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We present a kind of stochastic viral infection model with or without a loss term in the free virus equation. We obtain critical
condition to ensure the existence of the unique stationary distribution by constructing Lyapunov functions. We also obtain the
sufficient conditions for the extinction of the virus by the comparison theorem of stochastic differential equation and law of large
numbers.We give a unifiedmethod to systematically analyze such three-dimensional stochastic viral infectionmodel. Furthermore,
numerical simulations are carried out to examine the effect of white noises onmodel behavior.We investigate the fact that the small
magnitudes of white noises can sustain the irregular recurrence of healthy target cells and virions, while the big onesmay contribute
to viral clearance.

1. Introduction

More and more attention has been paid to the mathemat-
ical modelling of virus (such as HIV and hepatitis B/C
virus) infection. The existing viral models mainly contain
three compartments: target cells, actively infected cells, and
matured virions; see, for example, [1–10] and the references
cited therein. These models are all derived from the basic
viral dynamics models [1–3]. However, all these viral models
are deterministic models and do not take into account the
stochastic fluctuation. Previously, through experimental data,
Singh et al. have investigated the fact that the presence of
random noise in gene expression may lead to an increase of
variability in HIV early gene products, which may seriously
affect the fate of the virus between replication and latency
[11].Thus,Mao et al. have shown that, from the perspective of
mathematical analysis, a small amount of random fluctuation
can inhibit a potential population explosion [12]. Hence,
including the effect of random noise in viral dynamics model
may play an important role in the development of a better
understanding of the disease.

With the development of stochastic epidemic models of
between-host transmission [13–17], the stochastic models of

within-host viral infection have also been developed in recent
years [18–23]. Formost ofmodels, these have been considered
as the stochastic effects of the model parameters [19–21, 23],
but these models did not consider the loss term of virus
when a free virus enters the target cell. This term is often
neglected even though in the deterministic models, because
it is typically very small and can be absorbed into the virus
clearance term. However, recent studies have showed that
the inclusion of this term may have a major impact on the
basic reproductive number and viral dynamics under certain
parameter sets [4, 5, 24]. It may also affect the probability
of extinction of an initial viral load through Monte Carlo
approaches [25, 26]. Therefore, it is more reasonable to
include the virus loss term in stochastic viral infectionmodel,
which would have further influence on the model behavior.
Few stochastic viral infection models [18, 22] have included
the virus loss term, while the theoretical results are needed to
be complete.

In this paper, we extend the classical deterministic viral
infection model with or without the virus loss term to
a stochastic model of parameter fluctuations. The rest of
this paper is organized as follows. In the next section, we
formulate our model and show the existence and uniqueness
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of the global positive solution. In Section 3, by construct-
ing suitable Lyapunov functions, the existence of a unique
ergodic stationary distribution is derived. We establish the
sufficient conditions for the extinction of the virus in Sec-
tion 4. In Section 5, by employing numerical simulations, we
investigate how the white noises affect the model dynamic
behavior under realistic parameters. Finally, we conclude our
results and give future work.

2. Model Derivation

The basic viral infection model [1–3] with or without a loss
term in free virus equation can be described by the following
ordinary differential equations:

𝑑𝑇𝑑𝑡 = 𝜆 − 𝑑𝑇 − 𝑘𝑇𝑉,
𝑑𝑇∗𝑑𝑡 = 𝑘𝑇𝑉 − 𝛿𝑇∗,
𝑑𝑉𝑑𝑡 = 𝑁𝛿𝑇∗ − 𝑐𝑉 − 𝑖𝑘𝑇𝑉, 𝑖 = 0 or 1,

(1)

where 𝑇, 𝑇∗, and 𝑉 denote the concentrations of healthy
target cells, actively infected target cells, and infectious virus
particles, respectively. Parameter 𝜆 is the constant input rate,𝑘 presents the viral infection rate between healthy target cells
and infectious virus. Parameters 𝑑 and 𝛿 are the death rates
of the healthy and infected target cells, respectively. 𝑁 is the
average number of virus particles produced by an infected
target cell and 𝑐 is the clearance rate of the infectious virus. To
reflect the model inclusion or omission of a loss term in free
virus equation, we use a term −𝑖𝑘𝑉𝑇 in the third equation
and 𝑖 is a fixed constant. When 𝑖 = 0, it means that model
(1) ignores the loss term 𝑘𝑉𝑇 due to infection; when 𝑖 = 1,
it means that model (1) includes the loss term 𝑘𝑉𝑇 due to
infection.

In literature [4], de Leenheer and Smith have obtained
the theoretical results of (1). System (1) always has a disease-
free steady state 𝐸0(𝑇0, 0, 0), where 𝑇0 = 𝜆/𝑑. The basic
reproduction number is given by

𝑅0,𝑖 = 𝑘𝑁𝑇0𝑐 + 𝑖𝑘𝑇0 , 𝑖 = 0 or 1. (2)

System (1) has the following main results:

(i) If 𝑅0 < 1, the disease-free steady state 𝐸0 is globally
asymptotically stable.

(ii) If 𝑅0 > 1, then a chronic disease steady state
exists which is globally asymptotically stable, and the
disease-free steady state 𝐸0 is unstable.

In this paper, considering random fluctuation, we assume
that the stochastic fluctuation is the white noise type, which
is a linear perturbation corresponding to the rate of change

for each population. The stochastic differential model can be
written as follows:

𝑑𝑇 = (𝜆 − 𝑑𝑇 − 𝑘𝑇𝑉) 𝑑𝑡 + 𝜎1𝑇𝑑𝐵1 (𝑡) ,
𝑑𝑇∗ = (𝑘𝑇𝑉 − 𝛿𝑇∗) 𝑑𝑡 + 𝜎2𝑇∗𝑑𝐵2 (𝑡) ,
𝑑𝑉 = (𝑁𝛿𝑇∗ − 𝑐𝑉 − 𝑖𝑘𝑇𝑉) 𝑑𝑡 + 𝜎3𝑉𝑑𝐵3 (𝑡) ,

𝑖 = 0 or 1,
(3)

where 𝐵𝑖(𝑡) are independent standard Brownian motions
with 𝐵𝑖(0) = 0 and 𝜎2𝑖 > 0 denote the intensities of the white
noise, 𝑖 = 1, 2, 3. The other parameters are the same as those
in system (1).

In this paper, we assume (Ω,F, {F𝑡}𝑡≥0,P) as a complete
probability space with a filtration {F𝑡}𝑡≥0 satisfying the usual
conditions (i.e., it is increasing and right continuouswhileF0
contains all P-null sets), and 𝐵𝑖(𝑡) (𝑖 = 1, 2, 3) are defined
on this complete probability space. We also let R3+ = {𝑥 =(𝑥1, 𝑥2, 𝑥3) ∈ R3 : 𝑥𝑖 > 0, 𝑖 = 1, 2, 3}. We use 𝑎 ∧ 𝑏 to denote
min{𝑎, 𝑏} and use 𝑎 ∨ 𝑏 to denote max{𝑎, 𝑏}.

According to the theory of Arnold [27] and Mao et al.
[12], we show the existence and uniqueness of the solution of
system (3) in the following Lemma. See Theorem 4.1 of [18]
for the detailed proof.

Lemma 1. System (3) has a unique and positive solution(𝑇(𝑡), 𝑇∗(𝑡), 𝑉(𝑡))with the initial value (𝑇(0), 𝑇∗(0), 𝑉(0)) for
all 𝑡 ≥ 0, and the solution will remain in R3+ with probability
one, namely, (𝑇(𝑡), 𝑇∗(𝑡), 𝑉(𝑡)) ∈ R3+ for all 𝑡 ≥ 0 almost
surely (a.s.).

