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We present a new algorithm for solving vector DC programming, where the vector function is a function of the difference of C-
convex functions. Because of the nonconvexity of the objective function, it is difficult to solve this class of problems. We propose
several proximal point algorithms to address this class of problems, which make use of the special structure of the problems (i.e.,
the DC structure). The well-posedness and the global convergence of the proposed algorithms are developed. The efficiency of the
proposed algorithm is shown by an application to a multicriteria model stemming from lot sizing problems.

1. Introduction

Vector-valued optimization arises from multiobjective pro-
gramming, multicriteria decision-making, statistics, and
cooperative game theory [1]. This class of problems has
been widely applied and studied in various decision-making
contexts and many methods have been developed to address
such problems [2–4]. Denote 𝐶 as a convex, closed, and
pointed cone with int(𝐶) ̸= 0. The partial order ⪯ can be
defined as follows: for any 𝑢, V ∈ 𝑅𝑚, 𝑢 ⪯ V ⇔ V−𝑢 ∈ 𝐶.The
relation ≺ is defined as 𝑢 ≺ V ⇔ V − 𝑢 ∈ int(𝐶). This paper
studies the following vector DC optimization problems with
linear constraints:

min
𝐶

{𝑓 (𝑥) fl 𝜓 (𝑥) − 𝜑 (𝑥) : s.t. 𝑥 ∈ 𝑆} , (1)

where functions 𝜑 and 𝜓: 𝑅𝑛 → 𝑅𝑚 are 𝐶-convex (see the
definition in Section 2); 𝑆 ⊂ 𝑅𝑛 is a closed and convex set.
Note that “min𝐶” implies the multiobjective minimization
over the cone 𝐶, that is, the weak Pareto efficiency or Pareto
efficiency with respect to the cone 𝐶. When 𝐶 fl 𝑅𝑚+ ,
the objective function 𝑓 reduces to the multiobjective DC
function and problem (1) is the multiobjective DC program
which is studied by Qu et al. [5]. Similar to the adoption in
[5], we utilize the following convention:∞−∞ = ∞.

Though many researchers have widely studied vector DC
program, they analyze mainly the theoretical aspects. For

example, the duality theories and optimal conditions for
multiobjective optimization were presented by Qu et al. [5];
the optimal conditions for DC vector optimization were also
studied by Gadhi et al. [6]. However, to the best of our
knowledge, there are few studies on how to efficiently solve
this class of problems. This paper presents several proximal
point algorithms for solving this class of problems.

Proximal point algorithms have an extensive application
in solving scalar optimization problems [7], which originates
from the work of [8]. It has been shown that proximal
point algorithms can efficiently solve scalar optimization
problems [9, 10]. As an extension, recently, the proximal point
algorithm has been utilized to solve multicriteria convex
optimization problems [11, 12]. However, to the best of our
knowledge, few studies have been paid on extending proxi-
mal point algorithms to multicriteria optimization problems
with DC objective functions. This paper proposes the exact
and inexact proximal point algorithms to solve vector DC
optimization, where the special structure, the DC structure
of this class of problems, has been considered.

Our contributions can be concluded as follows. The
proximal point methods in both exact and inexact forms
are extended to address the vector DC optimization. The
well-definedness of the proposed methods is presented. The
global convergence of the proposed algorithms is proved. An
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application in lot sizing problems is presented to show the
efficiency of the proposed algorithms.

Weorganize the rest of this paper as follows. Preliminaries
are presented in Section 2. The algorithms are proposed in
Section 3. The theoretical analysis of the well-definedness
and global convergence are also discussed in Section 3. An
application of the algorithms to probabilistic lot sizing with
service levels is presented in Section 4. The conclusion is
given in Section 5.

2. Preliminaries

Function 𝜙 : 𝑅𝑛 → 𝑅𝑚 is denoted as 𝐶 − 𝑐𝑜𝑛V𝑒𝑥 iff, for any𝑥, 𝑦 ∈ 𝑅𝑛 and any 𝜆 ∈ [0, 1],𝜙 (𝜆𝑥 + (1 − 𝜆) 𝑦) ⪯ 𝜆𝜙 (𝑥) + (1 − 𝜆) 𝜙 (𝑦) . (2)

Function 𝜙 is denoted as strictly 𝐶− 𝑐𝑜𝑛V𝑒𝑥 iff, for any 𝑥, 𝑦 ∈𝑅𝑛 and any 𝜆 ∈ (0, 1),𝜙 (𝜆𝑥 + (1 − 𝜆) 𝑦) ≺ 𝜆𝜙 (𝑥) + (1 − 𝜆) 𝜙 (𝑦) . (3)

Given 𝜖 ≥ 0, the 𝜖-subdifferential 𝜕𝜖𝜙(𝑥) of 𝜙 at 𝑥 ∈ dom𝜙 is
a possibly empty, closed, and convex set and can be defined as𝜕𝜖𝜙 (𝑥) fl {𝑉 ∈ 𝑅𝑚×𝑛 : 𝜙 (𝑥) + 𝑉 (𝑦 − 𝑥) ⪯ 𝜙 (𝑦)+ 𝜖𝑒, ∀𝑦 ∈ 𝑅𝑛} , 𝜖 ≥ 0, (4)

where 𝑒 fl (1, . . . , 1)𝑇 ∈ 𝑅𝑚. We denote 𝜕𝜖𝜙(𝑥) fl 0 for𝑥 ∉ dom𝜙 and 𝜕𝜙𝜖(𝑥) is nonempty convex and compact (see
Theorem 4.12 of [13]) if 𝑥 ∈ dom𝜙. When 𝑚 = 1, 𝜖 = 0, and𝐶 = 𝑅+, 𝜕𝜙0(𝑥) reduces to the usual classical subdifferential
[14]. The indicator function of a set 𝑆 ⊂ 𝑅𝑛 can be named as𝛿(𝑥; 𝑆) fl 0 if 𝑥 ∈ 𝑆 and 𝛿(𝑥; 𝑆) fl +∞, if 𝑥 ∉ 𝑆. We denote𝑥 ∈ 𝑆 as the normal cone to the set 𝑆which can be described as𝑁(𝑥; 𝑆) fl 𝜕𝛿 (𝑥; 𝑆)= {𝑥∗ ∈ 𝑅𝑛 | (𝑥 − 𝑥)𝑇 𝑥∗ ≤ 0, ∀𝑥 ∈ 𝑆} . (5)

To facilitate the discussion in this paper, we need the
following information about refined epigraphical and subd-
ifferential rules in convex analysis presented in [15].

