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Consider the following system of difference equations: {𝑥(𝑖)𝑛+1 = 𝑥(𝑖)𝑛−𝑚+1/(𝐴 𝑖∏𝑚−1𝑗=0 𝑥(𝑖+𝑗+1)𝑛−𝑗 + 𝛼𝑖), 𝑥(𝑖+𝑚)𝑛+1 = 𝑥(𝑖)𝑛+1, 𝑥(𝑖+𝑙)1−𝑙 = 𝑎𝑖,𝑙, 𝐴 𝑖+𝑚 = 𝐴 𝑖,𝛼𝑖+𝑚 = 𝛼𝑖}, 𝑖, 𝑙 = 1, 2, . . . , 𝑚; 𝑛 = 0, 1, 2, . . . , where 𝑚 is a positive integer, 𝐴 𝑖, 𝛼𝑖, 𝑖 = 1, 2, . . . , 𝑚, and the initial conditions 𝑎𝑖,𝑙,𝑖, 𝑙 = 1, 2, . . . , 𝑚, are positive real numbers. We obtain the expressions of the positive solutions of the system and then give a precise
description of the convergence of the positive solutions. Finally, we give some numerical results.

1. Introduction

Difference equation or system of difference equations is a
diverse field which impacts almost every branch of pure
and applied mathematics. Not only does it provide us with
some simple and useful mathematic models to help elucidate
interesting phenomena in applications, but also it can kind
of display some surprising complicated dynamics comparing
with its analogue differential equations. Hence, the systems of
difference equations and difference equations have attracted
a lot of attention (see, e.g., the systems of difference equations
[1–16] and difference equations [17–29] and the references
therein). Among them, symmetric and close to symmetric
systems of difference equations have attracted a considerable
interest.

Papaschinnopoulos and Schinas [1] studied the oscilla-
tory behavior, the boundedness of the solutions, and the
global asymptotic stability of the positive equilibrium of the
system of the nonlinear difference equations:

𝑥𝑛+1 = 𝐴 + 𝑦𝑛𝑥𝑛−𝑝 ,
𝑦𝑛+1 = 𝐴 + 𝑥𝑛𝑦𝑛−𝑞 ,

𝑛 = 0, 1, 2, . . . .
(1)

In [2], they also investigated the boundedness, persistence,
the oscillatory behavior, and the asymptotic behavior of the
positive solutions of the system of difference equations:

𝑥𝑛+1 = 𝑘∑
𝑖=0

𝐴 𝑖𝑦𝑝𝑖𝑛−𝑖 ,

𝑦𝑛+1 = 𝑘∑
𝑖=0

𝐵𝑖𝑥𝑞𝑖𝑛−𝑖 ,
𝑛 = 0, 1, 2, . . . .

(2)

Clark et al. [3, 4] investigated the global asymptotic sta-
bility of the system of difference equations:

𝑥𝑛+1 = 𝑥𝑛𝑎 + 𝑐𝑦𝑛 ,
𝑦𝑛+1 = 𝑦𝑛𝑏 + 𝑑𝑥𝑛 ,

𝑛 = 0, 1, 2, . . . .
(3)
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Camouzis and Papaschinopoulos [5] studied the global
asymptotic behavior of positive solutions of the system of
rational difference equations:

𝑥𝑛+1 = 1 + 𝑥𝑛𝑦𝑛−𝑚 ,
𝑦𝑛+1 = 1 + 𝑦𝑛𝑥𝑛−𝑚 ,

𝑛 = 0, 1, 2, . . . .
(4)

Yang [6] studied the behavior of positive solutions of the
system of difference equations:

𝑥𝑛 = 𝐴 + 𝑦𝑛−1𝑥𝑛−𝑝𝑦𝑛−𝑞 ,
𝑦𝑛 = 𝐴 + 𝑥𝑛−1𝑥𝑛−𝑟𝑦𝑛−𝑠 ,

𝑛 = 0, 1, 2, . . . .
(5)

Zhang et al. [7] studied the boundedness, the persistence,
and global asymptotic stability of the positive solutions of the
system of difference equations:

𝑥𝑛+1 = 𝐴 + 𝑦𝑛−𝑚𝑥𝑛 ,
𝑦𝑛+1 = 𝐴 + 𝑥𝑛−𝑚𝑦𝑛 ,

𝑛 = 0, 1, 2, . . . .
(6)

Yalçinkaya and Çinar [8] studied the global asymptotic
stability of the system of difference equations:

𝑧𝑛+1 = 𝑡𝑛 + 𝑧𝑛−1𝑡𝑛𝑧𝑛−1 + 𝑎 ,
𝑡𝑛+1 = 𝑧𝑛 + 𝑡𝑛−1𝑧𝑛𝑡𝑛−1 + 𝑎 ,

𝑛 = 0, 1, 2, . . . .
(7)

Kurbanlı et al. [9] studied the behavior of the positive
solutions of the following system of difference equations:

