𝑛 } is linearly independent.

Secondly, we use the Gram-Schmidt orthogonalization
method to get a class of standard orthogonal basis:

{V𝑘+11 , . . . , V𝑘+1𝑛 } . (18)

Finally, we can get

V𝑘+1 = {V𝑘+11 , . . . , V𝑘+1𝑛 , V𝑘+1𝑛+1, . . . , V𝑘+1𝑞 } , (19)

where {V𝑘+1𝑛+1, . . . , V𝑘+1𝑞 } is combined with {V𝑘+11 , . . . , V𝑘+1𝑛 }
according to the same combination principal asV𝑘.

For instance, if 𝑞 = 𝑛 + 1, we obtain
V𝑘+1 = {V𝑘+11 , . . . , V𝑘+1𝑛 , − 𝑛∑

𝑖=1

V𝑘+1𝑖 } . (20)

Supposing that {𝑧𝑚} is the sequence of quasi minimal
iteration points, then the above process can be summarized
as the following algorithm.

Algorithm 5.

Step 0 (initializations). Choose initial point 𝑥0 ∈ R𝑛, positive
basis V0, step length ℎ0, and radius factor parameter 𝛿0.
Choose 𝜆 > 1, 𝜇 > 0, 𝜖𝑘 = ℎ1+𝜇𝑘 . Set 𝑘 = 0,𝑚 = 0.
Step 1 (checking the stopping condition). If the stopping
condition is not met, then go to Step 2, otherwise output the
lowest known point and stop.

Step 2 (determining the frame). Create a frame Φ𝑘 at iterate𝑥𝑘 according to the positive basisV𝑘 and step length ℎ𝑘, and
calculate the corresponding function values.

Step 3 (building the RBF interpolation model). Evaluate the
RBF model parameters according to formula (8), and get
solution �̂�𝑘+1 of subproblem (9). If 𝑓(𝑥𝑘)−𝑓(�̂�𝑘+1) > 𝜖𝑘, then
set 𝑥𝑘+1 = �̂�𝑘+1 and go to Step 6, otherwise go to Step 4.

Step 4 (obtaining the PRP direction). Obtain the search
direction 𝑑𝑘 using (14), execute the line search process to find𝛽𝑘, and set 𝑥𝑘+1 = 𝑥𝑘 + 𝛽𝑘ℎ𝑘𝑑𝑘/‖𝑑𝑘‖. If 𝑓(𝑥𝑘) − 𝑓(𝑥𝑘+1) > 𝜖𝑘,
then set 𝑥𝑘+1 = 𝑥𝑘+1 and go to Step 6, otherwise go to Step 5.

Step 5 (updating the current iteration point). Let 𝑥𝑘+1 be
defined by the following rule:

𝑓 (𝑥𝑘+1)
= min

V𝑘∈𝑉𝑘
(𝑓 (𝑥𝑘) , 𝑓 (�̂�𝑘+1) , 𝑓 (𝑥𝑘+1) , 𝑓 (𝑥𝑘 + ℎ𝑘V𝑘)) . (21)
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Step 6 (rotating the positive basis and updating the some
parameters). Obtain V𝑘+1 according to (15)–(19) and com-
pute 𝛿𝑘+1. If frame Φ𝑘 is a quasi minimal frame, then setℎ𝑘+1 = ℎ𝑘/𝜆,𝑚 = 𝑚 + 1, 𝑧𝑚 = 𝑥𝑘, otherwise set ℎ𝑘+1 = ℎ𝑘. In
addition, increment 𝑘 by one and go to Step 1.

Remark 6. In Step 3, we set 𝑝1, . . . , 𝑝𝑟 as linear polynomial
tails, and 𝜙(‖𝑥 − 𝑦𝑖‖) = ‖𝑥 − 𝑦𝑖‖3 in (8).

3. Convergence Analysis

Now we have the following convergent property of Algo-
rithm 5.

Theorem 7. Supposing that the sequence of function value{𝑓(𝑥𝑘)} is bounded, then the sequence {𝑧𝑚} is infinite.
Proof. Assume that {𝑧𝑚} is finite; let 𝑧𝑀 be the final quasi
minimal point and 𝑧𝑀 = 𝑥�̃�.

