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Internal attack is a crucial security problem of WSN (wireless sensor network). In this paper, we focus on the internal attack
detection which is an important way to locate attacks. We propose a state transition model, based on the continuous time Markov
chain (CTMC), to study the behaviors of the sensors in aWSN under internal attack.Then we conduct the internal attack detection
model as the epidemiological model. In this model, we explore the detection rate as the rate of a compromised state transition to
a response state. By using the Bellman equation, the utility for the state transitions of a sensor can be written in standard forms
of dynamic programming. It reveals a natural way to find the optimal detection rate that is by maximizing the total utility of
the compromised state of the node (the sum of current utility and future utility). In particular, we encapsulate the current state,
survivability, availability, and energy consumption of the WSN into an information set. We conduct extensive experiments and the
results show the effectiveness of our solutions.

1. Introduction

WSN (wireless sensor network) is always vulnerable because
it is usually deployed in hostile environments [1]. The attack
behaviors inWSN aremainly divided into two types: external
attack and internal attack. For the improvement of hardware
performance, which makes the public cryptography possible,
the external attacks inWSN can be prevented effectively with
the security structure based on cryptography [2–4].Thus, the
focus of the study is about internal attack such as detection,
revocation, and tolerance of the compromised nodes and rep-
licated nodes that have been physically captured. Normally,
there are three ways to detect internal attacks: analyzing the
attack behavior [5–8], detecting the compromised nodes [9–
13], and verifying replica attack [14–17].

In aWSN, the states of a sensor are typically distinguished
into healthy, compromised, responsive, or fail state. At any
time, a sensor stays precisely at one of the four states. For the
existence of internal attacks, the sensor transits among the
states in its lifecycle. In this paper, we leverage the continuous
time Markov chain (CTMC) to model the state transition of
sensors. In addition, we built up an internal attack detection

model for WSN based on classical SIR epidemiological
model. The model described the behaviors of the sensors in a
WSN under internal attacks.

Thereafter, we can detect the internal attacks over the
models. According to our study, the detection rate can be
viewed as the rate of the transitions from a compromised state
to a responsive state. In this way, the system responds imme-
diately when a sensor changes its state to a compromised
state; that is, the node has been attacked. Traditionally, the
existing studies on internal attack detection inWSN focus on
more efficient detection methods and higher detection rates
[18–20], while the detection rate is actually not the higher the
better in practice, especially when it is constrainedwith limits
of network characteristics of a WSN such as power and com-
puting capability. In contrast, we aremore concernedwith the
trade-off between detection rate and network characteristics.

Therefore, we proposed a solution to find the optimal det-
ection rate rather than choose the highest rate. By using the
Bellman equation, the utility for the state transitions of a sen-
sor can be written in standard forms of dynamic program-
ming. In addition, we encapsulate the four parameters, that is,
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current state, survivability, availability, and energy consump-
tion, into information set.The information set is a good indi-
cator for achieving the balance between network character-
istics and security. We can find the optimal detection rate by
maximizing the total utility. Extensive experiments have been
conducted to show the effectiveness of our solutions. The
experimental results show that our solution can indeed imp-
rove the survivability of WSN and therefore guide the design
of WSN.

The rest of this paper is organized as follows. In Section 2,
we give related work and outline the perspectives and app-
roaches in the existing literatures. In Section 3, we propose
the state transition model of internal attack and internal
attack detectionmodel, based onCTMC and epidemiological
model, respectively.Thereafter, we establish dynamic progra-
mming model via the Bellman equation to find the optimal
detection rate. In Sections 4 and 5, we present the numerical
simulation study for our methods. Finally, we conclude our
study in the paper and the future work in Section 6.

2. Related Work

The epidemiological model has been widely used to ana-
lyze the spread of malware in wired networks [21–25]. In
literature [26], the impact of the network topology on the
viral prevalence was studied and author proposed a node-
based approach. In literature [27], epidemic processes were
studied in complex networks. In literature [28], a theoretical
assessment approach was proposed on the impact of patch
forwarding on the prevalence of computer virus.