𝑥𝑛+1 = 𝑥𝑛−1𝑦𝑛𝑥𝑛−1 + 1 ,
𝑦𝑛+1 = 𝑦𝑛−1𝑥𝑛𝑦𝑛−1 + 1 ,

𝑛 = 0, 1, 2, . . . .
(8)

Motivated by the above studies, in this note, we consider
the following system of difference equations:

𝑥(𝑖)𝑛+1 = 𝑥(𝑖)𝑛−𝑚+1𝐴 𝑖∏𝑚−1𝑗=0 𝑥(𝑖+𝑗+1)𝑛−𝑗 + 𝛼𝑖 ,
𝑥(𝑖+𝑚)𝑛+1 = 𝑥(𝑖)𝑛+1,
𝑥(𝑖+𝑙)1−𝑙 = 𝑎𝑖,𝑙,
𝐴 𝑖+𝑚 = 𝐴 𝑖,
𝛼𝑖+𝑚 = 𝛼𝑖,

𝑖, 𝑙 = 1, 2, . . . , 𝑚; 𝑛 = 0, 1, 2, . . . ,

(9)

where 𝑚 is a positive integer, 𝐴 𝑖, 𝛼𝑖, 𝑖 = 1, 2, . . . , 𝑚, and
the initial conditions 𝑎𝑖,𝑙, 𝑖, 𝑙 = 1, 2, . . . , 𝑚, are positive real
numbers. We perfect and generalize the results in related
literature.

2. Main Results

Throughout this paper, letN andR stand for the set of natural
numbers and the set of real numbers, respectively.

Let {(𝑥(1)𝑛 , 𝑥(2)𝑛 , . . . , 𝑥(𝑚)𝑛 )}∞𝑛=−𝑚+1 be a positive solution of
(9). If we set

𝑦(𝑖)𝑛−𝑚+1 = 1𝑥(𝑖)𝑛−𝑚+1 , 𝑖 = 1, 2, . . . , 𝑚; 𝑛 ∈ N, (10)

then (9) translates into

𝑦(𝑖)𝑛+1 = 𝛼𝑖𝑦(𝑖)𝑛−𝑚+1 + 𝐴 𝑖∏𝑚−2𝑗=0 𝑦(𝑖+𝑗+1)𝑛−𝑗

,
𝑦(𝑖+𝑚)𝑛+1 = 𝑦(𝑖)𝑛+1,
𝑦(𝑖+𝑙)1−𝑙 = 𝑏𝑖,𝑙,𝐴 𝑖+𝑚 = 𝐴 𝑖,𝛼𝑖+𝑚 = 𝛼𝑖,

𝑖, 𝑙 = 1, 2, . . . , 𝑚; 𝑛 ∈ N,

(11)

where 𝑏𝑖,𝑙 = 1/𝑎𝑖,𝑙, 𝑖, 𝑙 = 1, 2, . . . , 𝑚.
For convenience, in the following we will investigate (11).

Set

𝐼𝑖,𝑛 = 𝑚−1∏
𝑙=0

𝑦(𝑖+𝑙)𝑛−𝑙 ,
𝛼 = 𝑚−1∏
𝑙=0

𝛼𝑖+𝑙,
𝑖 = 1, 2, . . . , 𝑚; 𝑛 ∈ N,

(12)

𝑄𝑖,𝑗 = 𝑗−1∑
𝑙=0

( 𝑙−1∏
𝑠=0

𝛼𝑖+𝑠𝐴 𝑖+𝑙) , 𝑖, 𝑗 = 1, 2, . . . , 𝑚, (13)

where we appeal to the convention∏−1𝑠=0𝛼𝑖+𝑠 fl 1.
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Combing (12) with (11), we get

𝐼𝑖+𝑘𝑚,𝑛 = 𝐼𝑖,𝑛, 𝑖 = 1, 2, . . . , 𝑚; 𝑘 ∈ N; 𝑛 ∈ N. (14)

By (11), (12), and (13), we get

𝑄𝑖+𝑘𝑚,𝑗 = 𝑄𝑖,𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑚; 𝑘 ∈ N, (15)

𝑄𝑖,𝑗+1 = 𝛼𝑖𝑄𝑖+1,𝑗 + 𝐴 𝑖,
𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑚 − 1, (16)

𝑄𝑖,𝑚 + 𝛼𝐴 𝑖 = 𝛼𝑖𝑄𝑖+1,𝑚 + 𝐴 𝑖, 𝑖 = 1, 2, . . . , 𝑚. (17)

Lemma 1. Let {(𝑦(1)𝑛 , 𝑦(2)𝑛 , . . . , 𝑦(𝑚)𝑛 )}∞𝑛=−𝑚+1 be a positive solu-
tion of (11); then

𝐼𝑖,𝑛+1 = 𝛼𝑖𝐼𝑖+1,𝑛 + 𝐴 𝑖, 𝑖 = 1, 2, . . . , 𝑚; 𝑛 ∈ N. (18)

