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We propose a new set-valued riskmeasure, which is called set-valuedHaezendonck-Goovaerts riskmeasure. First, we construct the
set-valued Haezendonck-Goovaerts risk measure and then provide an equivalent representation. The properties of the set-valued
Haezendonck-Goovaerts risk measure are investigated, which show that the set-valued Haezendonck-Goovaerts risk measure is
coherent. Finally, an example of set-valuedHaezendonck-Goovaerts riskmeasure is given, which exhibits the fact that the set-valued
average value at risk is a particular case of the set-valued Haezendonck-Goovaerts risk measures.

1. Introduction

Premium principles are important and basic issues in
insurance and actuarial science. Among various premium
principles, the so-called Haezendonck-Goovaerts premium
principle (also called Haezendonck-Goovaerts risk measure)
has especially been attracting the attention of the insurance
community and the financial community, not only because
the Haezendonck-Goovaerts risk measure is a coherent risk
measure introduced by Artzner et al. [1] but also because it
has good properties and a wide range of applications in the
finance field and the insurance field. Therefore, it plays an
important role in both financial community and insurance
community. Haezendonck and Goovaerts [2] introduced a
new premium principle based on Orlicz norms. Goovaerts
et al. [3] further studied the premium principle by Haezen-
donck and Goovaerts [2] and called it the Haezendonck risk
measure in honor of the late Haezendonck. Haezendonck-
Goovaerts risk measure describes a class of concrete risk
measures which derived by different parameters. Bellini and
Rosazza Gianin [4] further studied Haezendonck risk mea-
sure. Bellini and Rosazza Gianin [5] continued the study of
Haezendonck and used the terminology of Haezendonck-
Goovaerts risk measure in order to better acknowledge both

authors’ contribution in the seminal papers by Haezendonck
and Goovaerts [2] and Goovaerts et al. [3]. All the above pre-
mium principles are for single risks (i.e., single claims). For
more studies about insurance in recent years, see [6–11] and
the references cited therein.

In some sense, risk measures can be considered as the
counterpart of premium principles; see Bellini and Rosazza
Gianin [4]. Meanwhile, in finance, in order to evaluate the
risk of multivariate risks, with possible dependence between
separate individual risks, the so-called scalarmultivariate risk
measures have been studied. For scalar multivariate coherent
and convex risk measures, see Burgert and Rüschendorf [12],
Rüschendorf [13], and the references cited therein. Moreover,
besides the possible dependence between the separate indi-
vidual risks, if the assets in different security markets are also
involved in the multivariate risks, the so-called set-valued
risk measures have been suggested and investigated. To be
specific, the set-valued risk measure was firstly introduced
to allow for random portfolios valued in R𝑑 and relate each
component of this portfolio to a specific security market.
The motivation is that most of the investors are not able to
aggregate their portfolio because of transaction costs between
different security markets [14]. For the set-valued multivari-
ate coherent and convex risk measures, see Jouini et al. [14],
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Hamel et al. [15], and Ararat et al. [16]. For more study about
risk measure and set-valued risk measure in recent years, see
[3, 17–20] and the references cited therein.

The existing Haezendonck-Goovaerts risk measure only
takes into account a single risk position.When investors tend
to consider a portfolio which contains different currencies or
securities in different markets, the problems of conveniences
and transaction costs can not be solved by the existing
Haezendonck-Goovaerts risk measure. In the present paper,
we propose the set-valuedHaezendonck-Goovaerts riskmea-
sures for multivariate risks (i.e., risk portfolio vectors) to
measure the risk of financial portfolios taking into account
the transaction costs. Also, the set-valued Haezendonck-
Goovaerts risk measure provides a convenient and effective
way to compare different portfolios and their margins. By
construction, we will define the set-valued Haezendonck-
Goovaerts risk measure.Then an equivalent representation is
provided, whose properties are investigated. It turns out that
the set-valued Haezendonck-Goovaerts risk measures are
coherent. Finally, an example is given, which shows that
the set-valued average valued at risk by Hamel et al. [15] is
a particular case of the set-valued Haezendonck-Goovaerts
risk measures.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly introduce the preliminaries. Section 3 is
the study of the regular set-valued Haezendonck-Goovaerts
risk measures. Section 4 falls on an extended form of set-
valued Haezendonck-Goovaerts risk measures. Section 5 is
an example of set-valued Haezendonck-Goovaerts risk mea-
sures, which also shows that the set-valued average value
at risk is a particular case of the set-valued Haezendonck-
Goovaerts risk measures.