In recent years, application of the epidemiological model
in WSN has become increasingly widespread [29]. The ana-
lyses based on the simulation and experiment research show
that the epidemiological model can effectively describe the
dynamic propagation of malware when the number of nodes
in the network is large enough. In literature [30], the attack
behavior ofmalwarewas studied by combining the epidemio-
logical model with a loss equation. In literature [31], the reac-
tive diffusion equation model of malware propagation was
proposed based on the theory of epidemiological diseases.

Normally the state of the sensors in a WSN is either
healthy, compromised, responsive, or failed. At any time, a
sensor stays precisely at one of the four states. The state of a
sensor will transit to other types if it suffers an internal attack.
Therefore, we use the CTMC to model the state transition
of a sensor, though the decision of the “malicious attacker”
is not random in the attacked WSN, while the attack time is
randomly distributed.The lifecycle of sensors can be regarded
as a dynamic system, so the stochastic process can be used to
establish the corresponding model. In some related papers,
the Markov chain [32] is also widely used to simulate the
spread of malware in WSN.

3. Model and Methods

3.1. State Transition Model. The various epidemic models are
actually state transition models. These states are mutually
exclusive: every sensor is in a precisely specific state at any
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Figure 1: The value of𝐷𝑡 for several planning horizons.
time.The sensor transits diversely among different states dur-
ing its lifecycle.

The state transition of a node in WSN can be modeled
with a CTMC. Figure 1 depicts the state transition diagram of
a node under an internal attack. A circled node in the diagram
stands for a state which is either healthy, compromised,
responsive, or failed, which are marked with 𝐻, 𝐶, 𝑅, or 𝐹,
respectively. Each arc in the diagram associates with a rate𝜆𝑖𝑗, 𝑖, 𝑗 ∈ {𝐻, 𝐶, 𝑅, 𝐹}, which indicates the rate of the transi-
tion from state 𝑖 to state 𝑗 when the node suffered an internal
attack.

State transition processes are as follows: a node in WSN
in𝐻 was functioning correctly at the beginning. We suppose
that the healthy sensor becomes a compromised node under
an attack; that is, the state of the sensor turns to 𝐶 from 𝐻.
When the compromised state has been detected, the state of
it will change to 𝑅; otherwise, the state of it will change to𝐹 or remain at 𝐶. If a sensor stays in 𝑅, a response action
will be carried out. If we get an acknowledgement from the
node, then it moves to 𝐻. Otherwise, it will be viewed as𝐹. The response actions include software rejuvenation and
reconfiguration as a countermeasure against attacks. Since a
WSN is usually deployed in hostile environments or areas, the
sensors could be failed for the influence of environment and
outage of power.

3.2. Internal Attack Detection Model. We explore the impact
of detection rate on sensors under internal attack andmetrics
by combining a classical epidemiological model and an
economic behavioralmodel based on a forward-looking, rep-
resentative agent. Detection efforts determine the detection
rate that will determine nodes from 𝐶 to 𝑅 by some specific
rate. It will affect the survivability and availability of nodes.
The survivability and availability of one single node will have
influence on the entire cluster and network.

There are four types of nodes in the WSN. Assume we
have𝑁 sensors in total, and let𝐻𝑡,𝐶𝑡, 𝑅𝑡, and 𝐹𝑡 be the num-
ber of healthy nodes, compromised nodes, responsive nodes,
and failed nodes, respectively. Then we have the following
differential equations:𝑑𝐻𝑡𝑑𝑡 = −𝜆𝐻𝐶𝐻𝑡𝐶𝑡 + 𝜆𝑅𝐻𝑅𝑡 − 𝜆𝐻𝐹𝐻𝑡,𝑑𝐶𝑡𝑑𝑡 = 𝜆𝐻𝐶𝐻𝑡𝐶𝑡 − 𝐷𝑡𝐶𝑡 − 𝜆𝐶𝐹𝐶𝑡,
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𝑑𝑅𝑡𝑑𝑡 = 𝐷𝑡𝐶𝑡 − 𝜆𝑅𝐻𝑅𝑡 − 𝜆𝑅𝐹𝑅𝑡,𝑑𝐹𝑡𝑑𝑡 = 𝜆𝑅𝐹𝑅𝑡 + 𝜆𝐶𝐹𝐶𝑡 + 𝜆𝐻𝐹𝐻𝑡.
(1)