Proof. From (12) we know

𝐼𝑖,𝑛+1 = 𝑚−1∏
𝑙=0

𝑦(𝑖+𝑙)𝑛−𝑙+1 = 𝑦(𝑖)𝑛+1𝑦(𝑖+𝑚)𝑛−𝑚+1
𝑚−1∏
𝑙=0

𝑦(𝑖+𝑙+1)𝑛−𝑙 = 𝑦(𝑖)𝑛+1𝑦(𝑖)𝑛−𝑚+1 𝐼𝑖+1,𝑛, (19)

from (11) we obtain

𝑦(𝑖)𝑛+1𝑦(𝑖)𝑛−𝑚+1 = 𝛼𝑖 +
𝐴 𝑖𝐼𝑖+1,𝑛 , (20)

and combining (19) with (20) we get the conclusion.
This completes the proof.

Lemma 2. Let {(𝑦(1)𝑛 , 𝑦(2)𝑛 , . . . , 𝑦(𝑚)𝑛 )}∞𝑛=−𝑚+1 be a positive solu-
tion of (11); then

𝐼𝑖,(𝑛+1)𝑚+𝑗−1 = 𝛼𝐼𝑖,𝑛𝑚+𝑗−1 + 𝑄𝑖,𝑚,
𝑖, 𝑗 = 1, 2, . . . , 𝑚; 𝑛 ∈ N. (21)

Proof. For 𝑖, 𝑗 = 1, 2, . . . , 𝑚; 𝑛 ∈ N, by (18), (13), and (14), we
have

𝐼𝑖,(𝑛+1)𝑚+𝑗−1 = 𝛼𝑖𝐼𝑖+1,(𝑛+1)𝑚+𝑗−2 + 𝐴 𝑖
= 𝛼𝑖 (𝛼𝑖+1𝐼𝑖+2,(𝑛+1)𝑚+𝑗−3 + 𝐴 𝑖+1) + 𝐴 𝑖
= 1∏
𝑙=0

𝛼𝑖+𝑙𝐼𝑖+2,(𝑛+1)𝑚+𝑗−3 + 𝑄𝑖,2
= 1∏
𝑙=0

𝛼𝑖+𝑙 (𝛼𝑖+2𝐼𝑖+3,(𝑛+1)𝑚+𝑗−4 + 𝐴 𝑖+2)
+ 𝑄𝑖,2 = 2∏

𝑙=0

𝛼𝑖+𝑙𝐼𝑖+3,(𝑛+1)𝑚+𝑗−4 + 𝑄𝑖,3
= ⋅ ⋅ ⋅ = 𝑚−1∏

𝑙=0

𝛼𝑖+𝑙𝐼𝑖+𝑚,𝑛𝑚+𝑗−1 + 𝑄𝑖,𝑚
= 𝛼𝐼𝑖,𝑛𝑚+𝑗−1 + 𝑄𝑖,𝑚.

(22)

Hence, (21) holds.

Lemma 3. Let {(𝑦(1)𝑛 , 𝑦(2)𝑛 , . . . , 𝑦(𝑚)𝑛 )}∞𝑛=−𝑚+1 be a positive solu-
tion of (11); then

𝐼𝑖,𝑛𝑚+𝑗−1 = 𝛼𝑛𝐼𝑖,𝑗−1 + (𝑛−1∑
𝑙=0

𝛼𝑙)𝑄𝑖,𝑚,
𝑖, 𝑗 = 1, 2, . . . , 𝑚; 𝑛 ∈ N,

(23)

where we appeal to the convention ∑−1𝑙=0 𝛼𝑙 fl 0.
Proof. We will prove the conclusion by induction. For 𝑖, 𝑗 =1, 2, . . . , 𝑚, 𝑛 = 0, it is obvious that (23) holds. For 𝑖, 𝑗 =1, 2, . . . , 𝑚, 𝑛 = 1, from Lemma 2, we know that (23) holds.

Suppose that (23) holds for 𝑛 = 𝑘, then for 𝑛 = 𝑘 + 1, by
Lemma 2 we have

𝐼𝑖,(𝑘+1)𝑚+𝑗−1 = 𝛼𝐼𝑖,𝑘𝑚+𝑗−1 + 𝑄𝑖,𝑚
= 𝛼𝑘+1𝐼𝑖,𝑗−1 + 𝛼(𝑘−1∑

𝑙=0

𝛼𝑙)𝑄𝑖,𝑚 + 𝑄𝑖,𝑚
= 𝛼𝑘+1𝐼𝑖,𝑗−1 + ( 𝑘∑

𝑙=0

𝛼𝑙)𝑄𝑖,𝑚.
(24)

Hence, (23) holds for 𝑛 = 𝑘 + 1, from which we get the
conclusion.