2. Preliminaries

Let (Ω,F, 𝑃) be a probability space and 𝑑 ≥ 1 a positive
integer. A multivariate random variable (understood as a
financial portfolio) is anF-measurable functionX : Ω → R𝑑
for 𝑑 ≥ 2. In this paper, we regard X as “loss.” When 𝑑 = 1,
the random variate is called univariate. Denote by 𝐿0𝑑 fl
𝐿0𝑑(Ω,F, 𝑃) the linear space of the equivalence classes (with
respect to the probability 𝑃) of R𝑑-valued random variables.
An element X ∈ 𝐿0𝑑 has components 𝑋1, . . . , 𝑋𝑑 in 𝐿0 fl
𝐿01, where each component 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑑, is regarded as
a single financial position. Denote by (𝐿0𝑑)+ the set of R𝑑-
valued random variables with 𝑃-almost surely nonnegative
components and by 𝐿1𝑑 fl 𝐿1𝑑(Ω,F, 𝑃) the linear space of all
X = (𝑋1, . . . , 𝑋𝑑) ∈ 𝐿0𝑑 with ∫

Ω
𝑋𝑖𝑑𝑃 < +∞, 1 ≤ 𝑖 ≤ 𝑑.

We also define 𝐸[X] = (𝐸𝑋1, . . . , 𝐸𝑋𝑑)𝑇 for X ∈ 𝐿1𝑑, the
transpose of row vector (𝐸𝑋1, . . . , 𝐸𝑋𝑑). Define (𝐿1𝑑)+ = 𝐿1𝑑 ∩(𝐿0𝑑)+. If 𝑑 = 1, we write 𝐿0, 𝐿0+, and 𝐿1+ for 𝐿01, (𝐿0𝑑)+, and(𝐿1𝑑)+, respectively. 𝑥+ stands for max(𝑥, 0) for 𝑥 ∈ R. Write
R+ fl [0, +∞) andM fl R𝑚 × {0}𝑑−𝑚.

A Young Function Φ is a mapping from R+ to R+
that can be written as an integral of the form Φ(𝑥) =
∫𝑥
0
𝑔(𝑡)𝑑𝑡, where 𝑔 is a left-continuous, monotone increasing

real-valued function on R+ with 𝑔(0) = 0 and lim𝑥→∞𝑔(𝑥) =∞. We say that 𝑔 is the kernel of the Young Function Φ.
It is easy to see that Φ is continuous, convex, and strictly
increasing on the set {Φ > 0}. We say a Young Function
is normalized if Φ(1) = 1. Any Young Function can be
normalized by taking Φ(𝑥)/Φ(1).

The prototype ofHaezendonck-Goovaerts riskmeasure is
called the Orlicz premium principle studied by Haezendonck
and Goovaerts [2]. The Orlicz premium principle is defined
on Orlicz space.

Definition 1. LetΦ be aYoung Function; the set𝐿Φ of random
variables X defined as follows is called an Orlicz space:

𝐿Φ fl {X | 𝐸 [Φ(|X|𝑎 )] ≤ 1, for some 𝑎 > 0} . (1)

Let ‖X‖Φ fl inf{𝑎 > 0 | 𝐸[Φ(|X|/𝑎)] ≤ 1}; ‖X‖Φ is called
the Orlicz norm of X corresponding to the Young Function
Φ.

For more information about Orlicz space as well as Orlicz
heart, see Haezendonck and Goovaerts [2] and Bellini and
Rosazza Gianin [5].

The following definition of Orlicz premium principle is
from Haezendonck and Goovaerts [2].

Definition 2. Let X ∈ 𝐿+∞ with X not being equal to zero
a.s. and 𝐻(X) be the solution of the equation Ψ(𝑥) =
𝐸[Φ(X/𝑥)] = 1. By convention 𝐻(0) ≜ 0, 𝐻(⋅) is called the
Orlicz premium principle on 𝐿+∞.

Note that the solution𝐻(X) exists uniquely and that it is
exactly the Orlicz norm ‖X‖Φ as in Definition 1. Moreover,
𝐻(⋅) is a coherent risk measure by Artzner et al. [1]. For more
details, see Haezendonck and Goovaerts [2].

Given 𝛼 ∈ (0, 1), Bellini and Rossaza Gianin [4] intro-
duced the following Haezendonck-Goovaerts risk measure.

Definition 3. Let 𝛼 ∈ (0, 1), for X ∈ 𝐿∞, 𝑥 ∈ R with 𝑥 <
esssup(X); 𝜋𝛼(X, 𝑥) is denoted as the solution of the equation

𝐸[Φ( (X − 𝑥)+
𝜋𝛼 (X, 𝑥) − 𝑥)] = 1 − 𝛼. (2)

𝜋𝛼(X, 𝑥) is called Haezendonck-Goovaerts risk measure with
respect to X ∈ 𝐿∞.

