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A survey on the conditions of local stability of fixed points of three-dimensional discrete dynamical systems or difference equations
is provided. In particular, the techniques for studying the stability of nonhyperbolic fixed points via the centre manifold theorem
are presented. A nonlinear model in population dynamics is studied, namely, the Ricker competition model of three species. In
addition, a conjecture about the global stability of the nontrivial fixed points of the Ricker competition model is presented.

1. Introduction

In the study of a dynamical system, specially of nonlinear
models, one of the objectives is to determine the stability
conditions of equilibrium points or fixed points.

According to Osipenko [1], in his excellent paper titled
“Center Manifolds”, Lyapunov [2], in his dissertation “Gen-
eral Problem on Stability of Motion,” was perhaps one of the
pioneers in the study of the stability of dynamical systems,
creating the foundations of the modern theory of the stability
in dynamical systems. He considered a continuous dynamical
system of the form ẋ = 𝐹(x), x ∈ R𝑛, where 𝐹 : R𝑛 → R𝑛

is a 𝐶𝑘-smooth vector field, for some 𝑘 ≥ 1. Near the zero
equilibrium 𝑂, the system of differential equations can be
written as ẋ = 𝐴x + 𝑓(x), 𝑂 = {x = 0}, 𝐴 = 𝐽𝐹(𝑂),
and 𝑓(𝑂) = 𝐽𝑓(𝑂) = 0, where 𝐽 is the Jacobian matrix
of the function. He proved that 𝑂 is stable if all eigenvalues
of the matrix 𝐴 have negative real parts and 𝑂 is unstable
if there exists an eigenvalue with positive real part. He also
studied the case when some eigenvalues have negative real
part while the others have zero real part. Moreover, he
showed that there exists a two-dimensional invariant surface𝑀 passing in the origin when the matrix 𝐴 has a pair of
pure imaginary eigenvalues and the others have negative real
parts, in which the equilibrium 𝑂 of the system is stable

whenever𝑂 restricted to𝑀 is stable.This is precisely what we
today know as “centre manifold.” Therefore, Lyapunov built
the foundations of stability analysis, proving the existence of
a centre manifold, formulating the reduction principle and
giving stability conditions for equilibrium points.

In discrete dynamical systems of the form x𝑛+1 = 𝐺(x𝑛),
for 𝑛 = 0, 1, 2, . . ., where 𝐺 : R𝑛 → R𝑛 is a 𝐶𝑘 smooth
mapping, for some 𝑘 ≥ 1, which can be written near the
origin as x → 𝐴x + 𝑓(x), 𝑂 = {x = 0}, 𝐴 = 𝐽𝐺(𝑂), and𝑓(𝑂) = 𝐽𝑓(𝑂) = 0, the equivalent conclusion to Lyapunov’s
one is as follows: the fixed point 𝑂 is locally stable if all the
eigenvalues of thematrix𝐴 are less than one in absolute value,
and𝑂 is unstable if there exists at least one of the eigenvalues
of𝐴with absolute value greater than one.The centremanifold
appears when some of the eigenvalues are one in absolute
value, while the others are less than one in absolute value.

We should mention that the reduction principle in the
study of the qualitative properties of equilibrium points was
completely established in 1964 by Pliss [3]. Three years later,
Kelley [4] introduced the modern term of centre manifold
and gave a complete proof of the existence of manifolds
through equilibrium points in general case.

There exists a parallel between the study of the stability
of fixed points in continuous systems and that in discrete
systems. A natural extension of the results for continuous
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systems has been deeply investigated for discrete systems.
See, for instance, the book from 1979 by Iooss [5], where
the author presents a complete list of such results, the book
by Carr [6], based on a series of lectures that gives an
introduction to the applications of centre manifold theory,
and the books by Guckenheimer and Holmes [7] and by
Kuznetsov [8], where an exploration of the methods of
local bifurcation theory for flows and maps, including centre
manifolds and normal forms, is provided.

Some pedagogical examples explaining how to check the
stability of fixed points via the centre manifold may be found
in several books, as is the example of the book by Elaydi [9],
where the author studies a two-dimensional quadratic model
and a two-dimensional cubic model, the book byWiggis [10],
where a three-dimensional quadraticmapping is studied, and
the book by Zhang [11], where a two-dimensional quadratic
map is deeply studied.

In the end of the past century and in the beginnings
of the current century, the theory of discrete dynamical
systems has developed quicker than ever. The reason may
be in the evolution of the computers, as seen in specific
software such as Mathematica or Maple, which facilitate the
algebraic computations. Nowadays, some nonlinear models
can be studied in a much simpler way. Citing some examples,
Dektešević et al. [12] studied a two-dimensional quadratic
map with two parameters; Guzowska et al. [13] studied a two-
dimensional rational model with four parameters denomi-
nated by logistic competition model; Karydas and Schinas
[14] gave a new proof of the center manifold theorem for a
system of difference equations; Kulenović and Merino [15]
studied a competitive planar map and established conditions
that guarantee the existence of an invariant curve when both
eigenvalues of the Jacobian of the map are nonzero and at
least one of them has absolute value less than one. These
results can be applied to many hyperbolic and nonhyperbolic
cases. Several applications to planar systems of difference
equations are provided in this paper. Luis et al. [16] studied
a nonlinear planar model with four parameters denominated
planar Ricker competition model and Psarros et al. [17]
studied a three-dimensional model with six parameters.

As a consequence of the complexity of the techniques
involved in the computations of the centre manifold, the
study of the stability of nonhyperbolic fixed points in higher
dimensional nonlinear models is usually avoided. The main
objective of this survey is precisely to provide the necessary
techniques for determining such set in the case of three-
dimensional models and illustrate them with a concrete
nonlinear example, as is the case of the Ricker competition
model.

This survey is organized as follows: in Section 2, the
principal definitions and results concerning the stability of
fixed points in one-dimensional and in two-dimensional dis-
crete models are given. In Section 3, the stability conditions
for three-dimensional discrete models using the trace, the
determinant, and the sum of the principal minors of the
Jacobian matrix are studied. In Section 4, the main tools in
order to determine the centre manifold of the system are
presented. In Section 5, the stability of the fixed points of
the Ricker competition model of three species is studied.

Finally, in Section 6, a conjecture is presented that the local
stability conditions of the nontrivial fixed points of the Ricker
competition model imply its global stability.

2. Local Stability in 1D and 2D Systems

In this section we provide a brief review of the basic results
from the literature, related to the study of stability of fixed
points in one- and in two-dimensional discrete models.