In the following, set

𝑟 (𝑛)
= {{{

0, when 𝑛 + 1 mod 𝑚 = 0;
(𝑛 + 1 mod 𝑚) − 𝑚, when 𝑛 + 1 mod 𝑚 ̸= 0,

𝑝𝑛 = {{{{{
⌊𝑛 + 1𝑚 ⌋ − 1, when 𝑛 + 1 mod 𝑚 = 0;
⌊𝑛 + 1𝑚 ⌋ , when 𝑛 + 1 mod 𝑚 ̸= 0,

(25)

where ⌊⋅⌋ is floor function.
Lemma 4. Let {(𝑦(1)𝑛 , 𝑦(2)𝑛 , . . . , 𝑦(𝑚)𝑛 )}∞𝑛=−𝑚+1 be a positive solu-
tion of (11); then

𝑦(𝑖)𝑛+1 = 𝑦(𝑖)𝑟(𝑛) 𝑝𝑛∏
𝑙=0

(𝛼𝑖
+ 𝐴 𝑖𝛼𝑙𝐼𝑖+1,𝑚+𝑟(𝑛)−1 + (∑𝑙−1𝑠=0 𝛼𝑠)𝑄𝑖+1,𝑚) ,

𝑖 = 1, 2, . . . , 𝑚; 𝑛 ∈ N.

(26)
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Proof. In fact, for 𝑖 = 1, 2, . . . , 𝑚; 𝑛 ∈ N by (11) and Lemma 3
we have

𝑦(𝑖)𝑛+1 = 𝑦(𝑖)𝑛−𝑚+1 (𝛼𝑖 + 𝐴 𝑖𝐼𝑖+1,𝑛) = 𝑦(𝑖)𝑛−2𝑚+1 (𝛼𝑖
+ 𝐴 𝑖𝐼𝑖+1,𝑛−𝑚)(𝛼𝑖 +

𝐴 𝑖𝐼𝑖+1,𝑛) = ⋅ ⋅ ⋅ = 𝑦(𝑖)𝑟(𝑛)
𝑝𝑛∏
𝑙=0

(𝛼𝑖
+ 𝐴 𝑖𝐼𝑖+1,𝑛−𝑙𝑚) = 𝑦(𝑖)𝑟(𝑛)

𝑝𝑛∏
𝑙=0

(𝛼𝑖
+ 𝐴 𝑖𝛼𝑙𝐼𝑖+1,𝑚+𝑟(𝑛)−1 + (∑𝑙−1𝑠=0 𝛼𝑠)𝑄𝑖+1,𝑚) .

(27)

Hence, (26) holds.

In the following, set

∞∑
𝑙=0

ln(𝛼𝑖 + 𝐴 𝑖𝛼𝑙𝐼𝑖+1,𝑗−1 + (∑𝑙−1𝑠=0 𝛼𝑠)𝑄𝑖+1,𝑚) fl 𝜂𝑖,𝑚−𝑗,
𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(28)

It is obvious that 𝜂𝑖,𝑚−𝑗 ∈ {−∞} ∪R ∪ {+∞}.
Lemma 5. For 𝑖 = 1, 2, . . . , 𝑚, the following statements are
true.

(1) Suppose that 𝛼 = 1, 𝛼𝑖 = 1 or 𝛼 ≥ 1, 𝛼𝑖 > 1 or 𝛼 < 1,(𝛼𝑖 − 1)𝑄𝑖,𝑚 + (1 − 𝛼)𝐴 𝑖 > 0; then 𝜂𝑖,𝑚−𝑗 = +∞.

(2) Suppose that 𝛼 < 1, (𝛼𝑖 − 1)𝑄𝑖,𝑚 + (1 − 𝛼)𝐴 𝑖 = 0 or𝛼 > 1, 𝛼𝑖 = 1; then 𝜂𝑖,𝑚−𝑗 ∈ R.
(3) Suppose that 𝛼 ≥ 1, 𝛼𝑖 < 1 or 𝛼 < 1, (𝛼𝑖 − 1)𝑄𝑖,𝑚 + (1 −𝛼)𝐴 𝑖 < 0; then 𝜂𝑖,𝑚−𝑗 = −∞.

Proof. (1) Case 1. 𝛼 = 1, 𝛼𝑖 = 1. Note that
ln(1 + 𝐴 𝑖𝐼𝑖+1,𝑗−1 + 𝑙𝑄𝑖+1,𝑚) ∼

𝐴 𝑖𝐼𝑖+1,𝑗−1 + 𝑙𝑄𝑖+1,𝑚 ,
as 𝑙 → ∞,

∞∑
𝑙=0

𝐴 𝑖𝐼𝑖+1,𝑗−1 + 𝑙𝑄𝑖+1,𝑚 = +∞.
(29)

It follows that 𝜂𝑖,𝑚−𝑗 = +∞.
Case 2. 𝛼 ≥ 1, 𝛼𝑖 > 1. Note that

lim
𝑙→+∞

ln(𝛼𝑖 + 𝐴 𝑖𝛼𝑙𝐼𝑖+1,𝑗−1 + (∑𝑙−1𝑠=0 𝛼𝑠)𝑄𝑖+1,𝑚)
= ln (𝛼𝑖) > 0.