Note that 𝜋𝛼(X, 𝑥) = 𝐻((X − 𝑥)+) + 𝑥. For more studies,
see Bellini and Rossaza Gianin [4, 5].

Next, we introduce the set-valued risk measures. The
power set of R𝑛 is denoted by P(R𝑛). In general, a (𝑑 − 𝑛)
set-valued risk measure is any mapping from 𝐿∞𝑑 intoP(R𝑛),
for 𝑛 ≤ 𝑑.
Definition 4. A (𝑑 − 𝑛) set-valued risk measure 𝑅 : 𝐿∞𝑑 →
P(R𝑛) is coherent; it satisfies the following axioms:

(A0) For all X ∈ 𝐿∞𝑑 , 𝑅(X) is closed and 0 ∈ 𝑅(0) ̸= R𝑛.
(A1) For all X ∈ 𝐿∞𝑑 , X ⪰ 0 𝑃 − a.s. ⇒ 𝑅(0) ⊂ 𝑅(X).
(A2) For all X,Y ∈ 𝐿∞𝑑 , 𝑅(X) + 𝑅(Y) ⊂ 𝑅(X + Y).
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(A3) For all 𝑡 > 0 and X ∈ 𝐿∞𝑑 , 𝑅(𝑡X) = 𝑡𝑅(X).
(A4) For all 𝑥 ∈ R𝑛 and X ∈ 𝐿∞𝑑 , 𝑅(X + 𝑥) = {−𝑥} + 𝑅(X).

For more details about the definition above, see Jouini et al.
[14].

Hamel et al. [15] introduced the so-called set-valued
average value at risk, which is coherent.

Definition 5. Let 𝛼 ∈ (0, 1]𝑑 andX ∈ 𝐿∞𝑑 ; the average value at
risk of X is defined as

AV@𝑅𝛼 (X) fl {diag (𝛼)−1 𝐸 [Z] − 𝑧 | Z ∈ (𝐿1𝑑)+ , X
+ Z − 𝑧 ∈ (𝐿0𝑑)+ , 𝑧 ∈ R𝑑} .

(3)

It has an equivalent representation as follows:

AV@𝑅𝛼 (X) = [ inf
𝑧𝑖∈R

( 1
𝛼𝑖𝐸 [(−𝑋𝑖 + 𝑧𝑖)

+] − 𝑧𝑖)]
𝑑

𝑖=1

+ R𝑚 × {0}𝑑−𝑚 .
(4)

3. The Regular Set-Valued
Haezendonck-Goovaerts Risk Measure

In this section, we will give the definition of set-valued
Haezendonck-Goovaerts risk measure. Meanwhile, its prop-
erties and an equivalent representation are provided.

Definition 6. Let 𝛼 ∈ (0, 1)𝑑. For X ∈ 𝐿0𝑑, let 𝐻𝛼(X) be the
solution of equation 𝐸[Φ(X/𝐻𝛼(X))] = 1 − 𝛼. The set-valued
Haezendonck-Goovaerts risk measure is defined as follows:

HG𝛼 (X) fl {𝐻𝛼 (Z) + 𝑧 | Z ∈ (𝐿1𝑑)+ , −X + Z + 𝑧
∈ (𝐿0𝑑)+ , 𝑧 ∈ R𝑑} ∩M.

(5)

Here𝐻𝛼(Z) + 𝑧 fl (𝐻𝛼𝑖(𝑍𝑖) + 𝑧𝑖)𝑑𝑖=1.
Remark 7. The intersection with M in Definition 1 has
an interpretation as follows. When measuring the risk of
portfolioX, we should work out the set of all the margins that
can cancel the risk of portfolioX. After intersecting the setM,
HG𝛼 not only shows the validmargins but also aggregates the
margins. It aggregates the validmargins from 𝑑-dimension to
𝑚-dimension valid margins and the other (𝑑−𝑚)-dimension
should be zero. Aggregating margins has plenty of financial
explanations. For example, different elements of the vector
represent the amount in different currencies. Suppose that
there are 𝑚 kinds of currencies in the vector margin. It is
unnecessary for the regulator to ask investor for 𝑑-dimension
vector margin. They could aggregate some elements, which
are in the same currency, into one new element of the vector
margin. This idea also makes sense when considering the
margins needed by different departments in a company. The
leader of this companymay just deliver the sum ofmargins of
different departments. For more details, see Jouini et al. [14].