3. Stationary Distribution

In this section, by using the theory of Hasminskii [28], we
prove the existence of a unique ergodic stationary distribu-
tion, which indicates that the virus is prevalent.

Denote

𝜎2 = 𝜎21 ∨ 𝜎22 ∨ 𝜎23 , (4)

and define the critical condition

𝑅𝑠0,𝑖
= 𝜆𝑘𝑁𝛿
(𝑑 + (1/2) 𝜎21) (𝛿 + (1/2) 𝜎22) (𝑐 + 𝑖𝑘𝑇0 + (1/2) 𝜎23) ,

𝑖 = 0 or 1.
(5)

Theorem2. If𝑅𝑠0,𝑖 > 1, then system (3) has a unique stationary
distribution 𝜇(⋅) and it has the ergodic property.
Proof. We firstly verified the establishment of condition (H1)
in Lemma A.1 in Appendix. For system (3), the diffusion
matrix is

𝐴 = [[[
[

𝜎21𝑇2 0 0
0 𝜎22 (𝑇∗)2 0
0 0 𝜎23𝑉2

]]]
]
. (6)
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Choosing 𝐸 = min(𝑇,𝑇∗ ,𝑉)∈𝐷𝑘⊂R3+{𝜎21𝑇2, 𝜎22(𝑇∗)2, 𝜎23𝑉2}, we
have

3∑
𝑖,𝑗=1

𝑎𝑖𝑗 (𝑇, 𝑇∗, 𝑉) 𝜉𝑖𝜉𝑗 = 𝜎21𝑇2𝜉21 + 𝜎22 (𝑇∗)2 𝜉22
+ 𝜎23𝑉2𝜉23 ≥ 𝐸 𝜉2 ,

(𝑇, 𝑇∗, 𝑉) ∈ 𝐷𝑘, 𝜉 = (𝜉1, 𝜉2, 𝜉3) ∈ R
3
+,

(7)

where𝐷𝑘 = [1/𝑘, 𝑘]×[1/𝑘, 𝑘]×[1/𝑘, 𝑘], and 𝑘 is a sufficiently
large integer; then condition (H1) in Lemma A.1 is satisfied.

Next, we show the validity of condition (H2) in
Lemma A.1 in Appendix. Now, construct a 𝐶2-function𝑊1:
R3+ → R,

𝑊1 = − ln𝑇 − 𝑐1 ln𝑇∗ − 𝑐2 (ln𝑉 − 𝑖𝑘𝑇𝑑 ) , (8)

where 𝑖 = 0 or 1; 𝑐1 and 𝑐2 are positive constants which will
be determined later. Applying Itô’s formula [29] to𝑊1 yields

𝐿(− ln𝑉 + 𝑖𝑘𝑇𝑑 ) = −𝑁𝛿𝑇
∗

𝑉 + 𝑐 + 𝑖𝑘𝜆𝑑 − 𝑖𝑘2𝑉𝑇𝑑
+ 12𝜎23

≤ −𝑁𝛿𝑇∗𝑉 + 𝑐 + 𝑖𝑘𝑇0 + 12𝜎23 ,
(9)

and we should mention that 𝑇0 = 𝜆/𝑑. Thus,

𝐿𝑊1 ≤ −𝜆𝑇 − 𝑐1 𝑘𝑇𝑉𝑇∗ − 𝑐2𝑁𝛿𝑇∗𝑉 + 𝑑 + 12𝜎21
+ 𝑐1 (𝛿 + 12𝜎22) + 𝑐2 (𝑐 + 𝑖𝑘𝑇0 + 12𝜎23) + 𝑘𝑉

≤ −3 3√𝜆𝑘𝑁𝛿𝑐1𝑐2 + 𝑐1 (𝛿 + 12𝜎22)
+ 𝑐2 (𝑐 + 𝑖𝑘𝑇0 + 12𝜎23) + (𝑑 + 12𝜎21) + 𝑘𝑉.

(10)

Let

𝑐1 (𝛿 + 12𝜎22) = 𝑐2 (𝑐 + 𝑖𝑘𝑇0 + 12𝜎23)
= 𝜆𝑘𝑁𝛿
(𝛿 + (1/2) 𝜎22) (𝑐 + 𝑖𝑘𝑇0 + (1/2) 𝜎23) ,

(11)

and calculate that

𝑐1 = 𝜆𝑘𝑁𝛿
(𝛿 + (1/2) 𝜎22)2 (𝑐 + 𝑖𝑘𝑇0 + (1/2) 𝜎23) ,

𝑐2 = 𝜆𝑘𝑁𝛿
(𝛿 + (1/2) 𝜎22) (𝑐 + 𝑖𝑘𝑇0 + (1/2) 𝜎23)2 .

(12)

Hence,

𝐿𝑊1 ≤ − 𝜆𝑘𝑁𝛿
(𝛿 + (1/2) 𝜎22) (𝑐 + 𝑖𝑘𝑇0 + (1/2) 𝜎23)
+ (𝑑 + 12𝜎21) + 𝑘𝑉

≤ −(𝑑 + 12𝜎21) (𝑅𝑠0,𝑖 − 1) + 𝑘𝑉 = −𝛽 + 𝑘𝑉,
(13)

where

𝑅𝑠0,𝑖 = 𝜆𝑘𝑁𝛿
(𝑑 + (1/2) 𝜎21) (𝛿 + (1/2) 𝜎22) (𝑐 + (1/2) 𝜎23) ,

𝛽 = (𝑑 + 12𝜎21) (𝑅𝑠0,𝑖 − 1) .
(14)

Define a𝐶2-function𝑊: R3+ → R, in the following form:

𝑊(𝑇, 𝑇∗, 𝑉) = 𝑀𝑊1 +𝑊2 +𝑊3 +𝑊4, (15)

where

𝑊2 = − ln𝑇,
𝑊3 = − ln𝑇∗,
𝑊4 = 11 + 𝜃 (𝑇 + 𝑇∗ + 𝑉2𝑁)

1+𝜃 ,
(16)

where 0 < 𝜃 < min{1, (1/2𝜎2)(2𝑑 ∧ 𝛿 ∧ 2𝑐)}. Select a suitable
constant𝑀 > 0 satisfying the following condition:

−𝑀𝛽 + 𝐶 ≤ −2, (17)

where

𝐶 = sup
(𝑇,𝑇∗ ,𝑉)∈R3+

{−𝑑2𝑇1+𝜃 − 𝛿4 (𝑇∗)1+𝜃 − 𝑐2 ( 𝑉2𝑁)
1+𝜃

+ 𝐸 + 𝑑 + 𝛿 + 12𝜎21 + 12𝜎22} < ∞.
(18)

It is easy to check that

lim inf
𝑛→∞,(𝑇,𝑇∗ ,𝑉)∈R3+\𝐷𝑘

𝑊(𝑇, 𝑇∗, 𝑉) = +∞, (19)

where 𝐷𝑘 = (1/𝑘, 𝑘) × (1/𝑘, 𝑘) × (1/𝑘, 𝑘). Furthermore,𝑊(𝑇, 𝑇∗, 𝑉) is a continuous function. Hence 𝑊(𝑇, 𝑇∗, 𝑉)
must have a minimum point (𝑇0, 𝑇∗0, 𝑉0) in the interior of
R3+. Then we define a nonnegative 𝐶2-function𝑊 : R3+ → R

as follows:

𝑊(𝑇, 𝑇∗, 𝑉) = 𝑊(𝑇, 𝑇∗, 𝑉) − 𝑊(𝑇0, 𝑇∗0, 𝑉0) . (20)
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Applying Itô formula,

𝐿𝑊2 = −𝜆𝑇 + 𝑑 + 𝑘𝑉 + 12𝜎21 ,
𝐿𝑊3 = −𝑘𝑇𝑉𝑇∗ + 𝛿 + 12𝜎22 ,
𝐿𝑊4 = (𝑇 + 𝑇∗ + 𝑉2𝑁)

𝜃

⋅ (𝜆 − 𝑑𝑇 − 𝛿𝑇∗2 − 𝑐𝑉2𝑁 − 𝑖𝑘𝑇𝑉2𝑁 )

+ 𝜃2 (𝑇 + 𝑇∗ + 𝑉2𝑁)
𝜃−1

⋅ [𝜎21𝑇2 + 𝜎22 (𝑇∗)2 + 𝜎23 ( 𝑉2𝑁)
2]

≤ (𝑇 + 𝑇∗ + 𝑉2𝑁)
𝜃 (𝜆 − 𝑑𝑇 − 𝛿𝑇∗2 − 𝑐𝑉2𝑁) + 𝜃2

⋅ 𝜎2 (𝑇 + 𝑇∗ + 𝑉2𝑁)
𝜃−1 [𝑇2 + (𝑇∗)2 + ( 𝑉2𝑁)

2]

≤ 𝜆(𝑇 + 𝑇∗ + 𝑉2𝑁)
𝜃 − 𝑑𝑇1+𝜃 − 𝛿2 (𝑇∗)1+𝜃

− 𝑐 ( 𝑉2𝑁)
1+𝜃 + 𝜃2

⋅ 𝜎2 [𝑇1+𝜃 + (𝑇∗)1+𝜃 + ( 𝑉2𝑁)
1+𝜃] ≤ −𝑑2𝑇1+𝜃

− 𝛿4 (𝑇∗)1+𝜃 − 𝑐2 ( 𝑉2𝑁)
1+𝜃 + 𝐸,

(21)

where

𝐸 = sup
(𝑇,𝑇∗ ,𝑉)∈R3+

{−12 (𝑑 − 𝜃𝜎2) 𝑇1+𝜃

− 14 (𝛿 − 2𝜃𝜎2) (𝑇∗)1+𝜃 − 12 (𝑐 − 𝜃𝜎2) ( 𝑉2𝑁)
1+𝜃

+ 𝜆(𝑇 + 𝑇∗ + 𝑉2𝑁)
𝜃} < ∞.

(22)

Hence,

𝐿𝑊 ≤ −𝑀𝛽 + (𝑀 + 1) 𝑘𝑉 − 𝜆𝑇 − 𝑘𝑇𝑉𝑇∗ − 𝑑2𝑇1+𝜃

− 𝛿4 (𝑇∗)1+𝜃 − 𝑐2 ( 𝑉2𝑁)
1+𝜃 + 𝐸 + 𝑑 + 𝛿 + 12𝜎21

+ 12𝜎22 .
(23)

Next, we construct a compact subset 𝐷𝜀 such that condi-
tion (H2) in Lemma A.1 holds. Define the following bounded
closed set:

𝐷𝜀 = {𝜀 ≤ 𝑇 ≤ 1𝜀 , 𝜀3 ≤ 𝑇∗ ≤ 1𝜀3 , 𝜀 ≤ 𝑉 ≤ 1𝜀 } , (24)

where 𝜀 is a sufficiently small constant. In the set R3+ \ 𝐷𝜀,
we further choose 𝜀 sufficiently small such that the following
conditions hold:

−𝑀𝛽 + (𝑀 + 1) 𝑘𝜀 + 𝐶 ≤ −1, (25)

−𝜆𝜀 + 𝐻 ≤ −1, (26)

−𝑘𝜀 + 𝐻 ≤ −1, (27)

− 𝑐
4 (2𝑁𝜀)1+𝜃 + 𝐻 ≤ −1, (28)

− 𝑑
4𝜀1+𝜃 + 𝐻 ≤ −1, (29)

− 𝛿
8𝜀3(1+𝜃) + 𝐻 ≤ −1, (30)

where

𝐻 = sup
(𝑇,𝑇∗ ,𝑉)∈R3+

{(𝑀 + 1) 𝑘𝑉 − 𝑑4𝑇1+𝜃 − 𝛿8 (𝑇∗)1+𝜃

− 𝑐4 ( 𝑉2𝑁)
1+𝜃 + 𝐸 + 𝑑 + 𝛿 + 12𝜎21 + 12𝜎22} < ∞.

(31)

In the following, we separate R3+ \ 𝐷𝜀 to six domains:

𝐷1 = {(𝑇, 𝑇∗, 𝑉) ∈ R
3
+, 0 < 𝑉 < 𝜀} ,

𝐷2 = {(𝑇, 𝑇∗, 𝑉) ∈ R
3
+, 0 < 𝑇 < 𝜀} ,

𝐷3
= {(𝑇, 𝑇∗, 𝑉) ∈ R

3
+, 0 < 𝑇∗ < 𝜀3, 𝑇 ≥ 𝜀, 𝑉 ≥ 𝜀} ,

𝐷4 = {(𝑇, 𝑇∗, 𝑉) ∈ R
3
+, 𝑉 > 1𝜀 } ,

𝐷5 = {(𝑇, 𝑇∗, 𝑉) ∈ R
3
+, 𝑇 > 1𝜀 } ,

𝐷6 = {(𝑇, 𝑇∗, 𝑉) ∈ R
3
+, 𝑇∗ > 1𝜀3 } .

(32)

Obviously,𝐷𝑐𝜀 = 𝐷1 ∪ 𝐷2 ∪ 𝐷3 ∪ 𝐷4 ∪ 𝐷5 ∪ 𝐷6.
Case 1. If (𝑇, 𝑇∗, 𝑉) ∈ 𝐷1,

𝐿𝑊 ≤ −𝑀𝛽 + (𝑀 + 1) 𝑘𝑉 − 𝑑2𝑇1+𝜃 − 𝛿4 (𝑇∗)1+𝜃

− 𝑐2 ( 𝑉2𝑁)
1+𝜃 + 𝐸 + 𝑑 + 𝛿 + 12𝜎21 + 12𝜎22

≤ −𝑀𝛽 + (𝑀 + 1) 𝑘𝜀 + 𝐶.
(33)
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According to (25), it implies that 𝐿𝑊 ≤ −1 for any(𝑇, 𝑇∗, 𝑉) ∈ 𝐷1.
Case 2. If (𝑇, 𝑇∗, 𝑉) ∈ 𝐷2,

𝐿𝑊 ≤ −𝜆𝑇 + (𝑀 + 1) 𝑘𝑉 − 𝑑2𝑇1+𝜃 − 𝛿4 (𝑇∗)1+𝜃

− 𝑐2 ( 𝑉2𝑁)
1+𝜃 + 𝐸 + 𝑑 + 𝛿 + 12𝜎21 + 12𝜎22

≤ −𝜆𝑇 + 𝐻 ≤ −𝜆𝜀 + 𝐻.
(34)

In view of (26), we have 𝐿𝑊 ≤ −1 for any (𝑇, 𝑇∗, 𝑉) ∈ 𝐷2.
Case 3. If (𝑇, 𝑇∗, 𝑉) ∈ 𝐷3,