2.1. One-Dimensional Maps. Consider an interval 𝐼 ⊆ R and
a map 𝑓 : 𝐼 → 𝐼. A point 𝑥∗ ∈ R is said to be a fixed
point (or equilibrium point) of 𝑓 if 𝑓(𝑥∗) = 𝑥∗, and given𝑥0 ∈ R, we define its orbit 𝑂(𝑥0) as the set of points 𝑂(𝑥0) ={𝑥0, 𝑓(𝑥0), 𝑓2(𝑥0), 𝑓3(𝑥0), . . .}, where 𝑓𝑛 = 𝑓 ∘ 𝑓𝑛−1, for 𝑛 =1, 2, . . ..

One of the main objectives of the theory of discrete
dynamical systems and, in particular, of the stability theory
is the study of the behavior of orbits near fixed points, that
is, the behavior of solutions of difference equations when the
starting points are near equilibrium points. Hence, a basic
definition in this field is needed. Let N denote the set of
nonnegative integers.

Definition 1 (local stability). Let 𝑓 : 𝐼 → 𝐼 be a map and 𝑥∗
be a fixed point of 𝑓, where 𝐼 is an interval of real numbers.
Then

(1) the fixed point 𝑥∗ is said to be locally stable if, for any𝜖 > 0, there exits 𝛿 > 0 such that, for all 𝑥0 ∈ 𝐼 with|𝑥0 −𝑥∗| < 𝛿, we have |𝑓𝑛(𝑥0) − 𝑥∗| < 𝜖, for all 𝑛 ∈ N.
Otherwise, the fixed point 𝑥∗ will be called unstable;

(2) the fixed point 𝑥∗ is said to be attracting if there exists𝜂 > 0 such that |𝑥0−𝑥∗| < 𝜂 implies lim𝑛→∞𝑓𝑛(𝑥0) =𝑥∗;
(3) the fixed point 𝑥∗ is said to be locally asymptotically

stable if it is both stable and attracting. If in the
previous item 𝜂 = ∞, then 𝑥∗ is said to be globally
asymptotically stable.

One of the most effective graphical iteration methods to
depict stability of fixed points is the cobweb diagram (also
known as stair-step diagram) since it is possible to observe
the behavior of the orbit of an initial point near the fixed
point. It consists in a sequence of line segments connecting
the points in the orbit of an initial point 𝑥0, that is, a sequence
of line segments with end points (𝑥0, 𝑥1) and (𝑥1, 𝑥1), (𝑥1, 𝑥1)
and (𝑥1, 𝑥2), (𝑥1, 𝑥2) and (𝑥2, 𝑥2), (𝑥2, 𝑥2) and (𝑥2, 𝑥3), and
so forth. On the cobweb plot, a locally stable fixed point
corresponds to an inward spiral, while an unstable fixed
point is an outward one. It follows from the definition of
a fixed point that these spirals will center at a point where
the diagonal 𝑦 = 𝑥 line crosses the function graph. This
techniquemay be found inmany books ondiscrete dynamical
systems or difference equations as are the books by Alligood
et al. [18], by Devaney [19], by Elaydi [9, 20], by Zhang [11],
and by others, as well. In Figure 1 we present an illustration of
the cobweb diagram for the Ricker equation 𝑥𝑛+1 = 𝑥𝑛𝑒𝑟−𝑥𝑛 ,
for 𝑛 = 0, 1, 2, . . . and 𝑟 > 0.
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Figure 1: Cobweb animation for the Ricker model given by 𝑥𝑛+1 =𝑥𝑛𝑒𝑟−𝑥𝑛 . Here we are using 𝑟 = 1.8 and one can observe two orbits,
the orbit of an initial point 𝑥0 = 0.2 and the orbit of an initial point𝑥0 = 2.3. Both orbits converge to the fixed point 𝑥∗ = 1.8 meaning
that the fixed point 𝑥∗ = 1.8 is locally stable.

However, cobweb diagrams are not the most efficient tool
to study local stability. There exists a simple but powerful
criterion for knowing the local stability of fixed points. We
may divide the fixed points into two categories: hyperbolic
and nonhyperbolic. A fixed point 𝑥∗ of a map 𝑓 is said to be
hyperbolic if |𝑓󸀠(𝑥∗)| ̸= 1. Otherwise, it is nonhyperbolic.

Theorem 2 (see Elaydi [9], page 25). Let 𝑥∗ be a hyperbolic
fixed point of amap𝑓, where𝑓 is continuous and differentiable
at 𝑥∗. The following statements hold true:

(1) If |𝑓󸀠(𝑥∗)| < 1, then 𝑥∗ is locally asymptotically stable.
(2) If |𝑓󸀠(𝑥∗)| > 1, then 𝑥∗ is unstable.
The stability criteria for nonhyperbolic fixed points are

more complex and are summarized in the following theorem
(for a complete classification of nonhyperbolic fixed points cf.
[9], page 33). Before presenting the criteria we introduce the
notion of Schwarzian derivative.

Definition 3 (Schwarzian derivative). The Schwarzian deriva-
tive, 𝑆𝑓, of a function 𝑓, is defined by𝑆𝑓 (𝑥) = 𝑓󸀠󸀠󸀠 (𝑥)𝑓󸀠 (𝑥) − 32 (𝑓󸀠󸀠 (𝑥)𝑓󸀠 (𝑥) )2 . (1)

In particular, when𝑓󸀠(𝑥∗) = −1, we have 𝑆𝑓(𝑥∗) = −𝑓󸀠󸀠󸀠(𝑥∗)−(3/2)[𝑓󸀠󸀠(𝑥∗)]2.
Theorem 4 (see Elaydi [9], pages 28–30). Let 𝑥∗ be a fixed
point of a map 𝑓 and 𝑓󸀠, 𝑓󸀠󸀠, and 𝑓󸀠󸀠󸀠 be continuous at 𝑥∗.

(1) Let 𝑓󸀠(𝑥∗) = 1.
(a) If 𝑓󸀠󸀠(𝑥∗) > 0, then 𝑥∗ is unstable but semistable

from the left.

(b) If 𝑓󸀠󸀠(𝑥∗) < 0, then 𝑥∗ is unstable but semistable
from the right.

(c) If 𝑓󸀠󸀠(𝑥∗) = 0 and 𝑓󸀠󸀠󸀠(𝑥∗) > 0, then 𝑥∗ is unsta-
ble.

(d) If 𝑓󸀠󸀠(𝑥∗) = 0 and 𝑓󸀠󸀠󸀠(𝑥∗) < 0, then 𝑥∗ is locally
asymptotically stable.

(2) Let 𝑓󸀠(𝑥∗) = −1.
(a) If 𝑆𝑓(𝑥∗) < 0, then 𝑥∗ is locally asymptotically

stable.
(b) If 𝑆𝑓(𝑥∗) > 0, then 𝑥∗ is unstable.

2.2. Two-Dimensional Maps. Definition 1 (local stability) can
now be extended to two-dimensional models (or higher
dimensional models as well), using an appropriate norm.
Since it will follow the same guidelines, we will omit it here.