Lemma 1. Assume that 𝜙𝑖 : Ω → 𝑅, 𝑖 = 1, 2, are l.s.c. and
proper. If dom𝜙1 ∩ dom𝜙2 ̸= 0, then the following conclusions
are equivalent:

(i) The set 𝑒𝑝𝑖𝜙∗1 + 𝑒𝑝𝑖𝜙∗2 is 𝑤𝑒𝑎𝑘∗ closed in Ω∗ × 𝑅.
(ii) The refined conjugate epigraphical rule holds: 𝑒𝑝𝑖(𝜙1 +𝜙2)∗ = 𝑒𝑝𝑖𝜙∗1 + 𝑒𝑝𝑖𝜙∗2 .
Throughout of this paper, the equivalent conditions in

Lemma 1 are supposed to hold which means that the follow-
ing subdifferential sum rule holds, 𝜕(𝜙1 + 𝜙2)(𝑥) = 𝜕𝜙1(𝑥) +𝜕𝜙2(𝑥), ∀𝑥 ∈ dom𝜙1 ∩ dom 𝜙2 [15].

In multiobjective problem, no unique solution can mini-
mize all of objective functions simultaneously; therefore, the
decision-maker has to trade-off solutions. That is, if he wants

to improve some objectives, he has to give up other objectives.
So the optimal concept has to be replaced by the Pareto
optimal concept, which can be defined as follows: 𝑥∗ ∈ 𝑆
is called a Pareto optimum (PO) or a weak Pareto optimum
(WPO) of (1) if there is no strategy 𝑥 ∈ 𝑆 such that𝑓 (𝑥) ⪯ 𝑓 (𝑥∗) ,𝑓 (𝑥) ̸= 𝑓 (𝑥∗)

or 𝑓 (𝑥) ≺ 𝑓 (𝑥∗) . (6)

𝑥∗ is named as a local PO or a local WPO of (1) if and only
if ∃𝑁(𝑥∗) as a neighborhood of 𝑥∗ such that 𝑥∗ is a PO or a
WPO in𝑁(𝑥∗) ∩ 𝑆.

To analyze the optimization conditions of (1), we put
forward the following assumption.

(A1) Assume that functions 𝜑 and 𝜓: 𝑅𝑛 → 𝑅𝑚 are 𝐶-
convex. Assume that 𝑥 is a locally Pareto efficient solution of
(1) and is limited to 𝑆 ∩ dom𝜓 ̸= 0.

Under the assumption that 𝑆∩dom𝜓 ̸= 0, it is guaranteed
that 𝜕𝜓(𝑥) ̸= 0. Assumption (A1) will be used to prove
Theorem 2.

Theorem 2. Suppose that the assumption (A1) holds and 𝑥 is
a locally WPO to (1), then ∃𝑢 ∈ 𝐶∗, such that𝜕𝜑 (𝑥)𝑇 𝑢 ⊂ 𝜕𝜓 (𝑥)𝑇 𝑢 + 𝑁 (𝑥; 𝑆) , ‖𝑢‖ = 1. (7)

Proof. This theorem can be proved by considering the two
cases about 𝑥 ∈ 𝑆 ∩ dom𝜓: either 𝑥 ∉ dom𝜑 or 𝑥 ∈ dom𝜑.
The first one means that 𝜕𝜑(𝑥) = 0, which leads to (7). For
the other, define 𝐹𝑢(𝑥) fl 𝑢𝑇𝑓(𝑥), ∀𝑢 ∈ 𝐶∗ with ‖𝑢‖ = 1 and∀𝑥 ∈ 𝑆. Given 𝑢 ∈ 𝐶∗ with ‖𝑢‖ = 1, then we can prove that 𝑥
is a local optimal solution to the following scalar optimization
problem:

min
𝑥∈𝑆

𝐹𝑢 (𝑥) . (8)

We prove it by contradiction; that is, the conclusion does not
hold. Then 𝐹𝑢(𝑥) > 𝐹𝑢(𝑥) holds for at least one 𝑥 ∈ 𝑆 ∩ 𝐵𝜀(𝑥)
with any given neighborhood 𝐵𝜀(𝑥) ⊂ 𝑆 of 𝑥, 𝜀 > 0, and any𝑢 ∈ 𝐶∗ with ‖𝑢‖ = 1. It is easy to show that 𝑓(𝑥) ≺ 𝑓(𝑥)
for the choice of 𝑢, which contradicts the assumption about𝑥 and this implies that 𝑥 is also a local optimum to (8). To
show that (7) is true, we only need to prove that 𝑉𝑇𝑢 ∈𝜕𝜓(𝑥)𝑇𝑢 + 𝑁(𝑥; 𝑆) holds ∀𝑉 ∈ 𝜕𝜑(𝑥) ⊆ 𝑅𝑚×𝑛. According to
the definition of subdifferential in 𝑥, it is easy to learn that 𝑥
is also globally solving the following convex optimization
problem:

min {𝐹 (𝑥) fl 𝑢𝑇 (𝜓 (𝑥) − 𝜑 (𝑥)) − 𝑢𝑇𝑉 (𝑥 − 𝑥) : 𝑥∈ 𝑆} . (9)

Then, from the necessary optimal conditions of (9), the
assertion of this theorem can be followed directly.