From Steps 3, 4, and 5 of Algorithm 5, we know that

𝑓 (𝑥�̃�+1) < 𝑓 (𝑥�̃�) − 𝜖�̃�, (22)

or

𝑓 (𝑥�̃�+1) ≤ min
V�̃�∈𝑉𝑘
(𝑓 (𝑥�̃�) , 𝑓 (𝑥�̃� + ℎ�̃�V�̃�)) , (23)

where 𝜖�̃� = (ℎ�̃�)1+𝜇 (𝜇 > 0) is a positive constant, ℎ�̃�, 𝑉𝑘
are frame size and positive basis corresponding to iterate 𝑥�̃�,
respectively. Supposing that Φ�̃� is the frame corresponding
to quasi minimal iterate 𝑥�̃�, then the frame Φ�̃�+1 is not quasi
minimal. FromDefinition 4, it follows that there exists at least
a vector V�̃�𝑙 (V�̃�𝑙 ∈V�̃�), such that

𝑓(𝑥�̃� + ℎ�̃�V�̃�𝑙 ) < 𝑓 (𝑥�̃�) − 𝜖�̃�. (24)

By (22), (23), and (24), we have

𝑓 (𝑥�̃�+1) < 𝑓 (𝑥�̃�) − 𝜖�̃�. (25)

Then, we have

𝑓 (𝑥�̃�+𝑟) < 𝑓 (𝑥�̃�+𝑟−1) − 𝜖�̃�+𝑟−1
< 𝑓 (𝑥�̃�+𝑟−2) − �̃�+𝑟−1∑

𝑖=�̃�+𝑟−2

𝜖𝑖 < ⋅ ⋅ ⋅

< 𝑓 (𝑥�̃�+1) − �̃�+𝑟−1∑
𝑖=�̃�+1

𝜖𝑖,
(26)

where 𝑟 is a positive integer and 𝑟 ≥ 3.
Because frame Φ�̃� is the final quasi minimal frame, by

Step 6 of Algorithm 5, we know that ℎ𝑘 is a positive constant
for 𝑘 > �̃�; that is,

ℎ�̃�+1 = ℎ�̃�+2 = ⋅ ⋅ ⋅ = ℎ�̃�+𝑟−1, (27)

𝜖�̃�+1 = 𝜖�̃�+2 = ⋅ ⋅ ⋅ = 𝜖�̃�+𝑟−1. (28)

By (25), (26), and (28), we have

𝑓 (𝑥�̃�+𝑟) < 𝑓 (𝑥�̃�+1) − �̃�+𝑟−1∑
𝑖=�̃�+1

𝜖𝑖
< 𝑓 (𝑥�̃�) − (𝑟 − 1) 𝜖�̃�+1 − 𝜖�̃�.

(29)

If we ignore the stopping condition and let 𝑟 → +∞, then𝑓(𝑥�̃�+𝑟) → −∞, which contradicts the condition that {𝑓(𝑥𝑘)}
is bounded. The proof of this theorem is complete.

Theorem 8. Assume the following conditions are satisfied:
(A1) 𝑓 is continuously differentiable.
(A2) ‖V𝑘𝑙 ‖ ≤ 𝑀 for 𝑙 = 1, . . . , 𝑞 and 𝑘 = 0, 1, . . ., where𝑀

is a positive constant and V𝑘𝑙 is the 𝑙th vector inV𝑘.
Then each cluster point of {𝑧𝑚} is a stationary point of 𝑓.

Proof. Let 𝑧∞ be an arbitrary cluster point of {𝑧𝑚} and the
subsequence {𝑧𝑚}𝐾 converge to 𝑧∞, where 𝐾 is an infinite
subset of natural numbers. Assume 𝑧�̌� ∈ {𝑧𝑚}𝐾, and 𝑧�̌� = 𝑥�̌�.
According to Taylor expansion and (A1), we have

𝑓 (𝑧�̌� + ℎ�̌�V�̌�𝑙 ) = 𝑓 (𝑧�̌�) + ℎ�̌�∇𝑓 (𝑧�̌�)𝑇 V�̌�𝑙
+ 𝑜 (ℎ�̌�V�̌�𝑙 ) ,

(30)

for all V�̌�𝑙 ∈ V�̌�, where ℎ�̌�, V�̌� are frame size and positive
basis corresponding to the iteration point 𝑧�̌�, respectively,
and V�̌�𝑙 is 𝑙th vector ofV�̌�. From Definition 4, we have