𝐿𝑊 ≤ −𝑘𝑇𝑉𝑇∗ + (𝑀 + 1) 𝑘𝑉 − 𝑑2𝑇1+𝜃 − 𝛿4 (𝑇∗)1+𝜃

− 𝑐2 ( 𝑉2𝑁)
1+𝜃 + 𝐸 + 𝑑 + 𝛿 + 12𝜎21 + 12𝜎22

≤ −𝑘𝑉𝑇𝑇∗ + 𝐻 ≤ −𝑘𝜀 + 𝐻.
(35)

According to (27), we deduce that 𝐿𝑊 ≤ −1 for any(𝑇, 𝑇∗, 𝑉) ∈ 𝐷3.
Case 4. If (𝑇, 𝑇∗, 𝑉) ∈ 𝐷4,

𝐿𝑊 ≤ − 𝑐2 ( 𝑉2𝑁)
1+𝜃 + (𝑀 + 1) 𝑘𝑉 − 𝑑2𝑇1+𝜃

− 𝛿4 (𝑇∗)1+𝜃 + 𝐸 + 𝑑 + 𝛿 + 12𝜎21 + 12𝜎22
≤ − 𝑐4 ( 𝑉2𝑁)

1+𝜃 + 𝐻 ≤ − 𝑐
4 (2𝑁𝜀)1+𝜃 + 𝐻.

(36)

In view of (30), we obtain that 𝐿𝑊 ≤ −1 for any (𝑇, 𝑇∗, 𝑉) ∈𝐷4.
Case 5. If (𝑇, 𝑇∗, 𝑉) ∈ 𝐷4,

𝐿𝑊 ≤ −𝑑2𝑇1+𝜃 + (𝑀 + 1) 𝑘𝑉 − 𝛿4 (𝑇∗)1+𝜃

− 𝑐2 ( 𝑉2𝑁)
1+𝜃 + 𝐸 + 𝑑 + 𝛿 + 12𝜎21 + 12𝜎22

≤ −𝑑4𝑇1+𝜃 + 𝐻 ≤ − 𝑑
4𝜀1+𝜃 + 𝐻.

(37)

By condition (28), we can conclude that 𝐿𝑊 ≤ −1 for all(𝑇, 𝑇∗, 𝑉) ∈ 𝐷5.
Case 6. If (𝑇, 𝑇∗, 𝑉) ∈ 𝐷5,

𝐿𝑊 ≤ −𝛿4 (𝑇∗)1+𝜃 + (𝑀 + 1) 𝑘𝑉 − 𝑑2𝑇1+𝜃

− 𝑐2 ( 𝑉2𝑁)
1+𝜃 + 𝐸 + 𝑑 + 𝛿 + 12𝜎21 + 12𝜎22

≤ −𝛿8 (𝑇∗)1+𝜃 + 𝐻 ≤ − 𝛿
8𝜀3(1+𝜃) + 𝐻.

(38)

It follows that 𝐿𝑊 ≤ −1 for any (𝑇, 𝑇∗, 𝑉) ∈ 𝐷6 if the
condition (29) is satisfied.

Obviously, from (33)–(38), there exists a sufficiently small𝜀, such that

𝐿𝑊 ≤ −1 ∀ (𝑇, 𝑇∗, 𝑉) ∈ 𝐷𝑐𝜀. (39)

According to Lemma A.1 in Appendix, we obtain that system
(3) is ergodic and has a unique stationary distribution. This
completes the proof.

Remark 3. Theorem 2 indicates that the virus prevails if the
critical condition 𝑅𝑠0,𝑖 is greater than one.We should mention
that the critical condition 𝑅𝑠0,𝑖 of the stochastic model (3)
without white noises is consistent with the basic reproduction
number 𝑅0,𝑖 of its corresponding deterministic model (1).
This implies that the existence of the stationary distribution
of our model is a generalization of its corresponding deter-
ministic model to the stability of the chronic disease steady
state.

4. Extinction

In this section, following the method inTheorem 3.1 of [30],
we employ the comparison theorem of stochastic differential
equation [31] and the law of large numbers [32] (seeAppendix
for details) to derive the sufficient conditions for extinction
for the virus.

Theorem 4. Let (𝑇(𝑡), 𝑇∗(𝑡), 𝑉(𝑡)) be the solution of system
(3) with any initial value (𝑇(0), 𝑇∗(0), 𝑉(0)) ∈ R3+. If 𝑑 >(1/2)𝜎21 , then, for almost𝜔 ∈ Ω, the solution (𝑇(𝑡), 𝑇∗(𝑡), 𝑉(𝑡))
of system (3) satisfies

lim sup
𝑡→∞

1𝑡 ln( 𝑁𝑐 + 𝑖𝑘𝑇0𝑇
∗ (𝑡) + √𝑅0,𝑖𝑐 + 𝑖𝑘𝑇0𝑉 (𝑡)) ≤ 𝑚,

𝑖 = 0 or 1, a.s.,
(40)

where 𝑚 = min{𝛿, 𝑐 + 𝑖𝑘𝑇0}(√𝑅0,𝑖 − 1)I{𝑅0,𝑖≤1} + max{𝛿, 𝑐 +
𝑖𝑘𝑇0}(√𝑅0,𝑖 − 1)I{𝑅0,𝑖>1} + 𝑖𝑘𝑇0 + 𝑘𝑁𝑇0𝜎1[𝑅0,𝑖(2𝑑 − 𝜎21)]−1/2 −(1/2)(𝜎−22 +𝜎−23 )−1 and the distribution of𝑇(𝑡) convergesweakly
to the measure which has the density given by

𝜋 (𝑥) = 𝑄𝜎−21 𝑥−(2+2𝑑/𝜎21 )𝑒−2𝜆/𝜎21𝑥, 𝑥 ∈ (0,∞) , (41)

where 𝑄 = 𝜎21(2𝜆/𝜎21)1+2𝑑/𝜎21Γ−1(2𝑑/𝜎21 + 1) such that∫∞
0
𝜋(𝑥)𝑑𝑥 = 1. If 𝑚 < 0, then the populations 𝑇∗ and 𝑉

will be eradicated with probability one; that is,

lim
𝑡→∞

𝑇∗ (𝑡) = 0,
lim
𝑡→∞

𝑉 (𝑡) = 0,
a.s.

(42)

Proof. By Lemma 1, we know that the solution of system (3)
is positive, and it is obvious that

𝑑𝑇 ≤ (𝜆 − 𝑑𝑇) 𝑑𝑡 + 𝜎1𝑇𝑑𝐵1 (𝑡) . (43)



6 Discrete Dynamics in Nature and Society

Consider the following auxiliary equation with stochastic
differential equation:

𝑑𝑥 = (𝜆 − 𝑑𝑥) 𝑑𝑡 + 𝜎1𝑥𝑑𝐵1 (𝑡) , (44)

with the initial value𝑥(0) = 𝑇(0) > 0. Corresponding to (A.4)
in Appendix, this yields

𝑔 (𝑥) = 𝜆 − 𝑑𝑥,
𝜎 (𝑥) = 𝜎1𝑥,

𝑥 ∈ (0,∞) ,
(45)

and we further calculate that

∫𝑥
𝑐1

𝑔 (𝑢)
𝜎2 (𝑢)𝑑𝑢 =

1
𝜎21 ∫
𝑥

𝑐1

( 𝜆𝑢2 − 𝑑𝑢)𝑑𝑢
= − 1𝜎21 [

𝜆𝑥 + 𝑑 ln𝑥] + 𝐶1,
(46)

where 𝑐1 is an arbitrary fixed positive constant and 𝐶1 is a
constant determined by the above calculation. It is obvious
that