(30)

Hence, 𝜂𝑖,𝑚−𝑗 = +∞.

Case 3. 𝛼 < 1, (𝛼𝑖 − 1)𝑄𝑖,𝑚 + (1 − 𝛼)𝐴 𝑖 > 0. By (16) and
(17), we have

𝛼𝑖 + 𝐴 𝑖 (1 − 𝛼)𝑄𝑖+1,𝑚 = 𝛼𝑖𝑄𝑖+1,𝑚 + 𝐴 𝑖 − 𝛼𝐴 𝑖𝑄𝑖+1,𝑚 = 𝑄𝑖,𝑚𝑄𝑖+1,𝑚 . (31)

𝑄𝑖,𝑚 − 𝑄𝑖+1,𝑚 = 𝑚−1∑
𝑙=0

( 𝑙−1∏
𝑝=0

𝛼𝑖+𝑝𝐴 𝑖+𝑙)

− 𝑚−1∑
𝑙=0

( 𝑙−1∏
𝑝=0

𝛼𝑖+𝑝+1𝐴 𝑖+𝑙+1)
= (1 − 𝛼𝛼𝑖)𝐴 𝑖
+ (𝛼𝑖 − 1)𝑚−2∑

𝑙=0

( 𝑙−1∏
𝑝=0

𝛼𝑖+𝑝+1𝐴 𝑖+𝑙+1)
= (1 − 𝛼𝛼𝑖)𝐴 𝑖 + (𝛼𝑖 − 1)𝑄𝑖+1,𝑚−1
= 1𝛼𝑖 [(𝛼𝑖 − 1)𝑄𝑖,𝑚 + (1 − 𝛼)𝐴 𝑖] ,

(32)

That is,

𝑄𝑖,𝑚 − 𝑄𝑖+1,𝑚 = 1𝛼𝑖 [(𝛼𝑖 − 1)𝑄𝑖,𝑚 + (1 − 𝛼)𝐴 𝑖] . (33)

When 𝛼 < 1, (𝛼𝑖 − 1)𝑄𝑖,𝑚 + (1 − 𝛼)𝐴 𝑖 > 0, combining (31)
with (33) we get

lim
𝑙→+∞

ln(𝛼𝑖 + 𝐴 𝑖𝛼𝑙𝐼𝑖+1,𝑗−1 + (∑𝑙−1𝑠=0 𝛼𝑠)𝑄𝑖+1,𝑚)
= ln(𝛼𝑖 + 𝐴 𝑖 (1 − 𝛼)𝑄𝑖+1,𝑚 ) > 0.

(34)

Hence, 𝜂𝑖,𝑚−𝑗 = +∞.
(2) Case 1. 𝛼 < 1, (𝛼𝑖−1)𝑄𝑖,𝑚+(1−𝛼)𝐴 𝑖 = 0. In this case,

by (33) we know 𝑄𝑖,𝑚 = 𝑄𝑖+1,𝑚 and
𝛼𝑖 + 𝐴 𝑖𝛼𝑙𝐼𝑖+1,𝑗−1 + (∑𝑙−1𝑠=0 𝛼𝑠)𝑄𝑖+1,𝑚
= 1 + (𝛼𝑖 − 1) 𝛼𝑙 ((1 − 𝛼) 𝐼𝑖+1,𝑗−1 + 𝑄𝑖+1,𝑚)(1 − 𝛼) 𝛼𝑙𝐼𝑖+1,𝑗−1 + (1 − 𝛼𝑙) 𝑄𝑖+1,𝑚 .

(35)

Hence,

ln(𝛼𝑖 + 𝐴 𝑖𝛼𝑙𝐼𝑖+1,𝑗−1 + (∑𝑙−1𝑠=0 𝛼𝑠)𝑄𝑖+1,𝑚)

∼ (𝛼𝑖 − 1) 𝛼𝑙 ((1 − 𝛼) 𝐼𝑖+1,𝑗−1 − 𝑄𝑖+1,𝑚)(1 − 𝛼) 𝛼𝑙𝐼𝑖+1,𝑗−1 + (1 − 𝛼𝑙) 𝑄𝑖+1,𝑚
as 𝑙 → ∞.

(36)
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Note that the series∑∞𝑙=0((𝛼𝑖−1)𝛼𝑙((1−𝛼)𝐼𝑖+1,𝑗−1−𝑄𝑖+1,𝑚)/((1−𝛼)𝛼𝑙𝐼𝑖+1,𝑗−1 + (1 − 𝛼𝑙)𝑄𝑖+1,𝑚)) is convergent, and we have𝜂𝑖,𝑚−𝑗 ∈ R.
Case 2. 𝛼 > 1, 𝛼𝑖 = 1. Since
ln(1 + 𝐴 𝑖𝛼𝑙𝐼𝑖+1,𝑗−1 + (∑𝑙−1𝑠=0 𝛼𝑠)𝑄𝑖+1,𝑚)
∼ 𝐴 𝑖𝛼𝑙𝐼𝑖+1,𝑗−1 + (∑𝑙−1𝑠=0 𝛼𝑠)𝑄𝑖+1,𝑚 , as 𝑙 → ∞.