𝑓 (𝑧�̌� + ℎ�̌�V�̌�𝑙 ) ≥ 𝑓 (𝑧�̌�) − (ℎ�̌�)1+𝜇 , ∀V�̌�𝑙 ∈V�̌�. (31)

Combining (30) and (31) with (A2), we obtain

∇𝑓 (𝑧�̌�)𝑇 V�̌�𝑙 ≥ −𝑜 (ℎ�̌�)ℎ�̌� 𝑀− (ℎ�̌�)𝜇 , ∀V�̌�𝑙 ∈V�̌�. (32)

Let �̌� → +∞, then 𝑧�̌� → 𝑧∞, V�̌�𝑙 → V∞𝑙 , ℎ�̌� → ℎ∞.
According to Step 6 of Algorithm 5, we have ℎ∞ → 0.
Combining these with (32) and (A1), we have

∇𝑓 (𝑧∞)𝑇 V∞𝑙 ≥ 0, ∀V∞𝑙 ∈V∞. (33)

Let the numbers of V�̌� be V
�̌�
1 , . . . , V�̌�𝑞 , then there exist 𝑞

nonnegative coefficients 𝜂𝑖 (𝑖 = 1, . . . , 𝑞) such that

−∇𝑓 (𝑧∞) = 𝑞∑
𝑖=1

𝜂𝑖V∞𝑖 . (34)

Combining (33) and (34), we have

0 ≥ −∇𝑓 (𝑧∞)𝑇 ∇𝑓 (𝑧∞) = 𝑞∑
𝑖=1

𝜂𝑖 (V∞𝑖 )𝑇 ∇𝑓 (𝑧∞) ≥ 0, (35)

which yields ∇𝑓(𝑧∞) = 0. The proof of this theorem is
complete.

Remark 9. AlthoughTheorem8needs the assumed condition
(A1), in practice, we do not solve derivative-free problems
that accurately. So we only assure that 𝑓 is continuously
differentiable near the stationary point.
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Table 1: The information about benchmark problems set 𝑃1.
Problem 𝑛𝑝 𝑚𝑝
(1) Linear (full rank) 9 45
(2) Linear (rank 1) 7 35
(3) Linear (rank 1 with 0 columns & rows) 7 35
(4) Rosenbrock 2 2
(5) Helical valley 3 3
(6) Powell singular 4 4
(7) Freudenstein and Roth 2 2
(8) Bard 3 15
(9) Meyer 3 16
(10) Watson 6 31
(11) Waston 9 31
(12) Waston 12 31
(13) Waston 31 31
(14) Box 3-dimensional 3 10
(15) Jennrich and Sampson 2 10
(16) Brown and Dennis 4 20
(17) Chebyquad 6 6
(18) Chebyquad 7 7
(19) Chebyquad 8 8
(20) Chebyquad 9 9
(21) Brown almost-linear 10 10
(22) Bdqrtic 8 8
(23) Bdqrtic 10 12
(24) Bdqrtic 11 14
(25) Bdqrtic 12 16
(26) Cube 5 5
(27) Cube 6 6
(28) Cube 8 8
(29) Mancino 5 5
(30) Mancino 8 8
(31) Mancino 10 10
(32) Mancino 12 12
(33) Penalty II 4 8
(34) Penalty II 6 12
(35) Penalty II 8 16
(36) Penalty II 10 20
(37) Penalty II 12 24
(38) Variably dimensioned 8 10
(39) Variably dimensioned 9 11
(40) Variably dimensioned 10 12
(41) Variably dimensioned 11 13
(42) Variably dimensioned 12 14
(43) Broyden tridiagonal 6 6
(44) Broyden tridiagonal 7 7
(45) Broyden tridiagonal 8 8
(46) Broyden tridiagonal 9 9
(47) Broyden tridiagonal 10 10
(48) Broyden tridiagonal 11 11
(49) Broyden tridiagonal 12 12

Table 1: Continued.