∫∞
0

1𝜎2 (𝑥)exp{2∫
𝑥

𝑐1

𝑔 (𝑢)
𝜎2 (𝑢)𝑑𝑢} 𝑑𝑥

= 𝑄𝜎−21 ∫∞
0
𝑥−(2+2𝑑/𝜎21 )𝑒−2𝜆/𝜎21𝑥𝑑𝑥 < ∞,

(47)

where 𝑄 = 𝑒2𝐶1 . By Lemma A.2 in Appendix, we obtain
that system (44) has the ergodic property with ergodic
distribution:

𝜋 (𝑥) = 𝑄𝜎−21 𝑥−(2+2𝑑/𝜎21 )𝑒−2𝜆/𝜎21𝑥, 𝑥 ∈ (0,∞) , (48)

where 𝑄 = 𝜎21(2𝜆/𝜎21)1+2𝑑/𝜎21Γ−1(2𝑑/𝜎21 + 1) such that∫∞
0
𝜋(𝑥)𝑑𝑥 = 1. It then follows that

lim
𝑡→∞

1𝑡 ∫
𝑡

0
𝑥 (𝑠) 𝑑𝑠 = ∫∞

0
𝑥𝜋 (𝑥) 𝑑𝑥 a.s. (49)

Let 𝑥(𝑡) be the solution of system (44) with the initial
value 𝑥(0) = 𝑇(0) > 0, by the comparison theorem of
stochastic differential equation [31], we obtain that

𝑇 (𝑡) ≤ 𝑥 (𝑡) a.s. (50)

We further calculate that

𝐴1 fl ∫∞
0
𝑥𝜋 (𝑥) 𝑑𝑥

= 𝑄𝜎−21 ∫∞
0
𝑥−(1+2𝑑/𝜎21 )𝑒−2𝜆/𝜎21𝑥𝑑𝑥

= 𝑄𝜎−21 (2𝜆𝜎21 )
−2𝑑/𝜎21 ∫∞

0
𝑢2𝑑/𝜎21−1𝑒−𝑢𝑑𝑢

= 𝑄𝜎−21 (2𝜆𝜎21 )
−2𝑑/𝜎21 Γ(2𝑑𝜎21 ) =

2𝜆
𝜎21

Γ (2𝑑/𝜎21)Γ (2𝑑/𝜎21 + 1)
= 𝜆𝑑 ,

𝐴2 fl ∫∞
0
𝑥2𝜋 (𝑥) 𝑑𝑥 = 𝑄𝜎−21 ∫∞

0
𝑥−2𝑑/𝜎21 𝑒−2𝜆/𝜎21𝑥𝑑𝑥

= 𝑄𝜎−21 (2𝜆𝜎21 )
(1−2𝑑/𝜎21 ) ∫∞

0
𝑢2𝑑/𝜎21−2𝑒−𝑢𝑑𝑢

= 𝑄𝜎−21 (2𝜆𝜎21 )
(1−2𝑑/𝜎21 ) Γ(2𝑑𝜎21 − 1)

= (2𝜆𝜎21 )
2 Γ (2𝑑/𝜎21 − 1)Γ (2𝑑/𝜎21 + 1) =

2𝜆2
𝑑 (2𝑑 − 𝜎21) .

(51)

Therefore,

∫∞
0
(𝑥 − 𝑇0)2 𝜋 (𝑥) 𝑑𝑥
= ∫∞
0
𝑥2𝜋 (𝑥) 𝑑𝑥 − 𝑇0 ∫∞

0
𝑥𝜋 (𝑥) 𝑑𝑥 + 𝑇20

= 𝐴2 − 2𝑇0𝐴1 + 𝑇20
= 2𝜆2
𝑑 (2𝑑 − 𝜎21) − 2 (

𝜆𝑑)
2 + (𝜆𝑑)

2 = 𝜆2𝜎21𝑑2 (2𝑑 − 𝜎21) .

(52)

Denote the matrix

𝐹 = [[[
[

0 𝑘𝑇0𝛿𝑁𝛿𝑐 + 𝑖𝑘𝑇0 0
]]]
]
. (53)

ByTheorem 1.4 of literature [33], we know that there must be
a left eigenvector (𝜔1, 𝜔2) of matrix 𝐹 corresponding to the
value√𝑅0,𝑖, such that

(𝜔1, 𝜔2) 𝐹 = √𝑅0,𝑖 (𝜔1, 𝜔2) , (54)

where (𝜔1, 𝜔2) = (𝑁𝛿/(𝑐 + 𝑖𝑘𝑇0), √𝑅0,𝑖).
Define a 𝐶2-function𝑊: R3+ → R:

𝐺 (𝑇∗, 𝑉) = 𝛼1𝑇∗ + 𝛼2𝑉, (55)

where 𝛼1 = 𝜔1/𝛿, 𝛼2 = 𝜔2/(𝑐 + 𝑖𝑘𝑇0). Applying Itô’s formula
yields

𝑑 (ln𝐺) = 𝐿 (ln𝐺) 𝑑𝑡
+ 1𝐺 (𝛼1𝜎2𝑇∗𝑑𝐵2 (𝑡) + 𝛼2𝜎3𝑉𝑑𝐵3 (𝑡)) ,

(56)

where

𝐿 (ln𝐺) = 𝛼1𝐺 (𝑘𝑇𝑉 − 𝛿𝑇∗)
+ 𝛼2𝐺 (𝑁𝛿𝑇∗ − 𝑐𝑉 − 𝑖𝑘𝑇𝑉) − 𝛼21𝜎22 (𝑇∗)22𝐺2
− 𝛼22𝜎23𝑉22𝐺2 fl 𝐵 − 𝛼21𝜎22 (𝑇∗)22𝐺2 − 𝛼22𝜎23𝑉22𝐺2 .

(57)
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Furthermore, we have

𝐺2 = (𝛼1𝜎2𝑇∗ 1𝜎2 + 𝛼2𝜎3𝑉
1𝜎3)
2 ≤ [𝛼21𝜎22 (𝑇∗)2

+ 𝛼22𝜎23𝑉2] ( 1𝜎22 +
1
𝜎23 ) ,

𝐵 = 1𝐺 [𝛼1 (𝑘𝑇𝑉 − 𝛿𝑇∗) + 𝛼2 (𝑁𝛿𝑇∗ − 𝑐𝑉 − 𝑖𝑘𝑇𝑉)]
= 1𝐺 {𝛼1 [𝑘 (𝑇 − 𝑇0) 𝑉 + 𝑘𝑇0𝑉 − 𝛿𝑇∗]
+ 𝛼2 [𝑁𝛿𝑇∗ − 𝑐𝑉 − 𝑖𝑘 (𝑇 − 𝑇0) 𝑉 − 𝑖𝑘𝑇0𝑉]}
= 𝛼1𝑘𝑉𝐺 (𝑇 − 𝑇0) + 1𝐺 [𝛼1 (𝑘𝑇0𝑉 − 𝛿𝑇∗)
+ 𝛼2 (𝑁𝛿𝑇∗ − 𝑐𝑉 − 𝑖𝑘𝑇0𝑉)] − 𝛼2𝐺 𝑖𝑘 (𝑇 − 𝑇0) 𝑉
≤ 𝛼1𝑘𝛼2