Proposition 8. The set-valued Haezendonck-Goovaerts risk
measure defined in Definition 6 is of the following form:

𝐻𝐺𝛼 (X) = [ inf
𝑧𝑖∈R

(𝑧𝑖 + 𝐻𝛼𝑖 ((𝑋𝑖 − 𝑧𝑖)+))]
𝑑

𝑖=1

+ R𝑚+

× {0}𝑑−𝑚 .
(6)

One denotes𝐻𝐺𝑖(𝑋𝑖) = inf𝑧𝑖∈R(𝑧𝑖 + 𝐻𝛼𝑖((𝑋𝑖 − 𝑧𝑖)+)) + R+.

Proof. The condition of Definition 6 equalsZ ≥ (X−𝑧)+, 𝑧 ∈
R𝑑. Then we have

HG𝛼 (X) = {𝐻𝛼 (Z) + 𝑧 | Z ∈ (𝐿1𝑑)+ , −X + Z + 𝑧

∈ (𝐿0𝑑)+ , 𝑧 ∈ R𝑑} ∩M = {𝐻𝛼 (Z) + 𝑧 | Z

≥ (X − Z)+ , 𝑧 ∈ R𝑑} .

(7)

According to the monotonicity of𝐻𝛼(⋅), we have
HG𝛼 (X) = {𝐻𝛼 (Z) + 𝑧 | 𝐻𝛼 (Z) ≥ 𝐻𝛼 ((X − 𝑧)+) , 𝑧

∈ R𝑑} ∩M = {𝐻𝛼 (Z) + 𝑧 | 𝐻𝛼 (Z) + 𝑧

≥ 𝐻𝛼 ((X − 𝑧)+) + 𝑧, 𝑧 ∈ R𝑑} ∩M.

(8)

Hence, we obtain

HG𝛼 (X) = [ inf
𝑧𝑖∈R

(𝐻𝛼𝑖 ((𝑋𝑖 − 𝑧𝑖)+) + 𝑧𝑖)]
𝑑

𝑖=1

+ R𝑚+

× {0}𝑑−𝑚 .
(9)

Proposition 9. The function X → 𝐻𝐺𝛼(X) satisfies the
following properties:

(a) It is positive homogeneous; that is, for any X ∈ 𝐿0𝑑 and
any 𝑠 > 0, we have𝐻𝐺𝛼(𝑠X) = 𝑠𝐻𝐺𝛼(X).

(b) It is subadditive; that is, for any X1,X2 ∈ 𝐿0𝑑, we have𝐻𝐺𝛼(X1) + 𝐻𝐺𝛼(X2) ⊆ 𝐻𝐺𝛼(X1 + X2).
(c) It is M-translative; that is, for any X ∈ 𝐿0𝑑 and any

𝑢 ∈ M, we have 𝐻𝐺𝛼(X + 𝑢) = 𝐻𝐺𝛼(X) + 𝑢; here
𝑢 = 𝑢 × {0}𝑑−𝑚.

(d) It is monotone with respect to (𝐿0𝑑)+; that is, for any
X1,X2 ∈ (𝐿0𝑑)+ and X2 ≥ X1 which means X2 − X1 ∈
(𝐿0𝑑)+, we have𝐻𝐺𝛼(X2) ⊆ 𝐻𝐺𝛼(X1).

(e) It is convex and satisfies 𝐻𝐺𝛼(X) + M+ = 𝐻𝐺𝛼(X).
Particularly,𝐻𝐺𝛼(0) is a convex cone.
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Remark 10. Properties (a)–(d) ensure that set-valued Haez-
endonck-Goovaerts risk measure defined in Definition 6 is
a coherent set-valued risk measure.

Proof of Proposition 9. (a)

𝑠HG𝛼 (X) = 𝑠 {𝐻𝛼 (Z) + 𝑧 | Z ∈ (𝐿1𝑑)+ , −X + Z + 𝑧
∈ (𝐿0𝑑)+ , 𝑧 ∈ R𝑑} ∩M = {𝐻𝛼 (𝑠Z) + 𝑠𝑧 | Z
∈ (𝐿1𝑑)+ , −X + Z + 𝑧 ∈ (𝐿0𝑑)+ , 𝑧 ∈ R𝑑} ∩M

= {𝐻𝛼 (Z) + 𝑧 | Z𝑠 ∈ (𝐿1𝑑)+ , −X + Z
𝑠 +

𝑧
𝑠

∈ (𝐿0𝑑)+ ,
𝑧
𝑠 ∈ R𝑑} ∩M = {𝐻𝛼 (Z) + 𝑧 | Z𝑠

∈ (𝐿1𝑑)+ ,
1
𝑠 (−𝑠X + Z + 𝑧) ∈ (𝐿0𝑑)+ ,

𝑧
𝑠 ∈ R𝑑}

∩M = {𝐻𝛼 (Z) + 𝑧 | Z ∈ (𝐿1𝑑)+ , −𝑠X + Z + 𝑧
∈ (𝐿0𝑑)+ , 𝑧 ∈ R𝑑} ∩M = HG𝛼 (𝑠X) .