(37)

The series ∑∞𝑙=0(𝐴 𝑖/(𝛼𝑙𝐼𝑖+1,𝑗−1 + (∑𝑙−1𝑠=0 𝛼𝑠)𝑄𝑖+1,𝑚)) is conver-
gent, and we know that 𝜂𝑖,𝑚−𝑗 ∈ R.

(3) Case 1. 𝛼 ≥ 1, 𝛼𝑖 < 1. Note that
lim
𝑙→+∞

ln(𝛼𝑖 + 𝐴 𝑖𝛼𝑙𝐼𝑖+1,𝑗−1 + (∑𝑙−1𝑠=0 𝛼𝑠)𝑄𝑖+1,𝑚)
= ln (𝛼𝑖) < 0.

(38)

Hence, 𝜂𝑖,𝑚−𝑗 = −∞.
Case 2. 𝛼 < 1, (𝛼𝑖 − 1)𝑄𝑖,𝑚 + (1 − 𝛼)𝐴 𝑖 < 0. Combining

(31) with (33) we get

lim
𝑙→+∞

ln(𝛼𝑖 + 𝐴 𝑖𝛼𝑙𝐼𝑖+1,𝑗−1 + (∑𝑙−1𝑠=0 𝛼𝑠)𝑄𝑖+1,𝑚)
= ln(𝛼𝑖 + 𝐴 𝑖 (1 − 𝛼)𝑄𝑖+1,𝑚 ) < 0.

(39)

Hence, 𝜂𝑖,𝑚−𝑗 = −∞.

Theorem 6. Let {(𝑦(1)𝑛 , 𝑦(2)𝑛 , . . . , 𝑦(𝑚)𝑛 )}∞𝑛=−𝑚+1 be a positive
solution of (11). The following statements are true.

(1) Suppose that 𝛼 = 1, 𝛼𝑖 = 1 or 𝛼 ≥ 1, 𝛼𝑖 > 1 or 𝛼 < 1,(𝛼𝑖 − 1)𝑄𝑖,𝑚 + (1 − 𝛼)𝐴 𝑖 > 0; then lim𝑛→∞𝑦(𝑖)𝑛+1 = +∞,𝑖 = 1, 2, . . . , 𝑚.
(2) Suppose that 𝛼 < 1, (𝛼𝑖 − 1)𝑄𝑖,𝑚 + (1 − 𝛼)𝐴 𝑖 = 0 or𝛼 > 1, 𝛼𝑖 = 1; then lim𝑘→∞𝑦(𝑖)𝑘𝑚−𝑗+1 = 𝑦(𝑖)−𝑗+1exp(𝜂𝑖,𝑗−1),𝑖, 𝑗 = 1, 2, . . . , 𝑚.
(3) Suppose that 𝛼 ≥ 1, 𝛼𝑖 < 1 or 𝛼 < 1, (𝛼𝑖 − 1)𝑄𝑖,𝑚 + (1 −𝛼)𝐴 𝑖 < 0; then lim𝑛→∞𝑦(𝑖)𝑛+1 = 0, 𝑖 = 1, 2, . . . , 𝑚.

Proof. By Lemma 4 and (28) we know

lim
𝑘→∞

ln (𝑦(𝑖)𝑘𝑚−𝑗+1) = ln (𝑦(𝑖)−𝑗+1) + 𝜂𝑖,𝑗−1. (40)

The conclusion follows by Lemma 5.

Theorem 7. Let {(𝑥(1)𝑛 , 𝑥(2)𝑛 , . . . , 𝑥(𝑚)𝑛 )}∞𝑛=−𝑚+1 be a positive
solution of (9). The following statements are true.

(1) Suppose that 𝛼 = 1, 𝛼𝑖 = 1 or 𝛼 ≥ 1, 𝛼𝑖 > 1 or 𝛼 < 1,(𝛼𝑖 − 1)𝑄𝑖,𝑚 + (1 − 𝛼)𝐴 𝑖 > 0; then lim𝑛→∞𝑥(𝑖)𝑛+1 = 0,𝑖 = 1, 2, . . . , 𝑚.

(2) Suppose that 𝛼 < 1, (𝛼𝑖 −1)𝑄𝑖,𝑚 + (1−𝛼)𝐴 𝑖 = 0 or 𝛼 >1, 𝛼𝑖 = 1; then lim𝑘→∞𝑥(𝑖)𝑘𝑚−𝑗+1 = 𝑥(𝑖)−𝑗+1exp(−𝜂𝑖,𝑗−1),𝑖, 𝑗 = 1, 2, . . . , 𝑚.
(3) Suppose that 𝛼 ≥ 1, 𝛼𝑖 < 1 or 𝛼 < 1, (𝛼𝑖 − 1)𝑄𝑖,𝑚 + (1 −𝛼)𝐴 𝑖 < 0; then lim𝑛→∞𝑥(𝑖)𝑛+1 = +∞, 𝑖 = 1, 2, . . . , 𝑚.