Problem 𝑛𝑝 𝑚𝑝
(50) Broyden banded 4 4
(51) Broyden banded 7 7
(52) Broyden banded 9 9
(53) Broyden banded 10 10
(54) Broyden banded 11 11
(55) Linear (full rank) 100 200
(56) Linear (full rank) 200 400
(57) Linear (rank 1) 100 200
(58) Linear (rank 1) 200 400
(59) Linear (rank 1 with 0 columns & rows) 100 200
(60) Linear(rank 1 with 0 columns & rows) 200 400
(61) Chebyquad 100 100
(62) Chebyquad 200 200
(63) Brown almost-linear 100 100
(64) Brown almost-linear 200 200
(65) Bdqrtic 100 200
(66) Bdqrtic 200 400
(67) Cube 100 100
(68) Cube 200 200
(69) Mancino 100 100
(70) Mancino 200 200
(71) Penalty II 100 200
(72) Penalty II 200 400
(73) Variably dimensioned 100 102
(74) Variably dimensioned 200 202
(75) Broyden tridiagonal 100 100
(76) Broyden tridiagonal 200 200
(77) Broyden banded 100 100
(78) Broyden banded 200 200

4. Numerical Experiments

In this section, we discuss numerical test results for Algo-
rithm 5. Our tests are performed on a PCwith Intel Core Duo
CPU (I5-3470@3.20GHz, 3.60GHz) and 8GB RAM, using
MATLAB 7.12.0.

To compare our algorithm to Max-PRP, we choose to
work with the performance profiles [30] and data profiles [31]
for derivative-free optimization. The performance profile is
the following fraction:

𝜌𝑠 (𝛼) = 1|𝑃|
{𝑝 ∈ 𝑃:

𝑡𝑝,𝑠
min {𝑡𝑝,𝑠: 𝑠 ∈ 𝑆} ≤ 𝛼}

 , (36)

where 𝑃 is the set of benchmark problems, 𝑆 is the set of opti-
mization solvers, 𝑡𝑝,𝑠 is the number of function evaluations
required to satisfy the convergence test for problem 𝑝 ∈ 𝑃 on
solver 𝑠 ∈ 𝑆.

The data profile is defined that

𝑑𝑠 (𝜅) = 1|𝑃|
{𝑝 ∈ 𝑃:

𝑡𝑝,𝑠𝑛𝑝 + 1 ≤ 𝜅}
 , (37)

where 𝑛𝑝 is the number of variables in 𝑝 ∈ 𝑃.
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Table 2: The information about benchmark problems set 𝑃2.
Problem 𝑛𝑝 𝑚𝑝
(1) Raydan 1 10 10
(2) Raydan 1 20 20
(3) Raydan 1 100 100
(4) Raydan 2 10 10
(5) Raydan 2 20 20
(6) Raydan 2 100 100
(7) Diagonal 1 10 10
(8) Diagonal 1 20 20
(9) Diagonal 1 100 100
(10) Diagonal 2 10 10
(11) Diagonal 2 20 20
(12) Diagonal 2 100 100
(13) Diagonal 3 10 10
(14) Diagonal 3 20 20
(15) Diagonal 3 100 100
(16) Diagonal 4 10 5
(17) Diagonal 4 20 10
(18) Diagonal 4 100 50
(19) Diagonal 5 10 10
(20) Diagonal 5 20 20
(21) Diagonal 5 100 100
(22) Diagonal 6 10 10
(23) Diagonal 6 20 20
(24) Diagonal 6 100 100
(25) Hager 10 10
(26) Hager 20 20
(27) Hager 100 100
(28) Extended TET 10 5
(29) Extended TET 20 10
(30) Extended TET 100 50
(31) Extended Maratos 10 5
(32) Extended Maratos 20 10
(33) Extended Maratos 100 50
(34) Extended Cliff 10 5
(35) Extended Cliff 20 10
(36) Extended Cliff 100 50
(37) ARWHEAD 10 9
(38) ARWHEAD 20 19
(39) ARWHEAD 100 99
(40) ENGVAL1 10 9
(41) ENGVAL1 20 19
(42) ENGVAL1 100 99
(43) GENHUMPS 10 9
(44) GENHUMPS 20 19
(45) GENHUMPS 100 99
(46) MCCORMCK 10 9
(47) MCCORMCK 20 19
(48) MCCORMCK 100 99
(49) COSINE 10 9
(50) COSINE 20 19
(51) COSINE 100 99
(52) SINE 10 9
(53) SINE 20 19
(54) SINE 100 99

Table 2: Continued.