(10)

(b)

HG𝛼 (X1) +HG𝛼 (X2) = {𝐻𝛼 (Z1) + 𝑧1 + 𝐻𝛼 (Z2)
+ 𝑧2 | Z1 ∈ (𝐿1𝑑)+ , Z2 ∈ (𝐿1𝑑)+ , −X1 + Z1 + 𝑧1

∈ (𝐿0𝑑)+ , −X2 + Z2 + 𝑧2 ∈ (𝐿0𝑑)+ , 𝑧1 ∈ R𝑑, 𝑧2

∈ R𝑑} ∩M ⊆ {𝐻𝛼 (Z1) + 𝑧1 + 𝐻𝛼 (Z2) + 𝑧2 | Z1

+ Z2 ∈ (𝐿1𝑑)+ , −X1 + Z1 + 𝑧1 − X2 + Z2 + 𝑧2

∈ (𝐿0𝑑)+ , 𝑧1 + 𝑧2 ∈ R𝑑} ∩M ⊆ {𝐻𝛼 (Z1 + Z2)
+ 𝑧1 + 𝑧2 | Z1 + Z2 ∈ (𝐿1𝑑)+ , −X1 + Z1 + 𝑧1 − X2

+ Z2 + 𝑧2 ∈ (𝐿0𝑑)+ , 𝑧1 + 𝑧2 ∈ R𝑑} ∩M

= HG𝛼 (X1 + X2) ,

(11)

where the second inclusion holds because of the subadditivity
and the positive homogeneity of 𝐻𝛼(⋅) (see Bellini and
Rossaza Gianin [4]); we have

𝐻𝛼 (Z1) + 𝐻𝛼 (Z2) + 𝑧1 + 𝑧2
≥ 𝐻𝛼 (Z1 + Z2) + 𝑧1 + 𝑧2,

(12)

which implies

𝐻𝛼 (Z1) + 𝐻𝛼 (Z2) + 𝑧1 + 𝑧2

= 𝑎 [𝐻𝛼 (Z1 + Z2)] + 𝑧1 + 𝑧2

= 𝐻𝛼 (𝑎 (Z1 + Z2)) + 𝑧1 + 𝑧2.

(13)

(c) For any U ∈ (𝐿0𝑑)+, we have U + (𝐿0𝑑)+ ⊆ (𝐿0𝑑)+.
HG𝛼 (X + U) = {𝐻𝛼 (Z) + 𝑧 | Z ∈ (𝐿1𝑑)+ , −X + Z

+ 𝑧 − U ∈ (𝐿0𝑑)+ , 𝑧 ∈ R𝑑} ∩M = {𝐻𝛼 (Z) + 𝑧 | Z

∈ (𝐿1𝑑)+ , −X + Z + 𝑧 ∈ U + (𝐿0𝑑)+ , 𝑧 ∈ R𝑑} ∩M

⊆ {𝐻𝛼 (Z) + 𝑧 | Z ∈ (𝐿1𝑑)+ , −X + Z + 𝑧

∈ (𝐿0𝑑)+ , 𝑧 ∈ R𝑑} ∩M = HG𝛼 (X) .

(14)

So for any X2 ≥ X1, we have HG𝛼(X2) ⊂ HG𝛼(X1).
(d)

HG𝛼 (X + 𝑢) = {𝐻𝛼 (Z) + 𝑧 | Z ∈ (𝐿1𝑑)+ , −X − 𝑢

+ Z + 𝑧 ∈ (𝐿0𝑑)+ , 𝑧 ∈ R𝑑} ∩M = {𝐻𝛼 (Z) + 𝑧 | Z

∈ (𝐿1𝑑)+ , −X + Z + (𝑧 − 𝑢) ∈ U + (𝐿0𝑑)+ , 𝑧 − 𝑢

∈ R𝑑} ∩M = {𝐻𝛼 (Z) + (𝑧 − 𝑢) + 𝑢 | Z ∈ (𝐿1𝑑)+ ,

− X + Z + (𝑧 − 𝑢) ∈ (𝐿0𝑑)+ , 𝑧 − 𝑢 ∈ R𝑑} ∩M

= HG𝛼 (X) + 𝑢.

(15)

(e) It is obvious.
The proof of Proposition 9 is complete.