The local stability of a fixed point (𝑥∗, 𝑦∗) of the equation(𝑥𝑛+1, 𝑦𝑛+1) = 𝐹 (𝑥𝑛, 𝑦𝑛) , 𝐹 = (𝑓, 𝑔) (2)

is guaranteed when all the eigenvalues of the Jacobian,
JF(𝑥∗, 𝑦∗), evaluated at the fixed point (𝑥∗, 𝑦∗) have mag-
nitude less than one. This is precisely the conclusion of the
following result; compare Theorem 4.11 in Elaydi [9], page
221.

Theorem 5 (see Elaydi [9], page 221). Let 𝐹 : 𝐷 ⊂ R2 →
R2 be a 𝐶1 map, where 𝐷 is an open subset of R2, (𝑥∗, 𝑦∗)
a fixed point of 𝐹, and JF = JF(𝑥∗, 𝑦∗) the Jacobian matrix
of 𝐹 evaluated at the fixed point (𝑥∗, 𝑦∗) and let 𝜌(JF) be the
spectral radius of the matrix JF. Then the following statements
hold true:

(1) If 𝜌(JF) < 1, then (𝑥∗, 𝑦∗) is locally asymptotically sta-
ble.

(2) If 𝜌(JF) > 1, then (𝑥∗, 𝑦∗) is unstable.
(3) If 𝜌(JF) = 1, then (𝑥∗, 𝑦∗) may or may not be stable.

The necessary and sufficient conditions can be deter-
mined by using the trace, tr, and the determinant, det, of JF as
is summarized in the following result; compareTheorem 4.4
in Elaydi [9], page 200:

Theorem 6 (see Elaydi [9], page 200). Let (𝑥∗, 𝑦∗) be a fixed
point of the map 𝐹 = (𝑓, 𝑔) and JF = JF(𝑥∗, 𝑦∗) be the
Jacobian matrix evaluated at the fixed point (𝑥∗, 𝑦∗). Then,𝜌(JF) < 1 if and only if󵄨󵄨󵄨󵄨tr (JF (𝑥∗, 𝑦∗))󵄨󵄨󵄨󵄨 − 1 < det (JF (𝑥∗, 𝑦∗)) < 1, (3)

where 𝜌(JF) is the spectral radius of the matrix JF.

Remark 7. Notice that Theorem 6 states that the fixed point(𝑥∗, 𝑦∗) is locally asymptotically stable if conditions (3) are
verified.

The case of nonhyperbolic fixed point is more involved.
There are several scenarios according to the eigenvalues
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which are 1 or −1. When one of the eigenvalues lies in the
unit circle and the other eigenvalue is inside the unit circle,
it is common to use centre manifold theory [6, 8, 20] in
order to determine the stability of the fixed point, since the
dynamics on the centre manifold determines the dynamics
of the original system.

In Section 4 we will give the principal definitions and
techniques behind the study of nonhyperbolic fixed points for
a general dimension. In this specific case of dimension two, a
centre manifold is a graph of type 𝑦 = ℎ(𝑥) (see Theorem 11)
on which the dynamics of (2) is given locally by the map on
the centre manifold (see Theorem 12).

Since the map on the centre manifold, in this case, is a
one-dimensional map, one can then use the results presented
in the previous subsection and conclude the stability of
the nonhyperbolic fixed point. At this point we refer the
pedagogical examples present in Elaydi’s book [9, pages
244–248] and in Zhang’s book [11, pages 286–288].

3. Local Stability Conditions in 3D Systems

An autonomous three-dimensional difference equation is
usually given by 𝑥𝑛+1 = 𝑓 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛)𝑦𝑛+1 = 𝑔 (𝑦𝑛, 𝑦𝑛, 𝑧𝑛)𝑧𝑛+1 = ℎ (𝑥𝑛, 𝑦𝑛, 𝑧𝑛) , (4)

where 𝑛 = 0, 1, 2, . . . and the functions 𝑓, 𝑔, and ℎ are of
class 𝐶𝑘, with 𝑘 being as big as we want. For simplicity, let
us write system (4) as x𝑛+1 = 𝐹(x𝑛), where x = (𝑥, 𝑦, 𝑧) and𝐹 = (𝑓, 𝑔, ℎ).

Asmentioned before, we will consider an extension of the
stability Definition 1 taking a convenient norm in R3. Since
one of the main objectives in the field of discrete dynamical
systems is the study of the dynamics near the fixed points
of 𝐹, that is, the local stability of the fixed points, a suitable
generalization of Theorem 5 states that the fixed point x∗
of 𝐹 is locally asymptotically stable if all the eigenvalues of
the Jacobian, JF(x∗), evaluated at the fixed point x∗ have
magnitude less than one. These conditions can be expressed
in terms of the determinant of the Jacobian, det(JF(x∗)), the
trace of the Jacobian, tr(JF(x∗)), and the sum of principal
minors of the Jacobian, ∑3𝑖=1𝑀𝑖𝑖(JF(x∗)). Moreover, these
three values can be expressed as functions of the eigenvalues
of JF(x∗), 𝜆𝑖, for 𝑖 = 1, 2, 3 (cf. Section 2 of Brooks [21]).
Namely,

det (JF (x∗)) = 𝜆1𝜆2𝜆3,
tr (JF (x∗)) = 𝜆1 + 𝜆2 + 𝜆3,

3∑
𝑖=1

𝑀𝑖𝑖 (JF (x∗)) = 𝜆1𝜆2 + 𝜆1𝜆3 + 𝜆2𝜆3. (5)

The characteristic equation of JF(x∗) in this case can be
given by 𝜆3 − tr (JF (x∗)) 𝜆2 + 3∑

𝑖=1

𝑀𝑖𝑖 (JF (x∗)) 𝜆− det (JF (x∗)) = 0, (6)

which has the three eigenvalues as roots. In order to
determine conditions that guarantee that the characteristic
roots are inside the unit disk, one can use the Schur-Cohn
Criterion; compareTheorem 5.1 in Elaydi [20, page 248].