Usually, it is difficult to utilize the necessary condition
in the above theorem to design the solution algorithms for
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(1). Hence, the other optimal condition should be presented
and this paper looks for finding a critical point of (1), that is,
finding a point 𝑥, such that𝑥 ∈ 𝑋 fl {𝑥 ∈ 𝑅𝑛 : ∃𝑢 ∈ 𝐶∗, s.t., 0 ∈ 𝜕𝜓 (𝑥)𝑇 𝑢− 𝜕𝜑 (𝑥)𝑇 𝑢, ‖𝑢‖ = 1} . (10)

Define 𝑈 fl {𝑢 ∈ 𝐶∗ : ‖𝑢‖ = 1}. Then, an alternative
characterization of criticality is given in the following results
which is useful in the following discussions.

Theorem 3. 𝑥 is a critical point to (1) if and only if there is𝑉 ∈ 𝜕𝜑(𝑥) such that 𝑥 globally solves the following problem:

min
𝑥∈𝑆

max
𝑢∈𝑈

𝑢𝑇𝜓 (𝑥) − 𝑢𝑇𝑉 (𝑥 − 𝑥) . (11)

Proof. It is obvious that problem (11) is convex. Hence, the
proof can be reduced to prove that 𝑥 is a critical point if and
only if 𝑥 is an optimum of (11). We first prove that 𝑥 ∈ 𝑋 iff∃𝑉 ∈ 𝜕𝜑(𝑥) such that 𝑥 is a (globally) WPO to the following
convex vector optimization problem:

min
𝑥∈𝑆

𝜓 (𝑥) − 𝑉 (𝑥 − 𝑥) . (12)

According to the necessary optimal conditions that if 𝑥 ∈ 𝑆
is a WPO of (12), there exists some 𝑢 ∈ 𝐶∗ with ‖𝑢‖ = 1,
such that 0 ∈ 𝜕𝜓(𝑥)𝑇𝑢 − 𝑉𝑇𝑢. This implies that the above
conclusion is true. Moreover, it follows from the definition
of 𝑈 that the cone generated by its convex hull is 𝐶∗, which
means that there are a integer 𝑞 > 0, 𝑢𝑖 ∈ 𝑈, and 𝜆𝑖 > 0 with𝑖 = 1, . . . , 𝑞 such that 𝑢 = ∑𝑞𝑖=1 𝜆𝑖𝑢𝑖 and ∑𝑞𝑖=1 𝜆𝑖 = 1. Hence, a
WPO 𝑥 ∈ 𝑆 satisfies0 ∈ 𝑞∑

𝑖=1

𝜆𝑖 (𝜕𝜓 (𝑥)𝑇 𝑢𝑖 − 𝑉𝑇𝑢𝑖) ,
𝑞∑
𝑖=1

𝜆𝑖 = 1, 𝑢𝑖 ∈ 𝑈, 𝜆𝑖 > 0, 𝑖 = 1, . . . , 𝑞. (13)

Now the necessary optimality of (11) is analyzed. According to
the formula about the subdifferential of amaximumof convex
functions and the assumption about 𝑈 that if 𝑥 is an optimal
solution to (11), there are a positive integer 𝑞 and 𝑢𝑘 ∈ 𝑈 and𝜆𝑘 > 0 with 1 ≤ 𝑘 ≤ 𝑞 such that𝑢𝑇𝑘𝜓 (𝑥) − 𝑢𝑇𝑘𝑉 (𝑥 − 𝑥)= max

𝑢∈𝑈
𝑢𝑇𝜓 (𝑥) − 𝑢𝑇𝑉 (𝑥 − 𝑥) , 𝑘 = 1, . . . , 𝑞,

0 ∈ 𝑞∑
𝑘=1

𝜆𝑘 (𝜕𝜓 (𝑥)𝑇 𝑢𝑘 − 𝑉𝑇𝑢𝑘) , 𝑞∑
𝑘=1

𝜆𝑘 = 1. (14)

The above result together with (13) leads to the assertion of
this theorem.

According to the results of Theorem 3, the solution of
a critical point to (1) can be equivalently transformed into
solving a min–max problem. Therefore from this point,
proximal point algorithms are presented for solving (1) in the
following section.

3. Main Results

3.1. Algorithm 4. First, the algorithm for solving (1) is pro-
posed which is globally convergent and well-defined.

Algorithm 4.

Step 0. A small enough constant 𝜀 > 0 and an initial point𝑥0 ∈𝑆 are chosen, respectively. Select a positive constant 𝜃0 > 0.
Let 𝑘 fl 0.
Step 1. At the 𝑘th iteration, calculate 𝑉𝑘 ∈ 𝜕𝜑(𝑥𝑘). Solve the
following problem and let 𝑥𝑘+1 be an optimum:

min
𝑥∈𝑆

max
𝑢∈𝑈

{𝑢𝑇𝜓 (𝑥) − 𝑢𝑇𝑉𝑘 (𝑥 − 𝑥𝑘)}
+ 𝜃𝑘2 𝑥 − 𝑥𝑘2 . (15)

Step 2. If ‖𝑥𝑘+1 −𝑥𝑘‖ ≤ 𝜀, then stop; else, update 𝜃𝑘 as 𝜃𝑘+1, set𝑘 fl 𝑘 + 1, and go to Step 1.
In Step 1, the subproblem is convex and is solved at

every iteration. We present the optimality conditions of this
subproblem as follows:𝑥𝑘+1 = 𝑃𝑘 ((𝑉𝑘)𝑇 𝑢𝑘 + 𝜃𝑘𝑥𝑘) , 𝑥𝑘+1 ∈ 𝑆, (16)

where 𝑢𝑘 ∈ 𝑈 and 𝑃𝑘 fl (𝜕𝜓𝑇𝑢𝑘 + 𝜃𝑘𝐼)−1. We note that the
algorithm does not rely on scalarization approaches which
are usually used in solving vector optimization; that is, the
algorithm does not use a priori chosen weighting parameters
for the vector in different objective function.