Problem 𝑛𝑝 𝑚𝑝
(55) HIMMELBG 10 5
(56) HIMMELBG 20 10
(57) HIMMELBG 100 50
(58) HIMMELH 10 5
(59) HIMMELH 20 10
(60) HIMMELH 100 50

We use the following convergence condition:

𝑓 (𝑥) ≤ 𝑓𝐿 + 𝜏 (𝑓 (𝑥0) − 𝑓𝐿) , (38)

where 𝑥0 is the initial point for the test problem, 𝜏 > 0 is
tolerance,𝑓𝐿 is the best function value achieved by any solvers
within 𝜇𝑓 function evaluations, and 𝜇𝑓 is a positive integer.

The benchmark problems set 𝑃 in our experiments is
proposed in [32, 33] and CUTEr test problem set [34]. The
problems set 𝑃 includes 78 nonlinear least squares problems𝑃1 and 60 normal nonlinear programming problems 𝑃2.
Tables 1 and 2 show some information about test problems,
where 𝑛𝑝 is the number of variables and𝑚𝑝 is the number of
components. The problems of Table 1 are defined by

𝑓 (𝑥) = 𝑚𝑝∑
𝑘=1

(𝑓𝑘 (𝑥))2 . (39)

The problems of Table 2 are defined by

𝑓 (𝑥) = 𝑚𝑝∑
𝑘=1

𝑓𝑘 (𝑥) . (40)

In all problems, we have

2 ≤ 𝑛𝑝 ≤ 200, 𝑝 = 1, . . . , 138. (41)

In addition, we define the maximum computational budget
as 150 simplex gradients, where the computational budget of
a simplex gradients is equal to 𝑛𝑝 +1 function evaluations, so𝜇𝑓 = 30150.

The parameters of our numerical experiments are listed
as follows: ℎ0 = 1,V0 = Vmin, V

0
𝑖 = 𝑒𝑖 (𝑖 = 1, . . . , 𝑛𝑝), 𝜆 = 4,𝜇 = 0.5, 𝛿0 = 1, and 𝛿𝑘 takes value 2 if the previous iteration

was successful, or 1 otherwise.
In the RBF interpolation model of (8), we set 𝑝1, . . . , 𝑝𝑟

as linear polynomial tails and 𝜙(‖𝑥 − 𝑦𝑖‖) = ‖𝑥 − 𝑦𝑖‖3. In
addition, we set 𝑝max = 3𝑛 as themaximumnumber of points
considered in the interpolate data points𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛𝑞}.
All the previously evaluated points are used to compute the
RBF interpolationmodel when its number is lower than𝑝max.
Similar to [20], whenever there aremore previously evaluated
points than 𝑝max for building the RBF interpolation model,
80% of the desired points are selected as the ones nearest
to the current iterate and the last 20% are chosen as the
ones further away from the current iterate. This strategy is
adopted in order to preserve the geometry and diversify the
information used in the RBF interpolation model.
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Figure 1: Performance profiles 𝜌𝑠(𝛼) for problems 𝑃.
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Figure 2: Data profiles 𝑑𝑠(𝜅) for problems 𝑃.

In Figure 1, we show the performance profiles related
to Algorithm 5 and Max-PRP. As we can see, Algorithm 5
outperforms Max-PRP when 𝜏 = 10−3, and the difference
is significantly large as the performance ratio 𝛼 decreases.
In addition, Algorithm 5 guarantees better results than Max-
PRP when 𝜏 = 10−5. For example, Algorithm 5 can solve

about 90% test problems,whileMax-PRPonly solves nomore
than 85%, if performance ratio 𝛼 = 16.

The data profiles of Algorithm 5 and Max-PRP are
reported in Figure 2.When the number of simplex gradients 𝜅
is larger than 40, Algorithm 5 performs better thanMax-PRP
as it solves a higher percentage of problems. For example, with
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a budget of 400 simplex gradients and 𝜏 = 10−5, Algorithm 5
solves almost 90% of the problems, while Max-PRP solves
roughly 85% of the problems.

5. Conclusion

The computational results which are presented in this paper
show that Algorithm 5 appears quite competitive. The per-
formance profiles and the data profiles of numerical results
indicate that Algorithm 5 often reduces the number of
function evaluations which is required to reach stationary
point and is superior to Max-PRP.
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