Proof. The proof follows byTheorem 6 and (10).

3. Numerical Results

In this section, we give some numerical simulations to illus-
trate our results. Consider the following system of difference
equations:

𝑥(𝑖)𝑛+1 = 𝑥(𝑖)𝑛−2𝐴 𝑖∏2𝑗=0𝑥(𝑖+𝑗+1)𝑛−𝑗 + 𝛼𝑖 ,
𝐴 𝑖+3 = 𝐴 𝑖,
𝛼𝑖+3 = 𝛼𝑖,

𝑖 = 1, 2, 3; 𝑛 = 3, 4, 5, . . . .

(41)

For convenience, set Θ = (𝛼1, 𝛼2, 𝛼3), Ξ = (𝐴1, 𝐴2, 𝐴3)
and Λ = (𝑥(1)1 , 𝑥(2)1 , 𝑥(3)1 , 𝑥(1)2 , 𝑥(2)2 , 𝑥(3)2 , 𝑥(1)3 , 𝑥(2)3 , 𝑥(3)3 ).
Example 1. In (41), we take Θ = (1.5, 1.3, 1.8), Ξ = (3, 4, 2),Λ = (1, 4, 7, 3, 6, 9, 2, 5, 8). From Table 1 and Figure 1(a) we
see that

lim
𝑛→∞

𝑥(1)𝑛+1 = 0,
lim
𝑛→∞

𝑥(2)𝑛+1 = 0,
lim
𝑛→∞

𝑥(3)𝑛+1 = 0.
(42)

Example 2. In (41), we take Θ = (1.2, 1, 1.1), Ξ = (2, 5, 3),Λ = (0.5, 0.3, 0.9, 0.7, 1, 0.2, 0.9, 0.7, 0.3). From Table 2 and
Figure 1(b) we see that

Lim
𝑛→∞

𝑥(1)𝑛+1 = 0,
lim
𝑘→∞

𝑥(2)3𝑘+𝑗 = 𝑥(2)𝑗 exp (−𝜂2,3−𝑗) ,
𝑗 = 1, 2, 3,

lim
𝑛→∞

𝑥(3)𝑛+1 = 0.
(43)

Example 3. In (41), we take Θ = (1, 1, 2), Ξ = (3, 4, 6), Λ =(1, 4, 5.5, 2, 5, 8, 3, 6, 7). From Table 3 and Figure 1(c) we see
that

lim
𝑘→∞

𝑥(1)3𝑘+𝑗 = 𝑥(1)𝑗 exp (−𝜂1,3−𝑗) ,
lim
𝑘→∞

𝑥(2)3𝑘+𝑗 = 𝑥(2)𝑗 exp (−𝜂2,3−𝑗) ,
𝑗 = 1, 2, 3,

lim
𝑛→∞

𝑥(3)𝑛+1 = 0.
(44)
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Table 1

𝑛 95 96 97 98 99 100𝑥(1)𝑛 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000𝑥(2)𝑛 0.0006 0.0009 0.0000 0.0005 0.0007 0.0000𝑥(3)𝑛 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2

𝑛 95 96 97 98 99 100𝑥(1)𝑛 0.0020 0.0022 0.0011 0.0017 0.0018 0.0009𝑥(2)𝑛 0.2396 0.4081 0.1478 0.2396 0.4081 0.1478𝑥(3)𝑛 0.0073 0.0118 0.0085 0.0066 0.0108 0.0077

Table 3

𝑛 95 96 97 98 99 100𝑥(1)𝑛 0.9344 2.0000 0.0052 0.9344 2.0000 0.0052𝑥(2)𝑛 2.4481 3.8536 0.0132 2.4481 3.8536 0.0132𝑥(3)𝑛 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Example 4. In (41), we take Θ = (1, 0.9, 1.2), Ξ = (4, 0.4, 0.3),Λ = (1, 0.5, 0.6, 0.8, 0.8, 0.3, 0.6, 0.2, 0.5). From Table 4 and
Figure 1(d) we see that

lim
𝑘→∞

𝑥(1)3𝑘+𝑗 = 𝑥(1)𝑗 exp (−𝜂1,3−𝑗) , 𝑗 = 1, 2, 3,
lim
𝑛→∞

𝑥(2)𝑛+1 = +∞,
lim
𝑛→∞

𝑥(3)𝑛+1 = 0.
(45)

Example 5. In (41), we take Θ = (10/9, 0.8, 9/8), Ξ =(5, 1, 7), Λ = (7, 0.4, 10, 2, 0.9, 5, 5, 0.6, 9). From Table 5 and
Figure 2(a) we see that

lim
𝑘→∞

𝑥(1)3𝑘+𝑗 = 𝑥(1)𝑗 exp (−𝜂1,3−𝑗) , 𝑗 = 1, 2, 3,
lim
𝑛→∞

𝑥(2)𝑛+1 = +∞,
lim
𝑛→∞

𝑥(3)𝑛+1 = 0.
(46)