Equations (1) formalize four-state transition processes
when a sensor in the WSN is under an internal attack. 𝐷𝑡 in
the equations is the detection rate, that is, the rate that nodes
detected in 𝐶 at every interval. The transition rate from 𝐶
to 𝑅 is taken as the detection rate 𝐷𝑡; that is, 𝜆𝐶𝑅 = 𝐷𝑡. In
other words, responsemeasures should be taken immediately
as long as the node is recognized as 𝐶. However, the other
types of state transition do not depend on the detection rate.

The above model (model 1) illustrates the dynamic evolu-
tion process of WSN under internal attack within a certain
period. The dynamics of internal attack detection model
cannot be analyzed thoroughly in a short period of time,
so we will focus on the process of the long-term dynamic
evolution on the WSN. With the power of WSN limited and
deployed in harsh environments, a large number of redun-
dant sensors are normally deployed in WSN for the sensors
cannot be able to be repaired once they transited to the failure
state. After the sensor fails, the redundant node will be the
suitable alternatives. We will call it “death” and “birth”; we
will put forward model 2:𝑑𝐻𝑡𝑑𝑡 = 𝑁0 − 𝜆𝐻𝐶𝐻𝑡𝐶𝑡 + 𝜆𝑅𝐻𝑅𝑡 − 𝜆𝐻𝐹𝐻𝑡,𝑑𝐶𝑡𝑑𝑡 = 𝜆𝐻𝐶𝐻𝑡𝐶𝑡 − 𝐷𝑡𝐶𝑡 − 𝜆𝐶𝐹𝐶𝑡,𝑑𝑅𝑡𝑑𝑡 = 𝐷𝑡𝐶𝑡 − 𝜆𝑅𝐻𝑅𝑡 − 𝜆𝑅𝐹𝑅𝑡.

(2)

Assume the immutability of the sumof the sensors (inclu-
ding 𝐻𝑡, 𝐶𝑡, 𝑅𝑡, and 𝐹𝑡, excluding abundant nodes), 𝑁0 is
the number of the “births”, and it is equal to the number
of “deaths,” namely the abundant nodes which replaced the
“death”. To simplify the counting process, let 𝜆𝐻𝐹 = 𝜆𝐶𝐹 =𝜆𝑅𝐹 = 𝜆.

Dynamic analysis is carried out on model 2 and both
the existence and stability of the equilibrium point will be
discussed. According to (2), we find the steady state as
follows:

(i) 𝐸0 = (1, 0, 0).
(ii) Interior equilibrium point 𝐸∗(𝐻∗𝑡 , 𝑅∗𝑡 , 𝐶∗𝑡 )

𝐻∗𝑡 = 𝜆 + 𝐷𝑡𝜆𝐻𝐶 ,𝑅∗𝑡 = 𝐷𝑡 (𝜆𝐻𝐶 − 𝜆 − 𝐷𝑡)𝜆𝐻𝐶 (𝐷𝑡 + 𝜆 + 𝜆𝑅𝐻) ,𝐶∗𝑡 = (𝜆𝐻𝐶 − 𝜆 − 𝐷𝑡) (𝜆 + 𝜆𝑅𝐻)𝜆𝐻𝐶 (𝐷𝑡 + 𝜆 + 𝜆𝑅𝐻) .
(3)