𝑇 − 𝑇0 + 1𝐺 [
𝜔1𝛿 (𝑘𝑇0𝑉 − 𝛿𝑇∗)

+ 𝜔2𝑐 + 𝑖𝑘𝑇0 (𝑁𝛿𝑇
∗ − 𝑐𝑉 − 𝑖𝑘𝑇0𝑉)] + 𝑖𝑘𝑇0

= 𝛼1𝑘𝛼2
𝑇 − 𝑇0 + 1𝐺 (𝜔1, 𝜔2) [𝐹 (𝑇∗, 𝑉)𝑇

− (𝑇∗, 𝑉)𝑇] + 𝑖𝑘𝑇0 = 𝛼1𝑘𝛼2
𝑇 − 𝑇0 + 𝑖𝑘𝑇0

+ 1𝐺 (√𝑅0,𝑖 − 1) (𝜔1𝑇∗ + 𝜔2𝑉) =
𝛼1𝑘𝛼2

𝑇 − 𝑇0
+ 𝑖𝑘𝑇0 + 1𝐺 (√𝑅0,𝑖 − 1) (𝛼1𝛿𝑇∗ + (𝑐 + 𝑖𝑘𝑇0) 𝛼2𝑉)
≤ 𝛼1𝑘𝛼2

𝑇 − 𝑇0 + 𝑖𝑘𝑇0 +min {𝛿, 𝑐 + 𝑖𝑘𝑇0} (√𝑅0,𝑖
− 1) I{𝑅0,𝑖≤1} +max {𝛿, 𝑐 + 𝑖𝑘𝑇0} (√𝑅0,𝑖 − 1)
⋅ I{𝑅0,𝑖>1}.

(58)

According to (58), we get that

𝐿 (ln𝐺) ≤ min {𝛿, 𝑐 + 𝑖𝑘𝑇0} (√𝑅0,𝑖 − 1) I{𝑅0,𝑖≤1}
+max {𝛿, 𝑐 + 𝑖𝑘𝑇0} (√𝑅0,𝑖 − 1) I{𝑅0,𝑖>1}
+ 𝛼1𝑘𝛼2

𝑇 − 𝑇0 + 𝑖𝑘𝑇0 − 12 (𝜎−22 + 𝜎−23 )
−1 .

(59)

From (56), we further obtain that

𝑑 (ln𝐺) ≤ [min {𝛿, 𝑐 + 𝑖𝑘𝑇0} (√𝑅0,𝑖 − 1) I{𝑅0,𝑖≤1}
+max {𝛿, 𝑐 + 𝑖𝑘𝑇0} × (√𝑅0,𝑖 − 1) I{𝑅0,𝑖>1}

+ 𝛼1𝑘𝛼2
𝑇 − 𝑇0 + 𝑖𝑘𝑇0 − 12 (𝜎−22 + 𝜎−23 )

−1] 𝑑𝑡
+ 1𝐺 (𝛼1𝜎2𝑇∗𝑑𝐵2 (𝑡) + 𝛼2𝜎3𝑉𝑑𝐵3 (𝑡)) .

(60)

Integrating (60) from 0 to 𝑡, then dividing by 𝑡 on both sides,
yields

ln𝐺 (𝑡)𝑡 ≤ ln𝐺 (0)𝑡
+min {𝛿, 𝑐 + 𝑖𝑘𝑇0} (√𝑅0,𝑖 − 1) I{𝑅0,𝑖≤1}
+max {𝛿, 𝑐 + 𝑖𝑘𝑇0} × (√𝑅0,𝑖 − 1) I{𝑅0,𝑖>1}
+ 𝛼1𝑘𝛼2𝑡 ∫

𝑡

0

𝑇 (𝑠) − 𝑇0 𝑑𝑠 + 𝑖𝑘𝑇0
− 12 (𝜎−22 + 𝜎−23 )

−1

+ 1𝑡 ∫
𝑡

0

𝛼1𝜎2𝑇∗ (𝑠)𝐺 (𝑠) 𝑑𝐵2 (𝑠)
+ 1𝑡 ∫

𝑡

0

𝛼2𝜎3𝑉 (𝑠)𝐺 (𝑠) 𝑑𝐵3 (𝑠)
= ln𝐺 (0)𝑡
+min {𝛿, 𝑐 + 𝑖𝑘𝑇0} (√𝑅0,𝑖 − 1) I{𝑅0,𝑖≤1}
+max {𝛿, 𝑐 + 𝑖𝑘𝑇0} × (√𝑅0,𝑖 − 1) I{𝑅0,𝑖>1}
+ 𝛼1𝑘𝛼2𝑡 ∫

𝑡

0

𝑇 (𝑠) − 𝑇0 𝑑𝑠 + 𝑖𝑘𝑇0
− 12 (𝜎−22 + 𝜎−23 )

−1 + 𝑀1 (𝑡)𝑡 + 𝑀2 (𝑡)𝑡 ,

(61)

where

𝑀1 (𝑡) = ∫𝑡
0

𝛼1𝜎2𝑇∗ (𝑠)𝐺 (𝑠) 𝑑𝐵2 (𝑠) ,
𝑀2 (𝑡) = ∫𝑡

0

𝛼2𝜎3𝑉 (𝑠)𝐺 (𝑠) 𝑑𝐵3 (𝑠) .
(62)

𝑀1(𝑡) and 𝑀2(𝑡) are local martingales whose quadratic
variations are ⟨𝑀1,𝑀1⟩𝑡 = 𝜎22 × ∫𝑡0 (𝛼1𝑇∗(𝑠)/𝐺(𝑠))𝑑𝑠 ≤ 𝜎22𝑡
and ⟨𝑀2,𝑀2⟩𝑡 = 𝜎23 ∫𝑡0 (𝛼2𝑉(𝑠)/𝐺(𝑠))𝑑𝑠 ≤ 𝜎23𝑡. Applying the
strong law of large numbers for local martingale [29] yields

lim
𝑡→∞

𝑀𝑖 (𝑡)𝑡 = 0 a.s., 𝑖 = 1, 2. (63)

Since 𝑇(𝑡) is ergodic and ∫∞
0
𝑥𝜋(𝑥)𝑑𝑥 < ∞, so

lim
𝑡→∞

1𝑡 ∫
𝑡

0

𝑇 (𝑠) − 𝑇0 𝑑𝑠 = ∫∞
0

𝑥 − 𝑇0 𝜋 (𝑥) 𝑑𝑥
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≤ (∫∞
0
(𝑥 − 𝑇0)2 𝜋 (𝑥) 𝑑𝑥)

1/2

= 𝑇0𝜎1 (2𝑑 − 𝜎21)−1/2 .
(64)

Taking the superior limit on both sides of inequality (61) and
combining with (63) and (64), we obtain

lim sup
𝑡→∞

ln𝐺 (𝑡)𝑡
≤ min {𝛿, 𝑐 + 𝑖𝑘𝑇0} (√𝑅0,𝑖 − 1) I{𝑅0,𝑖≤1}
+max {𝛿, 𝑐 + 𝑖𝑘𝑇0} × (√𝑅0,𝑖 − 1) I{𝑅0,𝑖>1}
+ 𝛼1𝑘𝛼2𝑡 ∫

𝑡

0

𝑇 (𝑠) − 𝑇0 𝑑𝑠 + 𝑖𝑘𝑇0
− 12 (𝜎−22 + 𝜎−23 )

−1

≤ min {𝛿, 𝑐 + 𝑖𝑘𝑇0} (√𝑅0,𝑖 − 1) I{𝑅0,𝑖≤1}
+max {𝛿, 𝑐 + 𝑖𝑘𝑇0} × (√𝑅0,𝑖 − 1) I{𝑅0,𝑖>1}
+ 𝑖𝑘𝑇0 + 𝑘𝑁𝑇0𝜎1 [𝑅0,𝑖 (2𝑑 − 𝜎21)]−1/2
− 12 (𝜎−22 + 𝜎−23 )

−1
fl 𝑚 a.s.,

(65)

which is the required statement. For the special case, if𝑚 < 0,
then it is concluded that

lim
𝑡→∞

ln𝑇∗ (𝑡)𝑡 = 0,
lim
𝑡→∞

ln𝑉 (𝑡)𝑡 = 0
a.s.,

(66)

whichmeans that lim𝑡→∞ 𝑇∗(𝑡) = 0 and lim𝑡→∞ 𝑉(𝑡) = 0 a.s.
In other words, the populations 𝑇∗ and 𝑉 will tend to zero
exponentially with probability one.This completes the proof.