Theorem 8 (see Elaydi, [20] page 248). The zeros of the char-
acteristic polynomial𝑝 (𝜆) = 𝜆𝑘 + 𝑝1𝜆𝑘−1 + ⋅ ⋅ ⋅ + 𝑝𝑘 (7)

lie inside the unit disk if and only if the following hold:

(i) 𝑝(1) > 0.
(ii) (−1)𝑘𝑝(−1) > 0.
(iii) The (𝑘 − 1) × (𝑘 − 1) matrices

𝐵±𝑘−1 = (((
(

1 0 ⋅ ⋅ ⋅ 0 0𝑝1 1 ⋅ ⋅ ⋅ 0 0... d
...𝑝𝑘−3 𝑝𝑘−4 ⋅ ⋅ ⋅ 1 0𝑝𝑘−2 𝑝𝑘−3 ⋅ ⋅ ⋅ 𝑝1 1
)))
)

± (((
(

0 0 ⋅ ⋅ ⋅ 0 𝑝𝑘0 0 ⋅ ⋅ ⋅ 𝑝𝑘 𝑝𝑘−1... d
...0 𝑝𝑘 ⋅ ⋅ ⋅ 𝑝4 𝑝3𝑝𝑘 𝑝𝑘−1 ⋅ ⋅ ⋅ 𝑝3 𝑝2

)))
)

(8)

are positive innerwise (the determinants of all of its
inners are positives), for 𝑘 = 2, 3, . . ..

Hence, using the Schur-CohnCriterion, it follows that the
necessary and sufficient conditions for which all the roots of
(6) lie inside the unit disk (cf. relation (5.1.17) in Elaydi [9],
page 248) are󵄨󵄨󵄨󵄨tr (JF (x∗)) + det (JF (x∗))󵄨󵄨󵄨󵄨 < 1 + 3∑

𝑖=1

𝑀𝑖𝑖 (JF (x∗))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 3∑𝑖=1𝑀𝑖𝑖 (JF (x∗)) − tr (JF (x∗)) det (JF (x∗))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨< 1 − det2 (JF (x∗)) .
(9)

Thus, conditions (9) imply that the fixed point x∗ of (4) is
locally asymptotically stable. A remark about conditions (9)
is in order.
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Figure 2: Region of local stability of a fixed point in the triple (tr, det, ∑𝑀𝑖𝑖). Each box represents the same region with different points of
view.

Remark 9. Since in most of the concrete cases we deal
with linear stability of three-dimensional discrete models
depending on parameters, the elements of the Jacobian are
most of the times expressed in terms of different parameters.
Hence, direct calculations of the eigenvalues through the
classical methods are not practical. The main feature of
conditions (9) relies in the fact that one can obtain stability
conditions, depending on the parameters, without computing
the eigenvalues.

Before ending this section, let us look into the region of
local stability given by conditions (9). This region, where all
the eigenvalues are less than one inmagnitude, represents the
region of local stability of a fixed point in a three-dimensional
discrete dynamical system given by (4). Plotting the region
defined by these four conditions in a coordinate system
representing the trace (Tr), the determinant (Det), and the
sum of the minors (SMin), the result is the picture depicted
in Figure 2.

4. Bifurcation: Stability Using the
Centre Manifold Theory

If some of the eigenvalues of JF(x∗) have absolute value
equal to one and the other eigenvalues have absolute value
less than one, at least one of the conditions of (9) will be
replaced by an equality. When this happens we say that
a bifurcation occurs. In this case a small smooth change
in the parameter values (the bifurcation parameters) of a
system causes a sudden qualitative or topological change in
its behavior. For a general framework in this area we refer
to Kuznetzov’s book [8], where the author studies in depth
the bifurcation phenomenon in both continuous and discrete
dynamical systems.

In certain cases it is possible to study the stability of the
nonhyperbolic fixed point via the centre manifold theory
since the dynamics on the centre manifold determines the
dynamics of the original system.

In the sequel, we will summarize the principal ideas
behind the study of stability via the centre manifold the-
ory in discrete dynamical systems. For general framework
in the field of difference equations or discrete dynamical
systems we refer to the books by Carr [6], Elaydi [9], and

Kuznetzov [8] and for specific results and terminology the
papers by Guzowska et al. [13], Luis et al. [16], and Psarros
et al. [17].

We will split our analysis into two cases according to the
Jacobian matrix at the fixed point which is a block diagonal
matrix or an upper (lower) triangular matrix.

4.1. InvariantManifolds. Let 𝐹 : R𝑘 → R𝑘 be amap such that𝐹 ∈ 𝐶2 and 𝐹(0) = 0. Then one may write 𝐹 as a perturbation
of a linear map 𝐿, 𝐹 (x) = 𝐿x + 𝑅 (x) , (10)

where 𝐿 is a 𝑘 × 𝑘matrix defined by 𝐿 = 𝐽𝐹(0), 𝑅(0) = 0, and𝐽𝑅(0) = 0, and 𝐽 denotes the Jacobian matrix. Now we will
introduce special subspaces ofR𝑘, called invariant manifolds
(cf. Wiggis [10], page 28), that will play a central role in our
study of stability and bifurcation.

An invariant manifold is a manifold embedded in its
phase space that it is invariant under the dynamical system
generated by 𝐹. A subspace𝑀 ofR𝑘 is an invariant manifold
if, whenever x ∈ 𝑀, 𝐹𝑛(x) ∈ 𝑀, for all 𝑛 ∈ Z+. For the
linear map 𝐿, one may split its spectrum 𝜎(𝐿) into three sets𝜎𝑠, 𝜎𝑢, and 𝜎𝑐, such that 𝜆 ∈ 𝜎𝑠 if |𝜆| < 1, 𝜆 ∈ 𝜎𝑢 if |𝜆| > 1,
and 𝜆 ∈ 𝜎𝑐 if |𝜆| = 1. Associated with these sets, there exist
three invariant manifolds (linear subspaces) 𝐸𝑠, 𝐸𝑢, and 𝐸𝑐
which are the generalized eigenspaces corresponding to 𝜎𝑠,𝜎𝑢, and 𝜎𝑐, respectively. It should be noted that some of these
subspaces may be trivial subspaces.

The main question here is how to extend this linear
theory to nonlinear maps. Corresponding to each of the
linear subspaces 𝐸𝑠, 𝐸𝑢, and 𝐸𝑐 is an invariant manifold: the
stablemanifold𝑊𝑠, the unstablemanifold𝑊𝑢, and the centre
manifold 𝑊𝑐.

The centre manifold theory is interesting only if 𝑊𝑢 ={0}, for, in this case, the dynamics on the centre manifold𝑊𝑐
determines the dynamics of the system.

Let 𝐸𝑠 ⊂ R𝑠, 𝐸𝑢 ⊂ R𝑢, and 𝐸𝑐 ⊂ R𝑡, with 𝑠 + 𝑢 + 𝑡 = 𝑘.
Then onemay formally define the above-mentioned invariant
manifolds as follows:𝑊𝑠 = {x ∈ R

𝑘 | 𝐹𝑛 (x) 󳨀→ 0 as 𝑛 󳨀→ ∞} ,𝑊𝑢 = {x ∈ R
𝑘 | 𝐹𝑛 (x) 󳨀→ 0 as 𝑛 󳨀→ −∞} . (11)
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Since the stability on the centre manifold 𝑊𝑐 is not a
priori known, we will define it as a manifold of dimension𝑡 whose graph is tangent to 𝐸𝑐 at the origin. It is noteworthy
to mention that the centre manifold is not unique, while the
stable and unstable manifolds are unique.