The Jacobi matrix of the model is acquired:

𝐽 = (−𝜆𝐻𝐶𝐶𝑡 − 𝜆 −𝜆𝐻𝐶𝐻𝑡 𝜆𝑅𝐻𝜆𝐻𝐶𝐶𝑡 𝜆𝐻𝐶𝐻𝑡 − 𝐷𝑡 − 𝜆 00 𝐷𝑡 −𝜆𝑅𝐻 − 𝜆) . (4)

(1) The Jacobian corresponding to 𝐸0(1, 0, 0) is that
𝐽0 = (−𝜆 −𝜆𝐻𝐶 𝜆𝑅𝐻0 𝜆𝐻𝐶 − 𝐷𝑡 − 𝜆 00 𝐷𝑡 −𝜆𝑅𝐻 − 𝜆) (5)

and, thus, the eigenvalues of the Jacobian at 𝐸0(1, 0, 0) must
have negative real parts, which are equivalent to 𝜆1 = −𝜆 < 0,𝜆2 = 𝜆𝐻𝐶 − 𝐷𝑡 − 𝜆 < 0, and 𝜆3 = −𝜆𝑅𝐻 − 𝜆 < 0.

(2) The Jacobian corresponding to 𝐸∗(𝐻∗𝑡 , 𝑅∗𝑡 , 𝐶∗𝑡 ) is that𝐽∗
=(
(

−(𝜆𝐻𝐶 − 𝜆 − 𝐷𝑡) (𝜆 + 𝜆𝑅𝐻)𝐷𝑡 + 𝜆 + 𝜆𝑅𝐻 − 𝜆 −𝜆 − 𝐷𝑡 𝜆𝑅𝐻(𝜆𝐻𝐶 − 𝜆 − 𝐷𝑡) (𝜆 + 𝜆𝑅𝐻)𝐷𝑡 + 𝜆 + 𝜆𝑅𝐻 0 00 𝐷𝑡 −𝜆𝑅𝐻 − 𝜆
)
)

. (6)

The eigenvalues of the Jacobian at 𝐸∗(𝐻∗𝑡 , 𝑅∗𝑡 , 𝐶∗𝑡 ) are
obtained 𝜆1 = −𝜆 < 0 and 𝜆2 and 𝜆3 meet (𝜆󸀠)2 + (𝜆𝑅𝐻 +𝜆+ (𝜆𝐻𝐶 −𝜆−𝐷𝑡)(𝜆 + 𝜆𝑅𝐻)/(𝐷𝑡 +𝜆+𝜆𝑅𝐻))𝜆󸀠 + ((𝜆𝐻𝐶 −𝜆−𝐷𝑡)(𝜆+𝜆𝑅𝐻)/(𝐷𝑡+𝜆+𝜆𝑅𝐻))𝐷𝑡 = 0, because 𝜆𝐻𝐶−𝜆−𝐷𝑡 > 0,
then 𝜆2𝜆3 > 0, 𝜆2 + 𝜆3 < 0, and thus 𝜆2 < 0, 𝜆3 < 0.

By using linear analysis, we can find that 𝐸∗ is always
stable.

Model 1, which is the key of the article, is the basis of the
model behind and simulation test. The dynamics analysis is
only carried out on model 2.

3.3. Dynamic Programming. We next present a dynamic
programming paradigm to find the optimal detection rate.
The method is based on an interesting observation that the
highest detection rate does not always act as the best choice.
So many factors influence the detection rate in WSN, such
as availability, survivability, and energy. Suppose we have
a healthy sensor under attack. The sensor still can provide
service even though it transits to𝐶due to the attack.However,
the service will break off if the sensor, currently staying in 𝐶,
moves to 𝑅. The service continues when the sensor restores
to a healthy state successfully. The availability of the WSN
declines when the sensor in 𝑅 is doing that recovery. The
utility of 𝐶 is greater than 𝑅 and the compromised nodes
might as well have not been detected in this case. So higher
detection rate does not always mean better utility. Moreover,
higher detection rate means more energy consumption,
which violates the efficiency rules in WSNs. Above all, we
focus on the optimal rate instead of the highest one. All the
factors we were concerned about have been abstracted to be
part of the information set.