5. Numerical Simulations

In Sections 3 and 4, we obtained the stationary distribution
and extinction of the virus under certain conditions, respec-
tively. We now explore the cell and viral dynamics under
different white noises. Here, by employing the Milstein’s
higher order method in Higham [34], the discrete form of
model (3) is

𝑇𝑗+1 = 𝑇𝑗 + (𝜆 − 𝑑𝑇𝑗 − 𝑘𝑇𝑗𝑉𝑗) Δ𝑡 + 𝜎1𝑇𝑗√Δ𝑡𝜉𝑗
+ 𝜎212 𝑇𝑗 (Δ𝑡𝜉2𝑗 − Δ𝑡) ,

𝑇∗𝑗+1 = 𝑇∗𝑗 + (𝑘𝑇𝑗𝑉𝑗 − 𝛿𝑇∗𝑗 ) Δ𝑡 + 𝜎2𝑇∗𝑗 √Δ𝑡𝜂𝑗
+ 𝜎222 𝑇∗𝑗 (Δ𝑡𝜂2𝑗 − Δ𝑡) ,

𝑉𝑗+1 = 𝑉𝑗 + (𝑁𝛿𝑇∗𝑗 − 𝑐𝑉𝑗 − 𝑖𝑘𝑇𝑗𝑉𝑗) Δ𝑡 + 𝜎3𝑉𝑗√Δ𝑡𝜙𝑗
+ 𝜎232 𝑉𝑗 (Δ𝑡𝜙2𝑗 − Δ𝑡) , 𝑖 = 0 or 1,

(67)

where 𝜉𝑗, 𝜂𝑗, and 𝜙𝑗, 𝑗 = 1, 2, . . . , 𝑛, are the 𝑗th realization of
three independent Gaussian random variables with distribu-
tion𝑁(0, 1), and the time increment Δ𝑡 = 0.015.

In the following, for the sake of representativeness, we
take 𝑖 = 1 for system (3) as an example, and we can
carry out same simulations as follows when 𝑖 = 0. The
parameters are chosen from the actual parameter values of
previous references (see Table 1), and we calculate that the
basic reproduction number 𝑅0,1 = 5.2609 > 1; from
Section 2, we know that the chronic disease steady state
is globally asymptotically stable. In order to examine how
white noises affect model dynamic behavior, we choose three
pairs of white noise set (𝜎1, 𝜎2, 𝜎3) equal to (0.008, 0.3, 1),(0.01, 0.4, 1.2), and (0.02, 0.8, 1.5), with the critical condition𝑅𝑠0,1 equal to 3.0853, 2.6928, and 1.5107, respectively. For these
parameter sets, Theorem 2 is satisfied and system (3) has
a unique stationary distribution. By simulations, for each
pair of white noise sets chosen above, Figures 1(a) and 2(a)
demonstrate the solutions of the stochastic model (3) and
the corresponding deterministic model (1) initiated at the
initial value (𝑇(0), 𝑇∗(0), 𝑉(0)) = (1000, 0.001, 0.001), and
Figures 1(b) and 2(b) show histograms of the approximate
stationary distributions for two components (𝑇 and 𝑉)
from 10000 simulation runs at time 𝑡 = 300. The figures
indicate that the small magnitudes of random fluctuations
can generate the irregular recurrence of populations 𝑇 and𝑉.

Using the data values in Table 1, we further choose two
pairs of white noise set (𝜎1, 𝜎2, 𝜎3) equal to (0.03, 1.2, 2.5) and(0.06, 1.8, 3.5), with the critical condition 𝑅𝑠0,1 equal to 0.7850
and 0.2584, respectively.Wedonot give theoretical analysis in
these cases, and now we take numerical simulation to discuss
the effect of random fluctuations onmodel behavior. Figure 3
shows that, as the white noise set is increasing, the virus
can be eradicated for stochastic model (3), while the virus
is still persistent for its corresponding deterministic model
(1). It means that the largemagnitudes of randomfluctuations
could lead to the extinction of the virus.

6. Conclusions

We have studied a stochastic virus infection model with or
without the virus loss term. Mathematically, we have given
a systematic method to the analysis (stationary distribution
and extinction) of such three-dimensional stochastic viral
dynamic model. If the critical condition 𝑅𝑠0,𝑖 (𝑖 = 0 or 1)
is greater than one, then system (3) has a unique stationary
distribution. Furthermore, we obtain the sufficient conditions
to ensure the extinction of the virus by employing the
comparison theorem of stochastic differential equation and
the law of large numbers.Numerical simulations demonstrate
that, on one hand, healthy target cells and virions can be
maintained within a certain range for the small magnitudes
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Table 1: List of parameters.

Parameters Description Unit Value Source
𝜆 Target cells source term 𝜇l−1 day−1 10 [5, 6, 9]
𝑑 Death rate of healthy target cells Day−1 0.007 [5, 6]
𝑘 Viral infectivity rate 𝜇l day−1 0.000024 [5, 6, 9]
𝛿 Death rate of infected target cells Day−1 1 [5]
𝑁 Burst term Virions/cell 2000 [5, 6, 9]
𝑐 Clearance rate of virus Day−1 13 [5]

Stochastic
Deterministic

Stochastic
Deterministic

Stochastic
Deterministic

100 200 3000
0

1000

2000

T
 (/

ul
)

0

1000

2000

T
 (/

ul
)

100 200 3000
Time t (days)

Time t (days)

0

1000

2000

T
 (/

ul
)

100 200 3000
Time t (days)

(a)

200 400 6000
T(300) value

0

0.05

0.1

D
en

sit
y

300 320 340 360280
T(300) value

0

0.2

0.4

D
en

sit
y

0

0.5

1

D
en

sit
y

246 246.5 247 247.5245.5
T(300) value

(b)

Figure 1: (a) Simulations of healthy target cells for the stochastic model (3) and its corresponding deterministic model (1) with three different
sets of white noise. (b) Probability density of the values of the path 𝑇(𝑡) at 𝑡 = 300 for system (3) based on 10000 simulation runs. For
parameters see Table 1 with (𝜎1, 𝜎2, 𝜎3) equal to (0.008, 0.3, 1), (0.01, 0.4, 1.2), and (0.02, 0.8, 1.5), respectively.
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Figure 2: (a) Simulations of virus for the stochastic model (3) and its corresponding deterministic model (1) with three different sets of white
noise. (b) Probability density of the values of the path 𝑉(𝑡) at 𝑡 = 300 for system (3) based on 10000 simulation runs. For parameters see
Table 1 with (𝜎1, 𝜎2, 𝜎3) equal to (0.008, 0.3, 1), (0.01, 0.4, 1.2), and (0.02, 0.8, 1.5), respectively.

of white noises, which means that the virus is persistent;
on the other hand, the virus could be cleared out for large
magnitudes of white noises, which indicates the extinction of
the virus.