Before ending this section, we will introduce the concept
of scalarization of set-valued Haezendonck-Goovaerts risk
measure.The relationship between (5) and (6)will also be fur-
ther illustrated by scalarization of set-valued Haezendonck-
Goovaerts risk measure. For simplicity, we denote the equiv-
alent representation of set-valued Haezendonck-Goovaerts
risk measure in (6) by HGsca

𝛼 (X).
In the following, we assume that HGsca

𝛼 (X) is a nonempty
closed set. Besides, it is also convex. So it is the intersection
of all closed half-space including it. Such a half-space has an
element𝑤 ∈ (R𝑑+ ∩M)+ \ {0} = (R𝑑+ +M⊥) \ {0}. Then we have
the following relationship:

𝑢 ∈ HG𝛼 (X) ⇐⇒ ∀𝑤 ∈ (R𝑑+ +M⊥) \ {0} : 𝑤𝑇𝑢 ≥ inf {𝑤𝑇𝑥 | 𝑥 ∈ HG𝛼 (X)} . (16)
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Now we consider a real-valued function extended by
HG𝛼(X):

X → 𝜙HG𝛼(X),𝑤 (X) = inf {𝑤𝑇𝑢 | 𝑢 ∈ HG𝛼 (X)} . (17)

Let any V ∈ M⊥; we can get that 𝜙HG𝛼(X),𝑤+V = 𝜙HG𝛼(X),𝑤
since HG𝛼(X) ⊆ M for all X ∈ 𝐿0𝑑. Then we can restrict
the function 𝜙HG𝛼(X),𝑤 to those with 𝑤 ∈ R𝑑+ and obtain the
following relationship:

𝑢 ∈ HG𝛼 (X) ⇐⇒ ∀𝑤 ∈ R𝑑+, ∀V ∈ M⊥, 𝑤 + V ̸= 0 : (𝑤 + V)𝑇 𝑢 ≥ 𝜙HG𝛼(X),𝑤 (X) . (18)

Furthermore, it is not difficult to restrict the functions
𝜙HG𝛼(X),𝑤 to those with 𝑤 ∈ 𝐵(1), where 𝐵(1) is defined as
𝐵(1) fl {𝑤 ∈ R𝑑+ | ∑𝑑𝑖=1 𝑤𝑖 = 1}, and we obtain

𝑢 ∈ HG𝛼 (X) ⇐⇒ ∀𝑤 ∈ 𝐵 (1) , ∀V ∈ M⊥, 𝑤 + V ̸= 0 : (𝑤 + V)𝑇 𝑢 ≥ 𝜙HG𝛼(X),𝑤 (X) . (19)

Finally, it is easy to prove the next proposition which will
show that the functions 𝜙HG𝛼(X),𝑤 are composed of the scalar
type HG𝛼(X) (i.e., HGsca

𝛼 (X)) functions for the components
of X.

Proposition 11. Let𝐻𝐺𝛼(X) ̸= 0, 𝑤 ∈ R𝑑+ \ {0}. Then

𝜙𝐻𝐺𝛼(X),𝑤 (X) =
𝑑

∑
𝑖=1

𝑤𝑖𝐻𝐺𝑖 (𝑋𝑖) . (20)

Remark 12. Proposition 11 together with the previous discus-
sion, by the scalarization, provides the following representa-
tion of the set-valued Haezendonck-Goovaerts risk measure.
If HG𝛼(X) is closed, then

HG𝛼 (X) = ⋂
𝑤∈𝐵(1),V∈M⊥ ,𝑤=V ̸=0

{𝑢 ∈ R𝑑 | (𝑤 + V)𝑇 𝑢

≥ 𝜙HG𝛼(X),𝑤 (X)} .
(21)

Remark 13. Proposition 11 means that the scalarization
functions 𝜙HG𝛼(X),𝑤 are convex combinations of the scalar
Haezendonck-Goovaerts risk measure applied to the com-
ponents of the portfolio X. Moreover, 𝑢 ∈ HG𝛼(X) if and
only if the convex combinations 𝑤𝑇𝑢 cancel the risk of the
convex combinations𝑤𝑇X for all𝑤 ∈ 𝐵(1).That explainswhy
the multidimensional confidential level 𝛼may have different
components.

The regulators and investors may have different attitudes
towards the risk of different components of the portfolio X.
On the other hand,𝑤 ∈ 𝐵(1) can be understood as weighting
coefficients of the 𝑑 components of assets. When investors
evaluate the risk of portfolio, they may have more and less
favorable assets. Proposition 11 shows that the regulator does
not care about the weighting which investors have chosen.
The regulator only needs to be the safe side no matter the
weighting that the investors choose.