We note that Algorithm 4 aims at obtaining one Pareto
optimal solution. In recent years, the classical iteration
methods (e.g., decent-direction-type and proximal point-
type methods) for scalar optimization have been extended to
address the vector problems to obtain one solution [16–18].
In this respect, the method proposed in this paper is similar
to these ideas. However, when a need to obtain the Pareto
surface (the Pareto optimal solution set) is necessary, this
method may fail. It can be proved by the following example
given in Antoni and Giannessi [19].

Example 5. Consider the following bilevel optimization
problem (upper level):

min
𝑥

(𝑥1 − 2)2 + (𝑥2 − 56)2 ,
s.t. 𝑥 ∈ 𝐾0, (17)

where 𝐾0 is the Pareto optimal solution set of the following
vector optimization problem:

min
𝑅2
+

𝑓 (𝑥) ,
s.t. 𝑥 ∈ 𝐾 fl {𝑥 ∈ 𝑅2 : 𝑔 (𝑥) ≥ 0} , (18)
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with 𝑓 (𝑥) fl ( 𝑓1 (𝑥) fl 2𝑥1 − 𝑥2𝑓2 (𝑥) fl −𝑥1 + 2𝑥2) ,
𝑔 (𝑥) fl (𝑔1 (𝑥) fl 2𝑥1 + 𝑥2 − 1𝑔2 (𝑥) fl 𝑥1 + 2𝑥2 − 1) . (19)

“min𝑅2
+
” marks the Pareto optimum with respect to 𝑅2+. By

Theorem 2.1 of [12] and Proposition 13 of [20], the Pareto
optimum 𝑥∗ of the lower level problem satisfies 𝑥∗ =(1/3, 1/3), or 𝑥∗1 = 1 − 2𝑥∗2 , 0 ≤ 𝑥∗2 < 1/3, or 𝑥∗2 =1 − 2𝑥∗1 , 0 ≤ 𝑥∗1 < 1/3. Then, the optimal solution to the
corresponding bilevel problem (17) is 𝑥∗ = (1, 0) and the
optimal value is 61/36. When we use Algorithm 4 to obtain𝐾0, it can be found that 𝐾0 = {(0.3333, 0.3333)}. Therefore,
the optimal solution to the corresponding bilevel problem
(17) is 𝑥∗ = (0.3333, 0.3333) and the corresponding optimal
value is 3.0279, which is larger than 61/36. Since Algorithm 4
can not obtain the entire solution set 𝐾0, the method fails to
get the optimum of the bilevel problem.

For Algorithm 4, we have the following conclusion.

Theorem 6. Assume that {𝑥𝑘} is generated by Algorithm 4. If
one sets 𝜀 = 0, then the following conclusions about {𝑥𝑘} hold:

(i) either Algorithm 4 stops at a critical point of problem
(1)

(ii) or there is 𝑢𝑘 ∈ 𝑈 such that 𝑢𝑇𝑘 (𝑓(𝑥𝑘+1) − 𝑓(𝑥𝑘)) < 0.
Proof. If 𝑥𝑘+1 = 𝑥𝑘, then it follows that 𝑥𝑘 is a critical point
of (1) from the definition for criticality. According to the
generation of 𝑥𝑘+1, the following inequality holds:

max
𝑢∈𝑈

{𝑢𝑇𝜓 (𝑥𝑘+1) − 𝑢𝑇𝑉𝑘 (𝑥𝑘+1 − 𝑥𝑘)}+ 𝜃𝑘2 𝑥𝑘+1 − 𝑥𝑘2 ≤ max
𝑢∈𝑈

𝑢𝑇𝜓 (𝑥𝑘) (20)

which together with the assumption about 𝑈 implies that∃𝑢𝑘 ∈ 𝑈 such that𝑢𝑇𝑘𝜓 (𝑥𝑘+1) − 𝑢𝑇𝑘𝑉𝑘 (𝑥𝑘+1 − 𝑥𝑘) + 𝜃𝑘2 𝑥𝑘+1 − 𝑥𝑘2≤ 𝑢𝑇𝑘𝜓 (𝑥𝑘) . (21)

The subgradient that, for any 𝑉𝑘 ∈ 𝜕𝜑(𝑥𝑘),𝜑 (𝑥𝑘) + 𝑉𝑘 (𝑥𝑘+1 − 𝑥𝑘) ⪯ 𝜑 (𝑥𝑘+1) . (22)

Summing (21) and 𝑢𝑇𝑘 (22) leads to𝑢𝑇𝑘 (𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘)) ≤ −𝜃𝑘2 𝑥𝑘+1 − 𝑥𝑘2 . (23)

The above result together with 𝑥𝑘+1 ̸= 𝑥𝑘 and the positivity of𝜃𝑘 implies that the assertion is true.

Theorem 6 means that Algorithm 4 either generates a
descent sequence satisfying the second conclusion or stops
at a critical point. For proving the global convergence, the
following assumptions are proposed:

(A2) The set 𝑆 ⊂ 𝑅𝑛 is bounded and the iterations do not
stop finitely.