Example 6. In (41), we take Θ = (1, 0.8, 1.25), Ξ = (2, 0.1, 4),Λ = (20, 0.8, 30, 15, 0.5, 18, 10, 0.2, 25). From Table 6 and
Figure 2(b) we see that

lim
𝑛→∞

𝑥(1)𝑛+1 = 0,
lim
𝑛→∞

𝑥(2)𝑛+1 = +∞,
lim
𝑛→∞

𝑥(3)𝑛+1 = 0.
(47)

Table 4

𝑛 195 196 197 198 199 200𝑥(1)𝑛 0.0551 0.2586 0.0801 0.0551 0.2586 0.0801𝑥(2)𝑛 150.6878 359.6003 566.9402 167.4252 399.5398 629.9081𝑥(3)𝑛 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5

𝑛 95 96 97 98 99 100𝑥(1)𝑛 0.0035 0.0315 0.0006 0.0031 0.0280 0.0005𝑥(2)𝑛 570.3772 418.8940 35.3935 710.9386 522.1435 44.1177𝑥(3)𝑛 0.0112 0.0233 0.0001 0.0098 0.0204 0.0001

Table 6

𝑛 95 96 97 98 99 100𝑥(1)𝑛 0.1805 1.8961 0.0333 0.1783 1.8737 0.0329𝑥(2)𝑛 460.0534 187.1326 24.3153 574.7237 233.7778 30.3762𝑥(3)𝑛 0.0010 0.0014 0.0000 0.0008 0.0011 0.0000

Table 7

𝑛 75 76 77 78 79 80𝑥(1)𝑛 0.1590 0.0000 0.9893 0.1387 0.0000 0.8631𝑥(2)𝑛 422.5695 0.0031 195.9576 491.4949 0.0036 227.9814𝑥(3)𝑛 6.6679 0.0007 5.4747 6.5355 0.0007 5.3663

Table 8

𝑛 45 46 47 48 49 50𝑥(1)𝑛 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000𝑥(2)𝑛 0.6839 0.1089 1.0899 0.6839 0.1089 1.0899𝑥(3)𝑛 33410 4620 33100 69610 9620 68960

Example 7. In (41), we takeΘ = (1.1, 0.8, 1), Ξ = (2, 3, 1),Λ =(20, 50, 20, 80, 58, 18, 10, 60, 16).FromTable 7 andFigure 3(a)
we see that

lim
𝑛→∞

𝑥(1)𝑛+1 = 0,
lim
𝑛→∞

𝑥(2)𝑛+1 = +∞,
lim
𝑛→∞

𝑥(3)𝑛+1 = 0.
(48)

Example 8. In (41), we takeΘ = (2, 0.5, 0.4),Ξ = (1, 6, 2),Λ =(0.3, 3, 1, 0.7, 5, 1.2, 0.5, 2, 1.4). From Table 8 and Figure 3(b)
we see that

lim
𝑛→∞

𝑥(1)𝑛+1 = 0,
lim
𝑘→∞

𝑥(2)3𝑘+𝑗 = 𝑥(2)𝑗 exp (−𝜂2,3−𝑗) ,
𝑗 = 1, 2, 3,

lim
𝑛→∞

𝑥(3)𝑛+1 = +∞.
(49)
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Figure 1: 𝛼 > 1.
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Figure 2: 𝛼 = 1.
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Figure 3: 𝛼 < 1.
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positive solutions of the system of rational difference equations𝑥𝑛+1 = 𝑥𝑛−1/(𝑦𝑛𝑥𝑛−1 + 1), 𝑦𝑛+1 = 𝑦𝑛−1/(𝑥𝑛𝑦𝑛−1 + 1),”Mathemati-
cal and Computer Modelling, vol. 53, no. 5-6, pp. 1261–1267, 2011.

[10] E.M. Elabbasy,H. El-Metwally, and E.M. Elsayed, “On the solu-
tions of a class of difference equations systems,” Demonstratio
Mathematica, vol. 41, no. 1, pp. 109–122, 2008.

[11] A. S. Kurbanli, “On the behavior of solutions of the system
of rational difference equations: 𝑥𝑛+1 = 𝑥𝑛−1/(𝑦𝑛𝑥𝑛−1 − 1),𝑦𝑛+1 = 𝑦𝑛−1/(𝑥𝑛𝑦𝑛−1 − 1), and 𝑧𝑛+1 = 𝑧𝑛−1/(𝑦𝑛𝑧𝑛−1 − 1),”Discrete
Dynamics in Nature and Society, vol. 2011, Article ID 932362, 12
pages, 2011.
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[14] S. Stević,M.A.Alghamdi, A. Alotaibi, andN. Shahzad, “Bound-
edness character of a max-type system of difference equations
of second order,” Electronic Journal of Qualitative Theory of
Differential Equations, vol. 2014, no. 45, pp. 1–12, 2014.
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