The next result summarizes the basic invariant manifolds
theory.

Theorem 10 (see Marsden and McCracken [22] page 28).
Suppose that 𝐹 ∈ 𝐶2. Then there exist 𝐶2 stable 𝑊𝑠 and
unstable 𝑊𝑢 manifolds tangent to 𝐸𝑠 and 𝐸𝑢, respectively, at𝑋 = 0 and 𝐶1 centre manifold 𝑊𝑐 tangent to 𝐸𝑐 at 𝑋 = 0.
Moreover, 𝑊𝑐, 𝑊𝑠, and 𝑊𝑢 are all invariant manifolds.

4.2. Centre Manifolds: Block Diagonal Matrix. By suitable
change of variables, one may represent the map 𝐹 from the𝑘-dimensional equation x𝑛+1 = 𝐹(x𝑛) as the following system
of difference equations:𝑥𝑛+1 = 𝐴𝑥𝑛 + 𝑓 (𝑥𝑛, 𝑦𝑛)𝑦𝑛+1 = 𝐵𝑦𝑛 + 𝑔 (𝑥𝑛, 𝑦𝑛) . (12)

First we assume that the absolute value of all eigenvalues
of the 𝑡 × 𝑡matrix𝐴 is one, and all the eigenvalues of the 𝑠 × 𝑠
matrix 𝐵 are less than one in magnitude, where 𝑡 + 𝑠 = 𝑘.
Moreover, 𝑓 (0, 0) = 0,𝑔 (0, 0) = 0,𝐽𝑓 (0, 0) = 0,𝐽𝑔 (0, 0) = 0. (13)

The following theorem guarantees the existence of a centre
manifold, which is a curve 𝑦 = ℎ(𝑥), on which the dynamics
of system (12) is given by the map on the centre manifold.
The result may be found in Carr’s book [6], in Elaydi’s book
[9, page 243] (cf. Theorem 5.1), or in Zhang’s book [11, page
284] (cf. Theorem 6.7.1).

Theorem 11. There exists a centre manifold for system (12)
tangent to {(𝑥, 𝑦) ∈ R𝑡 × R𝑠 | 𝑦 = 0} that can be represented
locally as the graph of a function ℎ : R𝑡 → R𝑡 such that𝑊𝑐 = {(𝑥, 𝑦) ∈ R

𝑡 × R
𝑠 | 𝑦 = ℎ (𝑥) , ℎ (0) = 0, 𝐽ℎ (0)= 0, |𝑥| < 𝛿 for a sufficiently small 𝛿} . (14)

Furthermore, the dynamics restricted to 𝑊𝑐 is given locally by
the equation𝑥𝑛+1 = 𝐴𝑥𝑛 + 𝑓 (𝑥𝑛, ℎ (𝑥𝑛)) , 𝑥 ∈ 𝑅𝑡. (15)

The main feature of (15) is that its dynamics determine
the dynamics of (12). So if 𝑥∗ = 0 is a stable, asymptotically
stable, or unstable fixed point of (15), then the fixed point(𝑥∗, 𝑦∗) = (0, 0) of (12) possesses the corresponding property.
This is precisely the conclusion of the following result (cf.
Theorem 5.2 in Elaydi [9, page 243] or cf. Theorem 6.7.2 in
Zhang [11, page 285]).

Theorem 12. Let 𝑥∗ = 0⃗𝑡 be a 𝑡-dimensional zero fixed
point of (15). If 𝑥∗ = 0⃗𝑡 is a stable, asymptotically stable, or
unstable fixed point of (15), then the fixed point (𝑥∗, 𝑦∗) of
(12) is stable, asymptotically stable, or unstable fixed point,
respectively, where 𝑦∗ = 0⃗𝑠 is a 𝑠-dimensional zero vector.

To find the map 𝑦 = ℎ(𝑥), we substitute for 𝑦𝑛 for ℎ(𝑥𝑛)
in (12) and obtain𝑥𝑛+1 = 𝐴𝑥𝑛 + 𝑓 (𝑥𝑛, ℎ (𝑥𝑛))𝑦𝑛+1 = ℎ (𝑥𝑛+1) = ℎ (𝐴𝑥𝑛 + 𝑓 (𝑥𝑛, ℎ (𝑥𝑛))) . (16)

But𝑦𝑛+1 = 𝐵𝑦𝑛 + 𝑔 (𝑥𝑛, 𝑦𝑛) = 𝐵ℎ (𝑥𝑛) + 𝑔 (𝑥𝑛, ℎ (𝑥𝑛)) . (17)

Equating (16) and (17) yields the centremanifold equationℎ [𝐴𝑥𝑛 + 𝑓 (𝑥𝑛, ℎ (𝑥𝑛))] = 𝐵ℎ (𝑥𝑛) + 𝑔 (𝑥𝑛, ℎ (𝑥𝑛)) . (18)

Analogously, if all eigenvalues of 𝐴 are less than one in
magnitude and the absolute value of all the eigenvalues of 𝐵
is one, one may define the centre manifold𝑊𝑐 and obtain the
equation 𝑦𝑛+1 = 𝐵𝑦𝑛 + 𝑔 (ℎ (𝑦𝑛) , 𝑦𝑛) , (19)

where 𝑥 = ℎ(𝑦).
We remark that, in most cases, it is not possible to find

an explicit expression for 𝐻. Since the main interest is to
study locally the properties of the system, we may use some
approximation.Themost common and useful approximation
is the power series as it is established in the following result
that may be found in Carr’s book [6], in Zhang’s book [11,
page 286], or in a most recent paper of Psarros et al. [17] (cf.
Theorem 1.3).

Theorem 13. Let 𝜓 : R𝑡 → R𝑠 be a 𝐶1 map with 𝜓(0⃗𝑡) = 0⃗𝑠
and 𝐽𝜓(0⃗𝑡) = 0⃗𝑠×𝑡, where 𝐽𝜓 is the Jacobian matrix of 𝜓, and0⃗𝑡, 0⃗𝑠, and 0⃗𝑠×𝑡 are the 1 × 𝑡, 1 × 𝑠, and 𝑠 × 𝑡 zero matrices,
respectively. Suppose that 𝐹(𝜓(𝑥)) = (|𝑥|𝑟) as 𝑥 → 0, for some𝑟 > 1. Then ℎ (𝑥) = 𝜓 (𝑥) + (|𝑥|𝑟) . (20)

4.3. Centre Manifolds: Upper (Lower) Triangular Matrix. In
working with concretemaps, it is beneficial in certain cases to
deal with system where the derivative evaluated at the fixed
point is not a block diagonal matrix. Let us now consider,
without loss of generality, that the system of difference
equations 𝑋𝑛+1 = 𝐹(𝑋𝑛) is written of the form(𝑥𝑛+1𝑦𝑛+1) = (𝐴 𝐶0 𝐵)(𝑥𝑛𝑦𝑛) + (𝑓 (𝑥𝑛, 𝑦𝑛)𝑔 (𝑥𝑛, 𝑦𝑛)) . (21)

There are two cases to consider: (i) the absolute value of
all the eigenvalues of 𝐴 is one and all the eigenvalues of 𝐵 are
less than one in absolute value and (ii) the absolute value of
all the eigenvalues of 𝐵 is one and all the eigenvalues of 𝐴 are
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less than one in absolute value. We will present details only
in the first case, since the second follows in a similar way and
can be found in Luis et al. [16].