(A3) For a large enough 𝑘, ∃𝑢 ∈ 𝑈 such that𝑥𝑘+1 = �̂�𝑘 ((𝑉𝑘)𝑇 𝑢 + 𝜃𝑘𝑥𝑘) , 𝑥𝑘+1 ∈ 𝑆, (24)

where �̂�𝑘 fl (𝜕𝜓𝑇𝑢 + 𝜃𝑘𝐼)−1.
Actually, under assumption (A2), the set 𝑆 is compact and

convex. 𝜙 and 𝜓 being 𝐶−convex imply that∀𝑢 ∈ 𝐶∗ : 0 ̸= argmin {𝑢𝑇𝑓 (𝑥) : 𝑥 ∈ 𝑆}⊆ argmin
𝑤

{𝑓 (𝑥) : 𝑥 ∈ 𝑆} , (25)

where argmin𝑤 denotes WPO set. So, to find aWPO for this
problem at this case, it is sufficient to resolve min{𝑢𝑇𝑓(𝑥) :𝑥 ∈ 𝑆}, for any 𝑢 ∈ 𝐶∗. Therefore, at each iteration
of Algorithm 4, we can replace subproblem (15) with the
following problem with fixed 𝑢 ∈ 𝐶∗:

min
𝑥∈𝑆

{𝑢𝑇𝜓 (𝑥) − 𝑢𝑇𝑉𝑘 (𝑥 − 𝑥𝑘)} + 𝜃𝑘2 𝑥 − 𝑥𝑘2 , (26)

which means that assumption (A3) holds at this case.
Assumption (A3) means that a descent sequence for

function 𝑢𝑇𝑓(𝑥) on 𝑆 is generated by Algorithm 4 after
finite iterations. Hence, the proof of global convergence of
Algorithm 4 is equivalent to showing that the sequence gen-
erated by Algorithm 4 is global convergence to a critical point
of function 𝑢𝑇𝑓(𝑥). For this purpose, from the conclusion
of [20], it is sufficient to show that the sequence generated
by Algorithm 4 satisfies three properties: descent, closedness,
and boundedness. First, assumption (A3) implies that the
sequence generated by Algorithm 4 is the descent directions
for function 𝑢𝑇𝑓(𝑥). Second, the compactness of 𝑆means the
boundedness of {𝑥𝑘}. Finally, we prove that the map (𝜕𝜑𝑇𝑢 +𝜃𝑘𝐼)−1 ∘ (∑𝑖∈𝐼 𝑢𝑗𝜕𝜓𝑖 + 𝜃𝑘𝐼) of the algorithm is closed. The
conclusion can be derived by the theoremon the composition
of closed point-to-setmaps proposed byZangwill [21] and the
assumption on functions 𝜑 and 𝜓. Then this implies that the
following theorem is true.

Theorem 7. Assume that {𝑥𝑘} is generated by Algorithm 4. If
assumptions (A2) and (A3) are true, then any accumulation
point of {𝑥𝑘} is a critical point of problem (1).

3.2. Algorithm 8. We now present another algorithm for
solving (1). Both the well-definedness and global convergence
of Algorithm 8 are also established.

Algorithm 8.

Step 0. A sufficiently small constant 𝜀 > 0 and an initial point𝑥0 ∈ 𝑆 are presented, respectively. Choose a constant 𝑟0 ∈𝐶 \ {0}. Let 𝑘 fl 0.
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Step 1. At 𝑘th iteration, calculate 𝑉𝑘 ∈ 𝜕𝜑(𝑥𝑘). Solve the
following problem and let 𝑥𝑘+1 be an optimum:

min
𝑥∈𝑆

max
𝑢∈𝑈

{𝑢𝑇𝜓 (𝑥) − 𝑢𝑇𝑉𝑘 (𝑥 − 𝑥𝑘) + 𝑟𝑇𝑘 𝑢2 𝑥 − 𝑥𝑘2} . (27)

Step 2. If ‖𝑥𝑘+1 − 𝑥𝑘‖ ≤ 𝜀, then stop; else, update 𝑟𝑘, set 𝑘 fl𝑘 + 1, and go to Step 1.
At every iteration of Algorithm 8, similar to Algorithm 4,

a convex subproblem is presented and the enclosed form
expression for the optimum can be computed as𝑥𝑘+1 = 𝑃𝑘 ((𝑉𝑘)𝑇 𝑢𝑘 + (𝑟𝑇𝑘 𝑢𝑘) 𝑥𝑘) , 𝑥𝑘+1 ∈ 𝑆, (28)

where 𝑢𝑘 ∈ 𝑈 and 𝑃𝑘 fl (𝜕𝜑𝑇𝑢𝑘 + (𝑟𝑇𝑘 𝑢𝑘)𝐼)−1. The following
two conclusions hold for Algorithm 8.

Theorem 9. If one sets 𝜀 = 0 and choose 𝑟𝑘 with 𝑟𝑇𝑘 𝑢 > 0, ∀𝑢 ∈𝑈, then the sequence {𝑥𝑘} generated by Algorithm 8 satisfies

(i) either the algorithm stops at a critical point of problem
(1)

(ii) or there is 𝑢𝑘 ∈ 𝑈 such that 𝑢𝑇𝑘 (𝑓(𝑥𝑘+1) − 𝑓(𝑥𝑘)) < 0.
Proof. If 𝑥𝑘+1 = 𝑥𝑘, from Theorem 2, it follows that 𝑥𝑘 is a
critical point of (1). According to the generation of 𝑥𝑘+1, the
following inequality holds:

max
𝑢∈𝑈

{𝑢𝑇𝜓 (𝑥𝑘+1) − 𝑢𝑇𝑉𝑘 (𝑥𝑘+1 − 𝑥𝑘) + 𝑟𝑇𝑘 𝑢2 𝑥𝑘+1 − 𝑥𝑘2} ≤ max
𝑢∈𝑈

𝑢𝑇𝜓 (𝑥𝑘) . (29)

The above inequality means that ∃𝑢𝑘 ∈ 𝑈 such that

𝑢𝑇𝑘𝜓 (𝑥𝑘+1) − 𝑢𝑇𝑘𝑉𝑘 (𝑥𝑘+1 − 𝑥𝑘) + 𝑟𝑇𝑘 𝑢2 𝑥𝑘+1 − 𝑥𝑘2≤ 𝑢𝑇𝑘𝜓 (𝑥𝑘) . (30)

The subgradient definition leads to that, for any𝑉𝑘 ∈ 𝜕𝜑(𝑥𝑘),𝜑 (𝑥𝑘) + (𝑥𝑘+1 − 𝑥𝑘)𝑇𝑉𝑘 ⪯ 𝜑 (𝑥𝑘+1) . (31)

The following inequality comes from summing (30) and 𝑢𝑇
(31):

𝑢𝑇𝑘 (𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘)) ≤ −𝑟𝑇𝑘 𝑢2 𝑥𝑘+1 − 𝑥𝑘2 . (32)

This together with 𝑟𝑇𝑘 𝑢𝑘 > 0 and 𝑥𝑘+1 ̸= 𝑥𝑘 implies that the
assertion is true.