4. The Extended Set-Valued
Haezendonck-Goovaerts Risk Measure

In this section, we will give an extended set-valued Haez-
endonck-Goovaerts risk measure, which can match more
complex market situation.

Definition 14. Let 𝛼 ∈ (0, 1)𝑑, and let𝐾 and �̃� be closed con-
vex cones which contain (𝐿0𝑑)+ and (𝐿1𝑑)+, respectively. For
X ∈ 𝐿0𝑑, the extended set-valued Haezendonck-Goovaerts
risk measure is defined as follows.

HGext
𝛼 (X)
fl {𝐻𝛼 (Z) + 𝑧 | Z ∈ �̃�, −X + Z + 𝑧 ∈ 𝐾, 𝑧 ∈ R𝑑}

∩M.
(22)

Here,𝐻𝛼(X) is the solution of 𝐸[Φ(X/𝐻𝛼(X))] = 1 − 𝛼.
Remark 15. Different closed convex cones represent different
attitudes towards risks. (𝐿0𝑑)+ is a specific closed convex
cone in (𝐿0𝑑). When choosing 𝐾 = (𝐿0𝑑)+, the regulators
(investors) consider −X⪰𝐾 0 (equivalently −X ≥ 0) as that
−X is component-wise greater than 0.They demand that each
position of the portfolio −X can not be lost. When choosing
a general closed convex cone𝐾, −X⪰𝐾 0means that −X ∈ 𝐾.
In this case, the regulators (or investors) are risk appetite.
They allow several positions to be negative and this portfolio
is also acceptable to them.

Remark 16. There are pros and cons of the set-valued
Haezendonck-Goovaerts risk measure compared with cur-
rent risk measures like value at risk, scalar Haezendonck-
Goovaerts risk measure, and other coherent risk measures.
The pros are that it provides a more convenient and effective
way to compare different portfolios. For example, there
are two-dimensional portfolios like (5, 6) and (6, 5). Two
elements of these portfolios represent Dollar and Euro,
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respectively. It is not convenient to figure out which portfolio
is greater than the other one within the framework of current
scalar risk measure. But within the framework of set-valued
Haezendonck-Goovaerts risk measure, one can immediately
figure out which portfolio is greater by fixing a closed convex
cone 𝐾. (5, 6) is greater than (6, 5) if and only if (5 − 6, 6 −
5) = (−1, 1) ∈ 𝐾. That defines a partial order relationship
(denoted by ⪰𝐾) between different portfolios, which is equal
to normal partial order relationship (≥) by letting 𝐾 be
equal toR𝑑+. Another superiority of set-valuedHaezendonck-
Goovaerts risk measure is that it meets various investors’ (or
regulators’) requirements and can be applied to a wide range
of scenarios such as different levels of preference of risk and
different financial markets. As we know, when using scalar
Haezendonck-Goovaerts riskmeasure, regulators choose dif-
ferent risk preference by choosing different confidence level
𝛼. Within set-valued Haezendonck-Goovaerts risk measure,
investors can also choose a level of preference of risk by select-
ing the closed convex cone 𝐾. Supposing that there are two
closed convex cones 𝐾1 and 𝐾2 with 𝐾1 ⊆ 𝐾2, 𝐾1, 𝐾2 ⊇ R𝑑+,𝐾1 relates to a stricter preference towards risks. Investors
who select 𝐾1 are conservative. The cons of set-valued
Haezendonck-Goovaerts riskmeasure reflect that it hasmany
parameters. So it is not easy to be used for general investors.
Besides, its complex expression makes it difficult to compute.

By checking the proof of Proposition 8, we can steadily
prove the following Proposition 17, which shows that the
extended set-valued Haezendonck-Goovaerts risk measure
has an equivalent representation.

Proposition 17. The extended set-valued Haezendonck-
Goovaerts risk measure has the following equivalent represen-
tation:

𝐻𝐺𝑒𝑥𝑡𝛼 (X) = [ inf
𝑧𝑖∈R

(𝑧𝑖 + 𝐻𝛼𝑖 ((𝑋𝑖 − 𝑧𝑖)+))]
𝑑

𝑖=1

+ C

× {0}𝑑−𝑚 ,
(23)

where C is a closed convex cone which contains R𝑚+ .

Remark 18. 𝐾, �̃�, and C are in the same level of preference of
risk.

Proposition 19. The function X → 𝐻𝐺𝑒𝑥𝑡𝛼 (X) satisfies the
following properties:

(a) It is positive homogeneous; that is, for any X ∈ 𝐿0𝑑 and
any 𝑠 > 0, we have𝐻𝐺𝑒𝑥𝑡𝛼 (𝑠X) = 𝑠𝐻𝐺𝑒𝑥𝑡(X).