From the general theory in linear algebra, there exists a
nonsingular matrix 𝑃 of the form𝑃 = [𝑃1 𝑃30 𝑃2] (22)

such that [𝐴 𝐵0 𝐶] = 𝑃[𝐴 00 𝐵]𝑃−1. (23)

By suitable changes of variables, 𝑥 = 𝑃1𝑢 + 𝑃3V and 𝑦 =𝑃2V, one may write(𝑢𝑛+1
V𝑛+1

) = (𝐴 00 𝐵)(𝑢𝑛
V𝑛

)
+ 𝑃−1 (𝑓 (𝑃1𝑢 + 𝑃3V, 𝑃2V)𝑔 (𝑃1𝑢 + 𝑃3V, 𝑃2V)) . (24)

One can apply the centre manifold theorem and obtain a
map V = ℎ(𝑢) with ℎ(0) = 0 = ℎ󸀠(0). The dynamics of (24) is
completely determined by the dynamics of the equation𝑢𝑛+1 = 𝐴𝑢𝑛 + 𝑃̃1𝑓 (𝑃1𝑢𝑛 + 𝑃3ℎ (𝑢) , 𝑃2ℎ (𝑢))+ 𝑃̃3𝑔 (𝑃1𝑢𝑛 + 𝑃3ℎ (𝑢) , 𝑃2ℎ (𝑢)) , (25)

where 𝑃̃1, 𝑃̃2, and 𝑃̃3 are entries of the matrix𝑃−1 = (𝑃̃1 𝑃̃30 𝑃̃2) . (26)

Hence the curve V = ℎ(𝑢) is the implicit solution of (25)
and is the equation of the centre manifold. To find the map ℎ
we use the centre manifold equationℎ [𝐴𝑢 + 𝐶ℎ (𝑢) + 𝑓 (𝑢, ℎ (𝑢))]= 𝐵ℎ (𝑢) + 𝑔 (𝑢, ℎ (𝑢)) , (27)

and using Taylor approximation, we are able to determine
locally the map ℎ, as we will illustrate in the next section with
the Ricker competition model.

5. Illustrative Example: Ricker
Competition Model

The three-dimensional Ricker competition model [23, page
31] is usually written as𝑥1 (𝑛 + 1) = 𝑥1 (𝑛) exp(𝑟1 − 3∑

𝑖=1

𝑐1𝑖𝑥𝑖 (𝑛))
𝑥2 (𝑛 + 1) = 𝑥2 (𝑛) exp(𝑟2 − 3∑

𝑖=1

𝑐2𝑖𝑥𝑖 (𝑛))
𝑥3 (𝑛 + 1) = 𝑥3 (𝑛) exp(𝑟3 − 3∑

𝑖=1

𝑐3𝑖𝑥𝑖 (𝑛)) ,
(28)

where 𝑥𝑖(𝑛), for 𝑖 = 1, 2, 3, represents the population sizes
of species 𝑥𝑖 at time unit 𝑛, the parameters 𝑟𝑖, for 𝑖 = 1, 2, 3,
are the inherent exponential growth rates at low densities,
and 𝑐𝑖,𝑗, for 𝑖, 𝑗 = 1, 2, 3, are the competition intensity
coefficientsmeasuring the effects of intraspecific competition
and interspecific competition. More precisely, 𝑐𝑖𝑖 are the
intraspecific competition parameters while 𝑐𝑖𝑗, for 𝑖 ̸= 𝑗, are
the interspecific competition parameters. Notice that these
twelve parameters are assumed to be positive.

For the sake of simplicity, throughout this section we
assume that the intraspecific competition parameters are
equal to one; that is, 𝑐𝑖𝑖 = 1, and the interspecific competition
parameters lie on the unit interval; that is, 0 < 𝑐𝑖𝑗 < 1, for𝑖 ̸= 𝑗.

System (28) can be represented by the difference equation
x𝑛+1 = 𝐹(x𝑛), where the map 𝐹 = (𝑓1, 𝑓2, 𝑓3) is given by𝐹 (𝑥1, 𝑥2, 𝑥3) = (𝑥1𝑒𝑟1−𝑥1−𝑐12𝑥2−𝑐13𝑥3 , 𝑥2𝑒𝑟2−𝑥2−𝑐21𝑥1−𝑐23𝑥3 ,𝑥3𝑒𝑟3−𝑥3−𝑐31𝑥1−𝑐32𝑥2) . (29)

The map 𝐹 has eight fixed points, namely, the origin 𝑂 =(0, 0, 0), three fixed points on the axes 𝐸1 = (𝑟1, 0, 0), 𝐸2 =(0, 𝑟2, 0), and 𝐸3 = (0, 0, 𝑟3), three fixes points in each of the
planes𝐸12 = ((𝑟1−𝑐12𝑟2)/(1−𝑐12𝑐21), (𝑟2−𝑐21𝑟1)/(1−𝑐12𝑐21), 0),𝐸13 = ((𝑟1 − 𝑐13𝑟3)/(1 − 𝑐13𝑐31), 0, (𝑟3 − 𝑐31𝑟1)/(1 − 𝑐13𝑐31)), and𝐸23 = (0, (𝑟2 − 𝑐23𝑟3)/(1 − 𝑐23𝑐32), (𝑟3 − 𝑐32𝑟2)/(1 − 𝑐23𝑐32)), and
a possible interior fixed point given by𝐸∗ = ((𝑐23𝑐32 − 1) 𝑟1 + 𝑐13 (𝑟3 − 𝑐32𝑟2) + 𝑐12 (𝑟2 − 𝑐23𝑟3)𝑐12 (𝑐21 − 𝑐23𝑐31) + 𝑐23𝑐32 + 𝑐13 (𝑐31 − 𝑐21𝑐32) − 1 ,(𝑐13𝑐31 − 1) 𝑟2 + 𝑐23 (𝑟3 − 𝑐31𝑟1) + 𝑐21 (𝑟1 − 𝑐13𝑟3)𝑐12 (𝑐21 − 𝑐23𝑐31) + 𝑐23𝑐32 + 𝑐13 (𝑐31 − 𝑐21𝑐32) − 1 ,𝑐32𝑟2 + 𝑐31 (𝑟1 − 𝑐12𝑟2) + 𝑐21 (𝑐12𝑟3 − 𝑐32𝑟1) − 𝑟3𝑐12 (𝑐21 − 𝑐23𝑐31) + 𝑐23𝑐32 + 𝑐13 (𝑐31 − 𝑐21𝑐32) − 1) .