Theorem 9 implies that the sequence generated by
Algorithm 8 either satisfies the second conclusion or stops
at a critical point. The following assumption is proposed for
proving the global convergence:

(A4) For large enough 𝑘, ∃𝑢 ∈ 𝑈 such that𝑥𝑘+1 = �̃�𝑘 ((𝑉𝑘)𝑇 𝑢 + 𝑟𝑇𝑘 𝑢𝑥𝑘) , 𝑥𝑘+1 ∈ 𝑆, (33)

where �̃�𝑘 fl ((𝜕𝜑𝑇𝑢 + 𝑟𝑇𝑘 𝑢𝐼))−1.
Similar to the proof of the globally convergence analysis

for Algorithm 4, Algorithm 8 is also globally convergent.

Theorem 10. Assume that {𝑥𝑘} is generated by Algorithm 8. If
one supposes that assumptions (A2) and (A4) hold, then any
accumulation point of {𝑥𝑘} is a critical point of problem (1).

3.3. 𝜖-Proximal Algorithm. Wepropose an inexact version for
the above algorithms, that is, an 𝜖-proximal algorithm for
obtaining an 𝜖-critical point of problem (1) by utilizing the 𝜖-
subdifferential. For this purpose we define the 𝜖-critical point
of (1) as follows: find a point 𝑥 such that𝑥 ∈ 𝑋𝜖 fl {𝑥 ∈ 𝑅𝑛 : ∃𝑢 ∈ 𝑈, s.t., 0 ∈ 𝜕𝜖𝜓 (𝑥)𝑇 𝑢− 𝜕𝜖𝜑 (𝑥)𝑇 𝑢} , (34)

where 𝜕𝜖 is the 𝜖-subdifferential defined above.This algorithm
is in connection with inexact proximal point algorithms
proposed in [22].𝜖-Proximal Algorithm

Step 0. A small enough constant 𝜀 > 0 and an initial point𝑥0 ∈ 𝑆 are chosen, respectively. Let 𝜖0, 𝜃0 > 0 be constants.
Set 𝑘 fl 0.
Step 1. At the 𝑘th iteration, calculate 𝑉𝑘𝜖𝑘 ∈ 𝜕𝜖𝑘𝜑(𝑥𝑘). 𝑥𝑘+1 ∈ 𝑆
satisfies the following equation:𝑥𝑘+1 = 𝑃𝑘𝜖𝑘 ((𝑉𝑘𝜖𝑘)𝑇 𝑢𝑘 + 𝜃𝑘𝑥𝑘) , (35)

where 𝑢𝑘 ∈ 𝑈 and 𝑃𝑘𝜖𝑘 fl (𝜕𝜖𝑘𝜓𝑇𝑢𝑘 + 𝜃𝑘𝐼)−1.
Step 2. Stop if ‖𝑥𝑘+1 − 𝑥𝑘‖ ≤ 𝜀; else, update 𝜃𝑘, set 𝑘 fl 𝑘 + 1,
and go to Step 1.

This is an approximate algorithm to Algorithm 4 by using
the 𝜖-subdifferential instead of the subdifferential. We can
similarly propose an approximate algorithm for Algorithm 8
by replacing the subdifferential with the 𝜖-subdifferential and
the corresponding properties can also be found. The next
two theorems present the descent and globally convergent
properties of the approximate algorithm, respectively.

Theorem 11. Assume that {𝑥𝑘} is generated by 𝜖-proximal
algorithm, 𝜀 = 0 and 𝜖𝑘 ≤ 𝜖, ∀𝑘. If the algorithm do not stop
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finitely, then {𝑓(𝑥𝑘)} is a 2𝜖-descent sequnece, which implies
that ∃𝑢𝑘 ∈ 𝑈 such that(𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘))𝑇 𝑢𝑘 < 2𝜖, ∀𝑘. (36)

Proof. The conclusion comes from Theorem 5.4 in [23] and
Theorem 6.

To show the global convergent, the following assumptions
are presented:

(A5) For large enough 𝑘, ∃𝑢 ∈ 𝑈 such that𝑥𝑘+1 = �̂�𝑘𝜖𝑘 ((𝑉𝑘𝜖𝑘)𝑇 𝑢 + 𝜃𝑘𝑥𝑘) , 𝑥𝑘+1 ∈ 𝑆, (37)

where �̂�𝑘𝜖𝑘 fl (𝜕𝜖𝑘𝜑𝑇𝑢 + 𝜃𝑘𝐼)−1;
(A6) For any 𝑢 ∈ 𝑈, 𝑢𝑇𝑓(𝑥) is bounded below for any𝑥 ∈ 𝑆; there is 0 < 𝜃 ≤ 𝜃 < +∞ such that 𝜃𝑘 ∈ [𝜃, 𝜃], ∀𝑘; the

parameters 𝜖𝑘, ∀𝑘, satisfy∑+∞𝑘=0 𝜖𝑘 < +∞.
Hence, similar to Theorem 2.1 in [24], we can prove the

approximate algorithm has the following convergent results.