(b) It is subadditive; that is, for any X1,X2 ∈ 𝐿0𝑑, we have𝐻𝐺𝑒𝑥𝑡𝛼 (X1) + 𝐻𝐺𝑒𝑥𝑡𝛼 (X2) ⊆ 𝐻𝐺𝑒𝑥𝑡𝛼 (X1 + X2).
(c) It is M-translative; that is, for any X ∈ 𝐿0𝑑 and any

𝑢 ∈ M, we have 𝐻𝐺𝑒𝑥𝑡𝛼 (X + 𝑢) = 𝐻𝐺𝑒𝑥𝑡𝛼 (X) + 𝑢, here
𝑢 = 𝑢 × {0}𝑑−𝑚.

(d) It is monotone with respect to 𝐾; that is, for any
X1,X2 ∈ 𝐿0𝑑 and X2 ⪰𝐾X1 which means X2 −X1 ∈ 𝐾,
we have𝐻𝐺𝑒𝑥𝑡𝛼 (X2) ⊆ 𝐻𝐺𝑒𝑥𝑡𝛼 (X1).

(e) It is convex and satisfies𝐻𝐺𝑒𝑥𝑡𝛼 (X) +M+ = 𝐻𝐺𝑒𝑥𝑡𝛼 (X).
Particularly,𝐻𝐺𝑒𝑥𝑡𝛼 (0) is a convex cone.

Properties (a)–(d) ensure that HGext
𝛼 (⋅) is a set-valued

coherent risk measure. The proof of Proposition 19 is similar
to that of Proposition 9, and so it is omitted here.

5. Computation and Example of Set-Valued
Haezendonck-Goovaerts Risk Measure

In this section, we will introduce the computation of set-
valued Haezendonck-Goovaerts risk measure after the port-
folio is given and the parameters are fixed. Let the portfolio
contain three positions, that is, 𝑑 = 3. We suppose that there
are three scenarios, that is,𝑁 = 3 and 𝑝 = (1/2, 1/3, 1/6).The
payoff is given by

X (𝜔1) = (−7, −4, −2)𝑇 ,
X (𝜔2) = (−5, 3, 2)𝑇 ,
X (𝜔3) = (4, −8, 9)𝑇 .

(24)

We use the confidential level 𝛼 = (𝛼1, 𝛼2, 𝛼3) = (0.05, 0.05,
0.05). Furthermore, let M = R3 and the Young Function
Φ(𝑥) = 𝑥.Then a straightforward calculation shows that

HG𝛼 (X) = (4, 3, 9)𝑇 + R3+. (25)

Thus, theminimal risk compensating portfolio for a regulator
(or investor) covers the worst case for the three assets which
are 4 units, 3 units, and 9 units, respectively. Besides, any
margin portfolio which belongs to (4, 3, 9)𝑇 + R3+ will be
accepted by regulators (or investors).

As we know, in terms of scalar Haezendonck-Goovaerts
risk measure, a particular case of Haezendonck-Goovaerts
risk measure is the average value at risk. When Young Func-
tion Φ(𝑥) = 𝑥, Haezendonck-Goovaerts risk measure comes
to the average value at risk. In the same way, set-valued
Haezendonck-Goovaerts risk measure defines a class of risk
measures. Different parameter leads to different set-valued
risk measure. Among those set-valued risk measures, set-
valued average value at risk is a typical example of set-valued
Haezendonck-Goovaerts risk measure. Before ending this
article, we will show this relationship between set-valued
Haezendonck-Goovaerts risk measure and set-valued aver-
age valued at risk.

Let us start with the equation

𝐸[Φ( X
𝐻𝛼 (X))] = 𝛼. (26)
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Let the Young FunctionΦ(𝑥) = 𝑥; this equation equals

𝐸[ X
𝐻𝛼 (X)] = 𝛼 (27)

which leads to the solution

𝐻𝛼 (X) = 𝐸 [X]
𝛼 . (28)

After taking into account this solution, the definition of set-
valued Haezendonck-Goovaerts risk measure turns out to be

HG𝛼 (X) = [ inf
𝑧𝑖∈R

( 1
𝛼𝑖𝐸 [(𝑋𝑖 − 𝑧𝑖)

+] + 𝑧𝑖)]
𝑑

𝑖=1

+ R𝑚

× {0}𝑑−𝑚 ,
(29)

which is exactly AV@𝑅𝛼(X) when regarding X as “gain.”
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