(30)

Since we are mainly interested in population dynamics, we
always assume that these fixed points are nonnegative.

First, let us have a look in the dynamics in lower
dimensions. In the absence of two species, say 𝑥2 and 𝑥3, the
dynamics of system (28) is the same as the one given by the
one-dimensional equation 𝑥𝑛+1 = 𝑥𝑛𝑒𝑟1−𝑥𝑛 = 𝑓(𝑥𝑛). This
equation has two fixed points, the origin, which is always
unstable, and a positive fixed point 𝑥∗ = 𝑟1, which is globally
asymptotically stable when 0 < 𝑟1 ≤ 2. At 𝑟1 = 2, a
period-doubling bifurcation occurs since 𝑓󸀠(2) = −1. This
means that 𝑥∗ = 𝑟1 becomes an unstable fixed point and
a new locally asymptotically stable 2-periodic cycle is born.
At 𝑟1 ≈ 2.512, a new period-doubling bifurcation occurs.
The 2-periodic cycle becomes unstable and a new locally
asymptotically stable 4-periodic cycle is born. Moreover, this
scenario of period-doubling bifurcation route to chaos will
continue as 𝑟1 increases.
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Now, in the absence of one species, say species 𝑥3, the
dynamics of system (28) is the same as the one of the two-
dimensional system𝑥1 (𝑛 + 1) = 𝑥1 (𝑛) exp (𝑟1 − 𝑥1 (𝑛) − 𝑐12𝑥2 (𝑛))𝑥2 (𝑛 + 1) = 𝑥2 (𝑛) exp (𝑟2 − 𝑐21𝑥1 (𝑛) − 𝑥2 (𝑛)) ,

for 𝑛 = 0, 1, 2, . . . . (31)

The local dynamics and principal properties of the four fixed
points of (31) have been studied in depth by Luis et al. [16]
and is shortly as follows:

(1) The origin is always an unstable fixed point.
(2) The point (𝑟1, 0) is an exclusion fixed point in the 𝑥-

axis which is locally asymptotically stable if and only
if 0 < 𝑟1 ≤ 2 and 𝑟2 < 𝑐21𝑟1.

(3) The point (0, 𝑟2) is an exclusion fixed point in the 𝑦-
axis which is locally asymptotically stable if and only
if 0 < 𝑟2 ≤ 2 and 𝑟1 < 𝑐12𝑟2.

(4) The point (𝑥∗1 , 𝑥∗2 ) = ((𝑟1 − 𝑐12𝑟2)/(1 − 𝑐12𝑐21), (𝑟2 −𝑐21𝑟1)/(1 − 𝑐12𝑐21)) is a positive fixed point in the
interior of the first quadrant, which is locally asymp-
totically stable, if and only if4 (𝑐12𝑐21 − 1) + 2 (1 − 𝑐12) 𝑟2 + 2 (1 − 𝑐21) 𝑟1≤ (𝑐12𝑟2 − 𝑟1) (𝑐21𝑟1 − 𝑟2)< (1 − 𝑐12) 𝑟2 + (1 − 𝑐21) 𝑟1. (32)

The stability regions, in the parameter space𝑂𝑟1𝑟2, of
the nontrivial fixed points, are denoted by 𝑅1,𝑄1, and𝑆1 and are depicted in Figure 3. The region 𝑅1 is the
stability region of (𝑟1, 0), the region 𝑄1 is the stability
region of (0, 𝑟2), and the region 𝑆1 is the stability
region of (𝑥∗1 , 𝑥∗2 ).
More precisely, the region 𝑆1 is the region in the 𝑟1𝑂𝑟2
plane bounded by the lines 𝑟2 = 𝑟1/𝑐12 and 𝑟2 = 𝑐21𝑟1
and the curve 𝛾1, where 𝛾1 is part of a branch of the
hyperbola defined by𝑐21𝑟21 + 2 (1 − 𝑐21) 𝑟1 − (1 + 𝑐12𝑐21) 𝑟1𝑟2 + 2 (1 − 𝑐12) 𝑟2+ 𝑐12𝑟22 + 4 (𝑐12𝑐21 − 1) = 0. (33)

Notice that the positive equilibriumpoint exists if and
only if 𝑐12𝑟2 < 𝑟1,𝑐21𝑟1 < 𝑟2 (34)

or 𝑐12𝑟2 > 𝑟1,𝑐21𝑟1 > 𝑟2. (35)

It follows that (34) implies that 𝑐12𝑐21 < 1 while (35)
implies 𝑐12𝑐21 > 1. When 𝑐12𝑐21 > 1, the coexistence
equilibrium point is a saddle and the asymptotic
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Figure 3: The stability regions and the bifurcation scenario of the
two-dimensional Ricker competition model (31), in the parameter
space 𝑂𝑟1𝑟2, when the competition parameters 𝑐12 and 𝑐21 are fixed
such that 𝑐12𝑐21 < 1. The region 𝑆1 is the stability region of the
coexistence equilibrium point (𝑥∗1 , 𝑥∗2 ), the region 𝑅1 is the stability
region of the exclusion fixed point (𝑟1, 0), and the region 𝑄1 is
the stability region of the exclusion fixed point (0, 𝑟2). A period-
doubling bifurcation scenario occurs (in the coexistence case) as we
cross from region 𝑆1 to region 𝑆2, from region 𝑆2 to region 𝑆3, and so
on. Similarly, one has a period-doubling scenario (in the exclusion
case) in the 𝑥-axis as we cross from region 𝑅1 to region 𝑅2, from
region 𝑅2 to region 𝑅3, and so on. Similar phenomenon occurs in
regions 𝑄𝑖, for 𝑖 = 1, 2, . . ..

attractor of an orbit of (31) depends on its initial
conditions (see [24] for specific details of this phe-
nomenon in population dynamics). If 𝑐12𝑐21 = 1,
system (31) has no coexistence equilibrium point.
Henceforth, we shall assume that 𝑐12𝑐21 < 1 and it
means that the interspecific competition is less than
the intraspecific competition since 𝑐12𝑐21 < 𝑐11𝑐22 = 1.
Equivalently, in the region defined by (32) and under
assumption (34), the coexistence fixed point is locally
asymptotically stable if and only if (𝑟, 𝑠) ∈ int(𝑆1)∪𝛾1,
where int(𝑆1) denotes the interior of the region 𝑆1.