Theorem12. Suppose that {𝑥𝑘} is generated by the 𝜖𝑘-proximal
algorithm. If assumptions (A2), (A5), and (A6) hold, then
any accumulation point of {𝑥𝑘} is a critical point of problem
(1) and {𝑥𝑘} is asymptotically regular in the following sense:
lim𝑘→+∞𝜃𝑘‖𝑥𝑘 − 𝑥𝑘+1‖ = 0.
4. Numerical Tests

4.1. Probabilistic Lot Sizing with Service Levels. In proba-
bilistic lot sizing with service levels, the order quantities,𝑥𝑡, 𝑡 = 1, . . . , 𝑛, are determined at the beginning of the
planning horizon by considering to simultaneouslyminimize
the expected total cost and maximize the guarantee of both
the inventory balance and service levels. The model can be
described as follows [25]:

min E( 𝑛∑
𝑗=1

(𝜇𝑗𝑥𝑗 + ]𝑗𝑠𝑗 (𝜉𝑗) + 𝛾𝑗𝑤𝑗))
max P( 𝑥1 ≥ 𝜉1𝑥1 + 𝑥2 ≥ 𝜉2...𝑥1 + 𝑥2 + 𝑥3 + ⋅ ⋅ ⋅ + 𝑥𝑛 ≥ 𝜉𝑛)
s.t. 0 ≤ 𝑥𝑡 ≤ 𝑀𝑡𝑤𝑡, 𝑡 ∈ [1, 𝑛] ,𝑠𝑡 (𝜉𝑡) ≥ 𝑡∑

𝑗=1

𝑥𝑗 − 𝜉𝑡, 𝑡 ∈ [1, 𝑛 − 1] ,
𝑠𝑛 (𝜉𝑛) = 𝑛∑

𝑡=1

𝑥𝑡 − 𝜉𝑛,𝑠𝑡 (𝜉𝑡) ≥ 0,𝑤2𝑡 + (1 − 𝑤𝑡)2 = 1,𝑡 ∈ [1, 𝑛] ,

(38)

where 𝜇𝑗, ]𝑗, and 𝛾𝑗 are parameters, 𝑥𝑗, 𝑠𝑗, and𝑤𝑗 are decision
variables, and 𝜉𝑡, 𝑡 = 1, . . . , 𝑛 are stochastic variables.

Define 𝑔𝑡(𝑥, 𝜉) fl 𝜉𝑡 − (𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑡), 𝑡 = 1, . . . , 𝑛. A
fundamental difficulty in solving (38) is that the evaluation
of function P[𝑔(𝑥, 𝜉) ≤ 0] is nontrival and it is difficult
to have its closed form, where 𝑔 fl (𝑔1, . . . , 𝑔𝑛). Therefore,
many approximate methods have been proposed. CVaR
approximation presented by Rockafellar and Uryasev is one
of those methods, which is the best convex conservative
approximation [26]. However, Hong et al. point out that
the CVaR approximation is not a good approximation [27].
Therefore, Hong et al. present a DC approach, which can
approximate 𝑝(𝑥) better than CVaR approximation [27].
Define 𝑝(𝑥) fl 1 − P[𝑔(𝑥, 𝜉) ≤ 0]. The DC approximation
of 𝑝(𝑥) can be stated as follows:𝑝 (𝑥, 𝑡) fl 𝜋1 (𝑥, 𝑡) − 𝜋2 (𝑥)𝑡 , (39)

where 𝜋1(𝑥, 𝑡) fl E[𝑡 + 𝑔(𝑥, 𝜉)]+, 𝜋2(𝑥) fl 𝜋1(𝑥, 0), and𝑔(𝑥, 𝜉) fl max{𝑔1(𝑥, 𝜉), . . . , 𝑔𝑛(𝑥, 𝜉)}. Note that [𝑎]+ fl
max{𝑎, 0}.

We use DC approximation (39) to replace the probability
function in (38). We assume that the stochastic variables 𝜉
are defined on the sample spaceΩ. For an integrable function𝜓 : Ω → 𝑅, the Monte Carlo sampling estimate for E[⋅] is
obtained by taking independently and identically distributed
random samples [𝜉1, . . . , 𝜉𝐿] from Ω and letting E[𝜓(𝜔)] ≈(1/𝐿)∑𝐿𝑙=1 𝜌(𝜔𝑙)𝜓(𝜔𝑙), where 𝜌(𝜔𝑙) is the probability. Define𝑐 (𝑥, 𝜉𝑙) fl max

1≤𝑡≤𝑛

𝑐𝑗 (𝑥, 𝜉𝑡𝑙)𝐿 , 𝑙 = 1, . . . , 𝐿, (40)

where 𝑐𝑡(𝑥, 𝜉𝑡𝑙) fl 𝜉𝑡𝑙 − (𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑡) , 𝑡 = 1, . . . , 𝑛, 𝑙 =1, . . . , 𝐿. In this paper, we use𝑓2 (𝑥) fl ∑𝐿𝑙=1 ([0.05 + 𝑐 (𝑥, 𝜉𝑙)]+ − [𝑐 (𝑥, 𝜉𝑙)]+)0.05 (41)

as the approximation function to (39), where 𝜉𝑙 ∈ [1, 2], 𝑙 =1, . . . , 𝐿 are stochastically generated, and [⋅]+ denotes that[𝑥]+ = 𝑥, if 𝑥 > 0; otherwise [𝑥]+ = 0, (𝑥 ≤ 0). Define
the feasible set

𝑆 fl
((((
(

0 ≤ 𝑥𝑡 ≤ 𝑀𝑡𝑤𝑡, 𝑡 ∈ [1, 𝑛] ,𝑠𝑡 ≥ 𝑡∑
𝑗=1

𝑥𝑗 − ∑𝐿𝑙=1 𝜉𝑡𝑙𝐿 , 𝑡 ∈ [1, 𝑛 − 1] ,𝑠𝑛 = 𝑛∑
𝑗=1

𝑥𝑗 − ∑𝐿𝑙=1 𝜉𝑛𝑙𝐿 ,𝑠𝑡 ≥ 0, 𝑤2𝑡 + (1 − 𝑤𝑡)2 = 1, 𝑡 ∈ [1, 𝑛]
))))
)

. (42)

With the above notations, we can describe Algorithm 4
with 𝑈 fl 𝑅𝑚+ for solving Problem (38) as follows.