We propose a new objective, namely, utility, measuring
the quality of the information set. The detection rate will
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maximize the expected net value of the present utility, while
influencing current utility and expected utility in future
periods. To model this dynamic maximization, we define
utility within a period and define the probability of transiting
across states. We switch to a discrete-time formulation, with
time incremented in days and transition probabilities refor-
mulated below on the basis of (1).

Suppose thatwe have complete statistics about the current
value of utility, including the negative utilities, with its
information set including knowledge about survivability,
availability, energy consumption, and𝐻𝑡, 𝐶𝑡, 𝑅𝑡, and 𝐹𝑡.

Let 𝑢𝑡(𝑆) be the current utility of a sensor at time 𝑡 in𝑆 (𝑆 ∈ {𝐻, 𝐶, 𝑅, 𝐹}). Then, the utility of the sensor in 𝐶 at
time 𝑡 is formally defined as follows:𝑢𝑡 (𝐶,𝐷𝑡) = (𝑏𝐷𝑡 − 𝐷2𝑡 )𝛾 − 𝑎. (7)

The utility function 𝑢𝑡 is a hybrid indicator measuring
the content of the information set that has been mentioned
before, which can simplify the model and enhance the
generality of it. The utility function is concave and unimodal.
The coefficients, 𝑎 and 𝑏, in (7) can be adjusted according to
the application.

According to (1), the transition probabilities between a
pair of states are written as follows:𝑃𝐻𝐶 = 1 − 𝑒(−𝜆𝐻𝐶𝐶𝑡),𝑃𝑅𝐻 = 1 − 𝑒(−𝜆𝑅𝐻),𝑃𝐻𝐹 = 1 − 𝑒(−𝜆𝐻𝐹),𝑃𝐶𝑅 = 𝐷𝑡,𝑃𝐶𝐹 = 1 − 𝑒(−𝜆𝐶𝐹),𝑃𝑅𝐹 = 1 − 𝑒(−𝜆𝑅𝐹).

(8)

The detection rate is determined by the current utility, at
time 𝑡, and the expected utility at time 𝑡 + 1, of compromised
nodes. We use the Bellman equation to calculate the optimal
detection rate and utility equations can be written as standard
forms of dynamic programming𝑉𝑡 (𝐻)= 𝑢𝑡 (𝐻)+ 𝛿 [𝑃𝐻𝐻𝑉𝑡+1 (𝐻) + 𝑃𝐻𝐶𝑉𝑡+1 (𝐶) + 𝑃𝐻𝐹𝑉𝑡+1 (𝐹)] , (9)

𝑉𝑡 (𝐶)= 𝑢𝑡 (𝐶,𝐷𝑡)+ 𝛿 [𝑃𝐶𝐶𝑉𝑡+1 (𝐶) + 𝑃𝐶𝑅𝑉𝑡+1 (𝑅) + 𝑃𝐶𝐹𝑉𝑡+1 (𝐹)] , (10)

𝑉𝑡 (𝑅)= 𝑢𝑡 (𝑅)+ 𝛿 [𝑃𝑅𝑅𝑉𝑡+1 (𝑅) + 𝑃𝑅𝐹𝑉𝑡+1 (𝐹) + 𝑃𝑅𝐻𝑉𝑡+1 (𝐻)] , (11)

𝑉𝑡 (𝐹) = 𝑢𝑡 (𝐹) + 𝛿 [𝑃𝐹𝐹𝑉𝑡+1 (𝐹)] . (12)

In the equation system,𝑉𝑡(𝑆) (𝑆 = 𝐻,𝐶, 𝑅, 𝐹) is the utility
for a sensor staying in 𝑆 at time 𝑡 and 𝛿 is the discount factor.𝑢𝑡(𝑆) is current utility. 𝑉𝑡+1(𝑆) is the expected utility and𝑃𝑖𝑗 stands for the transition probabilities between states (see
(8)). The second term of the right member in each equation
indicates that the utility of the future (𝑡 + 1) moments is
discounted to the present (𝑡) utility.