In fact, the theoretical analysis results of system (3) can
also be extended to the following viral infection model with
combination drug therapy:

𝑑𝑇 = [𝜆 − 𝑑𝑇 − 𝑘 (1 − 𝑛𝑟𝑡) 𝑇𝑉] 𝑑𝑡 + 𝜎1𝑇𝑑𝐵1 (𝑡) ,
𝑑𝑇∗ = [𝑘 (1 − 𝑛𝑟𝑡) 𝑇𝑉 − 𝛿𝑇∗] 𝑑𝑡 + 𝜎2𝑇∗𝑑𝐵2 (𝑡) ,
𝑑𝑉 = [𝑁 (1 − 𝑛𝑝) 𝛿𝑇∗ − 𝑐𝑉 − 𝑖𝑘𝑇𝑉] 𝑑𝑡

+ 𝜎3𝑉𝑑𝐵3 (𝑡) , 𝑖 = 0 or 1,
(68)

where 𝑛𝑟𝑡 and 𝑛𝑝 are the drug efficacies of different types of
drugs.Therefore, our model as well as the theoretical analysis
results are extension of the literature [18].

We have theoretically analyzed the existence of the sta-
tionary distribution and extinction for a stochasticHIV infec-
tion model with logistic T-cell and CTL immune response in
literature [23]. Thus, with the work of this article, we may
perform a similar study for our model in literature [5] with
white noises:

𝑑𝑇
= [𝜆 − 𝑑𝑇 + 𝑟𝑇(1 − 𝑇 + 𝑇∗𝑇max

) − 𝑘 (1 − 𝑛𝑟𝑡) 𝑉𝑇]𝑑𝑡
+ 𝜎1𝑇𝑑𝐵1 (𝑡) ,
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Figure 3: The paths of 𝑉(𝑡) for stochastic model (3) and the solutions of 𝑉(𝑡) for its corresponding deterministic model (1) with (𝜎1, 𝜎2, 𝜎3)
equal to (0.03, 1.2, 2.5) and (0.06, 1.8, 3.5), respectively.

𝑑𝑇∗
= [𝑘 (1 − 𝑛𝑟𝑡) 𝑉𝑇 − 𝛿𝑇∗ − 𝑞𝑇∗𝑍] 𝑑𝑡
+ 𝜎2𝑇∗𝑑𝐵2 (𝑡) ,

𝑑𝑉
= [𝑁𝛿 (1 − 𝑛𝑝) 𝑇∗ − (𝑐 + 𝑖𝑘𝑇)𝑉] 𝑑𝑡 + 𝜎3𝑉𝑑𝐵3 (𝑡) ,
𝑑𝑍 = (𝑝𝑇∗𝑍 − 𝑑𝑍𝑍) 𝑑𝑡 + 𝜎4𝑍𝑑𝐵4 (𝑡) ,

𝑖 = 0 or 1,
(69)

where 𝑍 denotes the cytotoxic T lymphocyte (CTL) immune
response, 𝑞 is the CTL activation rate, 𝑝 is the CTL respon-
siveness, and 𝑑𝑍 is the death rate of CTL.𝐵4(𝑡) is independent

standard Brownian motion with 𝐵4(0) = 0 and 𝜎24 > 0 denote
the intensity of the white noise. All the other parameters are
the same as those in systems (1), (3), and (68). This kind of
model will be our future work.

Appendix

In this section, we introduce the theory of Hasminskii [28],
which has been applied to show the existence of stationary
distribution in Section 3.

Let 𝑋(𝑡) be usual time-homogeneous Markov process in
R𝑙 described by the following stochastic differential equation:

𝑑𝑋 (𝑡) = 𝑏 (𝑋) 𝑑𝑡 + 𝑘∑
𝑟=1

𝑔𝑟 (𝑋) 𝑑𝐵𝑟 (𝑡) . (A.1)
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The diffusion matrix is defined as follows:

𝐴 (𝑥) = (𝑎𝑖𝑗 (𝑥)) , 𝑎𝑖𝑗 (𝑥) =
𝑘∑
𝑟=1

𝑔𝑖𝑟 (𝑥) 𝑔𝑗𝑟 (𝑥) , (A.2)

where𝑋(𝑡) is nonsingular.
Lemma A.1 (see chapter 4 of [28]). If there exists a bounded
open domain 𝑈 ⊂ R𝑙 with regular boundary Γ, having
properties

(H1) there exists a positive number 𝐸 such that∑𝑙𝑖,𝑗=1 𝑎𝑖𝑗(𝑥)𝜉𝑖𝜉𝑖 ≥ 𝐸|𝜉|2, for 𝑥 ∈ 𝑈 and 𝜉 ∈ R𝑙,
(H2) there exists a nonnegative 𝐶2-function 𝑊 such that𝐿𝑊 is negative for any R𝑙 \ 𝐷, then
P{ lim
𝑡→∞

1𝑡 ∫
𝑡

0
𝑓 (𝑋 (𝑠)) 𝑑𝑠 = ∫𝑙

R

𝑓 (𝑥) 𝜇 (𝑑𝑥)} = 1 (A.3)

for all 𝑥 ∈ R𝑙, where 𝜇 is the stationary distribution of the
process 𝑋(𝑡), and 𝑓(𝑥) is a function integrable with respect to
the measure 𝜇. Then, the Markov process 𝑋(𝑡) has a unique
ergodic stationary distribution 𝜇(⋅).

Next, we introduce the law of large numbers theorem [32],
which has been used to prove the extinction of system (3) in
Section 4.

Consider the following one-dimensional homogeneous
Markov process:

𝑑𝑥 (𝑡) = 𝑔 (𝑥 (𝑡)) 𝑑𝑡 + 𝜎 (𝑥 (𝑡)) 𝑑𝐵 (𝑡) ,
𝑥 (𝑡0) = 𝑥0,

𝑡 ≥ 𝑡0,
(A.4)

where 𝑔(𝑥) and 𝜎(𝑥) are measurable functions from R to R,
and 𝐵(𝑡) is the Brownian movement. It is assumed that the
functions 𝑔(𝑥), 𝜎(𝑥), and 1/𝜎(𝑥) are all locally bounded.

(H3) the functions 𝑔(𝑥) and 𝜎(𝑥) are such that
𝑄 (𝑥) = ∫𝑥

0
exp{−2∫𝑠

0

𝑔 (𝑢)
𝜎2 (𝑢)𝑑𝑢} 𝑑𝑠 → ±∞,

as 𝑥 → ±∞,
𝑅 = ∫∞

−∞

1𝜎2 (𝑥)exp{2∫
𝑥

0

𝑔 (𝑢)
𝜎2 (𝑢)𝑑𝑢} 𝑑𝑥 < ∞.

(A.5)

Lemma A.2 (see theorem 1.16 of [32]). If (H3) is satisfied,
then the stochastic process (A.4) has ergodic properties with the
density given by

𝜋 (𝑥) = 1𝑅𝜎2 (𝑥) exp{2∫
𝑥

0

𝑔 (𝑢)
𝜎2 (𝑢)𝑑𝑢} . (A.6)
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