Algorithm 13.

Step 0. Give 𝑤0 fl (𝑤01 , 𝑤02 , . . . , 𝑤0𝑛) ∈ {0, 1}𝑛; 𝑥0𝑗 ∈ [0,𝑀𝑡𝑤𝑡],𝑗 = 1, . . . , 𝑛; 𝑠0𝑡 fl ∑𝑡𝑗=1 𝑥0𝑗 − ∑𝐾𝑘=1 𝜉𝑡𝑘/𝐾, 𝑡 = 1, . . . , 𝑛. Let𝑘 fl 0.
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Table 1: Numerical results.𝑛 𝐾 Algorithm 4 Algorithm 8 𝜖-Algorithm 4 𝜖-Algorithm 8
Iter CPU Iter CPU Iter CPU Iter CPU

10 500 15 0.02 17 0.02 17 0.03 27 0.04
10 1000 16 0.03 17 0.02 18 0.03 27 0.03
20 500 21 0.09 24 0.09 26 0.1 32 0.15
20 1000 21 0.12 34 0.22 28 0.25 34 0.28
50 500 37 0.47 48 0.75 50 0.55 50 0.56
50 1000 37 0.47 49 0.77 59 0.62 59 0.67
100 500 59 0.99 78 0.81 75 1.33 78 1.47
100 1000 87 1.55 98 1.89 124 3.96 170 4.39
150 500 341 57.2 500 207.13 500 292.12 500 287.58
150 1000 500 321.22 500 210.35 500 299.27 500 294.77

Step 1. Compute the following optimization problem:

min 𝜂
s.t 𝑓1 (𝑥, 𝑠, 𝑤) + 12 (𝑥, 𝑠, 𝑤) − (𝑥𝑘, 𝑠𝑘, 𝑤𝑘)2 ≤ 𝜂∑𝐿𝑙=1 ([0.05 + 𝑐 (𝑥, 𝜉𝑙)]+ − [∇𝑥𝑐𝑗∗ (𝑥𝑝, 𝜉𝑙) 𝐼(0,+∞) (𝑐 (𝑥𝑝, 𝜉𝑙))]𝑇 (𝑥 − 𝑥𝑘))0.05 + 𝜃𝑘2 𝑥 − 𝑥𝑘2 ≤ 𝜂 (𝑥, 𝑠, 𝑤) ∈ 𝑆,

(43)

where 𝐼(0,+∞)(⋅) is the indicator function defined as𝐼(0,+∞)(𝑦) = 1, if 𝑦 ∈ (0, +∞); otherwise, 0; 𝑗∗ satisfies𝑐(𝑥, 𝜉𝑙) fl max1≤𝑗≤𝑛(𝑐𝑗(𝑥, 𝜉𝑗𝑙)/𝐿), 𝑙 = 1, . . . , 𝐿. (𝑥𝑘+1, 𝑠𝑘+1,𝑤𝑘+1) is the optimum of the above subproblem.

Step 2. If ‖(𝑥𝑘+1, 𝑠𝑘+1, 𝑤𝑘+1) − (𝑥𝑘, 𝑠𝑘, 𝑤𝑘)‖ ≤ 10−6, then stop;
otherwise, 𝑘 fl 𝑘 + 1 and go to Step 1.

Similarly, we can present Algorithm 8 and 𝜖–approximate
algorithm for solving problem (38).

4.2. Numerical Results. To show the efficiency of the pro-
posed method, this section presents several numerical tests;
that is, use Algorithms 4 and 8 and 𝜖-proximal algorithm
for solving problem (38). We note that the codes are written
in Matlab 7.10 with built-in solver “fmincon” to solve the
convex subproblems. A DELL computer is used to conduct
the tests where the computer is with 4.00GB of memory and
Intel(R)Core(TM)i5-2400 processor (3.10 GHz).

The parameters used in the tests are set as follows: 𝜃𝑗𝑘
and 𝜃𝑘 are stochastically generated in the set [1, 2]; the initial
point is stochastically chosen from the feasible region of (38);
the terminating rule 𝜀 fl 1 × 10−6; for 𝑘 ≥ 1, 𝜖𝑘 is set
as 1/𝑘2; 𝜖0 is set as zero; we assume that 𝑀𝑡 ∈ [10, 20],
and 𝜇𝑡, ]𝑡, 𝛾𝑡, 𝜉𝑡 ∈ [1, 2], 𝑡 = 1, . . . , 𝑛, are stochastically
generated. The numerical reports are presented in Table 1,
where computing time in seconds (“CPU”) and the number
of iterations (“Iter”) are given. We note that 500 is set as the

maximal number of iterations. From Table 1, we conclude
that Algorithm 8 under performsAlgorithm 4with respect to
CPU time and the number of iterations.The 𝜖-approximation
of Algorithm 8 also underperforms the corresponding 𝜖-
approximation of Algorithm 4 with respect to CPU time
and the number of iterations. These results mean that the
theoretical results are true and the proposed algorithms are
effective in solving (38).

5. Conclusion

This paper proposes both exact and inexact proximal point
algorithms for solving vector DC optimization problems.The
proposed algorithms enjoy both well-posedness and global
convergence under suitable assumptions. An application to
a probabilistic lot sizing with service levels is considered.
We first show that this model can be equivalently cast as a
multiobjectiveDCoptimization problem.Then, the proposed
algorithms are utilized to solve the resulting problem. The
numerical results show that the methods are efficient. For
future work, we can discuss the local convergence of the
proposed algorithms. The construction of methods for solv-
ing the vector DC optimization problems with nonsmooth
objectives is also an interesting topic for future work.
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