Since the utilities are written in the standard form of
dynamic programming, we can optimize the detection rate𝐷𝑡 dynamically with a planning horizon of length 𝜏. If 𝑡 = 0,
then 𝐷0 is chosen to solve the problem formalized by
(9)–(12). In period 𝑡 = 1, the system updates knowledge on
information set and uses (9)–(12) to optimize anew over the
next 𝜏 planning periods. The process continues in this way.
For example, if 𝜏 = 7, then on February 1 the horizon is
through February 8, but on February 2 the horizon extends
to February 9, and so on:𝑉𝑡 (𝐶) = max {𝑢𝑡 (𝐶,𝐷𝑡)+ 𝛿 [𝑃𝐶𝐶𝑉𝑡+1 (𝐶) + 𝑃𝐶𝑅𝑉𝑡+1 (𝑅) + 𝑃𝐶𝐹𝑉𝑡+1 (𝐹)]} . (13)

In (13), if we take the maximum value of (10), the optimal𝐷𝑡 can be obtained. So partial derivative of (13) is formalized
as 𝜕𝑢𝑡 (𝐶,𝐷𝑡)𝜕𝐷𝑡 = 𝛿 [−𝜕𝑃𝐶𝐶𝜕𝐷𝑡 𝑉𝑡+1 (𝐶) − 𝜕𝑃𝐶𝑅𝜕𝐷𝑡 𝑉𝑡+1 (𝑅)] . (14)

The left member in (14) stands for the gain of utility, at
time 𝑡, for a unit increase of the detection rate.The rightmem-
ber in (14) is the expected benefit from a unit increase of the
detection rate at time 𝑡, which comes from future discounts.

If 𝑡 = 𝜏, we have 𝑡 + 1 = 𝜏 + 1. Each utility at 𝜏 + 1 is 0,
since 𝜏 + 1 exceeds the planning horizon.

The optimal detection rate 𝐷𝑡 is determined by the
information set at time 𝑡 and its effects on the future values
of 𝐻, 𝐶, 𝑅, and 𝐹. It is reasonable to assume that the system
adapts to forecasts on the basis of the current information set.

The optimal detection rate can be reached with the
equation system (9)–(14) by using backward induction over
the planning period [0, 𝜏].
4. Experiments

In this section we present the experimental studies of our
models. In the experiments, we simulate two different WSNs
that are under internal attacks and conduct three groups of
experiments with them. The first group of experiments is
designed to find the optimal detection rate 𝐷𝑡 by using the
dynamic programming paradigm. In the second group, we
verify the models. In the third one, we present comparative
studies by varying the value of detection rate𝐷𝑡.
4.1. Experimental Setup. We simulate two different WSNs in
the experiments:

(1) For the first WSN, the number of healthy sensors is
much larger than that of compromised sensors, where𝐻𝑡 = 0.9, 𝐶𝑡 = 0.1, 𝑅𝑡 = 0, and 𝐹𝑡 = 0.
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Table 1: The parameters in models.

Parameter Description𝛿 Discount factor𝜆𝐻𝐶 Compromised rate𝜆𝐶𝑅 Responsive rate𝜆𝑅𝐻 Recovery rate𝜆𝐶𝐹 Failure from compromised rate𝜆𝐻𝐹 Failure rate𝜆𝑅𝐹 Failure from responsive rate

Table 2: The parameter value.

Parameter Value𝛾 0.25𝑎 1𝑏 0.5𝛿 0.9𝜆𝐻𝐶 0.1𝜆𝐶𝑅 𝐷𝑡, 0.3, 0.9𝜆𝑅𝐻 0.8𝜆𝐶𝐹 0.000278𝜆𝐻𝐹 0.01𝜆𝑅𝐹 0.0417

(2) In the second one, the number of healthy sensors
is almost the same as that of compromised sensors,
where𝐻𝑡 = 0.6, 𝐶𝑡 = 0.4, 𝑅𝑡 = 0, and 𝐹𝑡 = 0.

The settings of the parameters of the models are summa-
rized inTables 1 and 2. Particularly, the utilities of𝐻,𝐶,𝑅, and𝐹 fall in [0, 1]. To note is that the parameters can be changed
according to various application scenarios.

5. Experimental Results

TheOptimal Detection Rate. In the first group of experiments,
we are to find the optimal detection rate 𝐷𝑡. In this experi-
ment, the current utilities of 𝐻, 𝐹, and 𝑅 are initially set to1, 0, and 0.6, respectively. We evaluated the detection rate𝐷𝑡 for the two WSNs. As we can see from Figure 2, there is
no significant difference of the detection rates between the
two WSNs. The results show that the ratio of healthy sensors
and the compromised sensors have little influence on the
detection rate 𝐷𝑡 and the value of 𝐷𝑡 gradually converges to0.75 after 𝜏 = 5. The optimal value of 𝐷𝑡 will be obtained
when 𝜏 = 9, where the optimal values for bothWSNs fall into[0.74, 0.75].
Verifying the Models. We apply the optimal detection rate𝐷𝑡 = 0.75 in second group of experiments. Figures 3–6
plot the change in the number of sensors in 𝐻, 𝐶, 𝑅, and𝐹 for WSNs in nine days. As we can see from Figure 3, the
number of sensors in𝐻 decreases when 𝑡 is in [0, 1].After the
decline, there is a sudden increase and the number of healthy
sensors gradually converges to a constant value after 𝑡 = 4.
For example, the ratio of healthy sensors is around 0.9. Since
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Figure 2: The value of 𝐷𝑡 for several planning horizons.
we have more healthy sensors, the WSN is therefore robust.
In contrast, as shown by Figure 4, the number of sensors
in 𝐶 drops quickly to 0. The results justify the effectiveness
of our detection mechanism and the optimal detection rate
is very effective for the transition of compromised nodes
(detection rate in themodel is transition rate). From Figure 5,
we observe that the number of responsive sensors jumps
quickly to a peak at 𝑡 = 1 and then gradually decreases to 0.
When 𝑡 is in [0, 1], the number of nodes in 𝐶 is greatest
and it is the period of most numbers of nodes from 𝐶 to 𝑅.
So the number of nodes in 𝑅 increases quickly and reaches
the peak. In Figure 6, we can see that the number of failed
sensors increases monotonically as the time is elapsing. This
is because aWSN is usually deployed in hostile environments
and the sensors cannot get repaired once they failed. From
Figures 3–6, we observe that there are big deviations between
the dashed lines and solid line at beginning, but the deviation
drops off gradually to 0 as time is increasing. It means that
each of the WSNs used in our experiments converges to
a steady state regardless of the initial condition during an
observation period. Therefore, we can conclude that our
model is general enough and it is applicable to a large range of
WSNs.

Comparative Studies. In Section 3, we have made an assump-
tion that the optimal detection rate is better than the highest
one. To justify this assumption, in this group of experiments,
we census the number of sensors being in (𝐻, 𝐶, 𝑅, and 𝐹)
by varying the detection rate 𝐷𝑡. In the previous simulation,
we have got the optimal detection rate𝐷𝑡 = 0.75 and we have
also proved that our model is valid for bothWSNs. So we can
conduct the comparative experiments over only one WSN.
We use the WSN with𝐻𝑡 = 0.9, 𝐶𝑡 = 0.1, 𝑅𝑡 = 0, and 𝐹𝑡 = 0.
In the literature [33], the author chose five empirical values
at the transition rate from 𝐶 to 𝑅, and we select the highest
value 0.3 as 𝐷𝑡. In addition, we select another detection rate,
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Figure 4: The proportion of compromised sensors.

𝐷𝑡 = 0.9, to comparewith.We plot the results in Figures 7–10,
where the blue solid line represents the results𝐷𝑡 = 0.75, the
green dashed line represents the results𝐷𝑡 = 0.3, and the red
dashed line represents the results for𝐷𝑡 = 0.9.

As shown in Figure 7, there is a drop at the beginning
for each line, but the blue solid one rises immediately when𝑡 = 1. The other two lines, 𝐷𝑡 = 0.9 and 𝐷𝑡 = 0.3, get to
rise until 𝑡 = 2. This shows that our model can make the
WSNmore robust, since it gets restored faster. Figure 8 shows
the number of compromised sensors. We observe that the
higher the detection rate𝐷𝑡 the faster the line drops. The red
dotted line and the blue solid line move gradually close to
zero after 𝑡 = 2, which means that the reliability of the WSN
is getting improved. We can also observe that the blue solid
line converges in almost the same speed with the red dashed
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Figure 5: The proportion of responsive sensors.
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Figure 6: The proportion of failed sensors.

line. In other words, our model and 𝐷𝑡 = 0.9 have the same
performances, which are much better than that of 𝐷𝑡 = 0.3.
Figure 9 plots the number of the responsive sensors. As we
can see from the figure, the blue solid line is completely below
the other red dashed line. It is clear that optimal detection rate
is better than the higher one. Although it only beats by 𝐷𝑡 =0.3 at 𝑡 = 1, it gets improved fast after that time. In addition,
we observe the blue solid line drops first, which indicates the
recovery process starts earlier than other choices. Figure 10
plots the change of the failed sensors, where the three lines
show similar trend. To note is that the WSN has more failed
nodes when the detection rate𝐷𝑡 goes larger. when𝐷𝑡 is 0.75
and𝐷𝑡 is 0.3, the number of failure nodes is similar.

We have compared our solution with other ones from the
recovery time, the recovery rate, the number of the final
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Figure 8: The proportion of compromised sensors.

failed nodes, and the energy consumption. In general, the
simulation results show that our solution outperforms the
other ones. It justifies our observation that the highest detec-
tion rate is not always servers as the best choice.

6. Conclusion

In this work, we investigated the problem of finding the
detection rate of WSN under internal attacks. Firstly, we
established a state transition model of sensors based on the
CTMC. The model described the behaviors of sensors in a
WSN under attacked nodes and the transition between states.
We are the first to observe that detection rate is irrelevant
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Figure 10: The proportion of failed sensors.

to other state transitions except the transition from 𝐶 to 𝑅.
Therefore, we take the detection rate as the transition rate
from 𝐶 to 𝑅. Secondly, we modeled the state transition pro-
cess of the sensors in a WSN under internal attacks by using
the epidemic model and make a formal description about
this model. Thirdly, by using the dynamic programming
paradigm (Bellman equation), we can easily find the optimal
detection rate for WSN under internal attacks. In addition,
we encapsulated the influencing factors into an information
set which captures the current utility and the utility in future
time. In this way, the detection rate can be optimized by
maximizing the total utility of the current and future utility



8 Discrete Dynamics in Nature and Society

discount in 𝐶. The experimental studies justified the validity
of our models.

In the future, we would like to quantize the influencing
factors with respect to survivability, availability, and energy
consumption in order to improve the accuracy and practica-
bility of detection rate. Moreover, it is more meaningful to set
the parameters applied in the simulation according to a real
world application. In addition, we will introduce the immune
state into the model and refer to the SIRS model [34, 35] for
further study. Therefore, it will accelerate the design of WSN
and then improve the availability and survivability of WSN.
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