As mentioned before, in order to study the stability of the
fixed points of system (28), we have to determine the Jacobian
of 𝐹 which is given by𝐽𝐹 (𝑥1, 𝑥2, 𝑥3)

= (−𝑒Δ 1 (𝑥1 − 1) −𝑒Δ 1𝑐12𝑥1 −𝑒Δ 1𝑐13𝑥1−𝑒Δ 2𝑐21𝑥2 −𝑒Δ 2 (𝑥2 − 1) −𝑒Δ 2𝑐23𝑥2−𝑒Δ 3𝑐31𝑥3 −𝑒Δ 3𝑐32𝑥3 −𝑒Δ 3 (𝑥3 − 1)) , (36)

whereΔ 1 = 𝑟1−𝑥1−𝑐12𝑥2−𝑐13𝑥3,Δ 2 = 𝑟2−𝑐21𝑥1−𝑥2−𝑐23𝑥3,
and Δ 3 = 𝑟3 − 𝑐31𝑥1 − 𝑐32𝑥2 − 𝑥3.
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Figure 4: (a) Stability region of the fixed point 𝐸1, in the parameter space𝑂𝑟1𝑟2𝑟3 when 𝑐𝑗1 = 0.5, for 𝑗 = 2, 3. The projection of this region in
the 𝑟1𝑂𝑟2 plane is the region 𝑅1 depicted in Figure 3. (b) The stability regions of the fixed points 𝐸𝑖, for 𝑖 = 1, 2, 3, together in the parameter
space 𝑂𝑟1𝑟2𝑟3 when 𝑐𝑖𝑖 = 1 and 𝑐𝑖𝑗 = 0.5, for 𝑖 ̸= 𝑗 and 𝑖, 𝑗 = 1, 2, 3.

It is a straightforward computation to see that the origin
is an unstable fixed point since the eigenvalues of 𝐽𝐹(𝑂) are𝑒𝑟𝑖 > 1, for 𝑖 = 1, 2, 3.
5.1. Fixed Points on the Coordinate Axis. We will reduce our
analysis to the fixed point 𝐸1 = (𝑟1, 0, 0). The stability of the
fixed points 𝐸𝑖, for 𝑖 = 2, 3, will follow in a similar way.

The Jacobian evaluated at the fixed point 𝐸1 is given by

𝐽𝐹 (𝐸1) = (1 − 𝑟1 −𝑐12𝑟1 −𝑐13𝑟10 𝑒𝑟2−𝑐21𝑟1 00 0 𝑒𝑟3−𝑐31𝑟1). (37)

Clearly, 𝐸1 is locally asymptotically stable if 0 < 𝑟1 < 2 and𝑟𝑗 < 𝑐𝑗1𝑟1, for 𝑗 = 2, 3. This region, in the parameter space of
the growth rates (triple (𝑟1, 𝑟2, 𝑟3)), is depicted in Figure 4.

Now, if 𝑟1 = 2 and 𝑟𝑗 < 2𝑐𝑗1, 𝑗 = 2, 3 undergoes a period-
doubling bifurcation on the 𝑥-axis. Under this scenario 𝜆1 =−1 is an eigenvalue of 𝐽𝐹(𝐸1) and for the other eigenvalues we
have |𝑒𝑟𝑗−2𝑐𝑗1 | < 1, for 𝑗 = 2, 3. Hence, we are in position to
study the stability of the fixed point𝐸1 via the centremanifold
theory.

Shifting the fixed point 𝐸1 to the origin, it is a straightfor-
ward computation to show that system (28) is equivalent to𝑦1 (𝑛 + 1) = −𝑦1 (𝑛) − 2𝑐12𝑦2 (𝑛) − 2𝑐13𝑦3 (𝑛)+ 𝑓1 (𝑦1 (𝑛) , 𝑦2 (𝑛) , 𝑦3 (𝑛))𝑦2 (𝑛 + 1) = 𝑒𝑟2−2𝑐21𝑦2 (𝑛) + 𝑓2 (𝑦1 (𝑛) , 𝑦2 (𝑛) , 𝑦3 (𝑛))𝑦3 (𝑛 + 1) = 𝑒𝑟3−2𝑐31𝑦3 (𝑛)+ 𝑓3 (𝑦1 (𝑛) , 𝑦2 (𝑛) , 𝑦3 (𝑛)) ,

(38)

where𝑓1 (𝑦1, 𝑦2, 𝑦3) = (𝑦1 + 2) 𝑒−𝑐12𝑦2−𝑐13𝑦3−𝑦1 + 2𝑐12𝑦2+ 2𝑐13𝑦3 + 𝑦1 − 2,𝑓2 (𝑦1, 𝑦2, 𝑦3) = 𝑒𝑟2𝑦2 (𝑒−𝑐21(𝑦1+2)−𝑐23𝑦3−𝑦2 − 𝑒−2𝑐21) ,𝑓3 (𝑦1, 𝑦2, 𝑦3) = 𝑒𝑟3𝑦3 (𝑒−𝑐31(𝑦1+2)−𝑐32𝑦2−𝑦3 − 𝑒−2𝑐31) .
(39)

The centre manifold in this case can be represented locally
as the graph of a function Φ : R2 → R2 such that𝑊𝑐 = {(𝑦1, 𝑦2, 𝑦3) ∈ R × R

2 | (𝑦2, 𝑦3)= (Φ1 (𝑦1) , Φ2 (𝑦1)) , Φ (0) = 0, 𝐽Φ (0) = 0, 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨< 𝛿 for a sufficiently small 𝛿} . (40)

The centre manifold equation (27) is therefore given byΦ1 [−𝑦1 − 2𝑐12Φ1 (𝑦1) − 2𝑐13Φ2 (𝑦1)+ 𝑓1 (𝑦1, Φ1 (𝑦1) , Φ2 (𝑦1))] = 𝑒𝑟2−2𝑐21Φ1 (𝑦1)+ 𝑓2 (𝑦1, Φ1 (𝑦1) , Φ2 (𝑦1))Φ2 [−𝑦1 − 2𝑐12Φ1 (𝑦1) − 2𝑐13Φ2 (𝑦1)+ 𝑓1 (𝑦1, Φ1 (𝑦1) , Φ2 (𝑦1))] = 𝑒𝑟3−2𝑐31Φ2 (𝑦1)+ 𝑓3 (𝑦1, Φ1 (𝑦1) , Φ2 (𝑦1)) ,
(41)

where Φ𝑖, 𝑖 = 1, 2, can be represented locally by Φ𝑖(𝑢) =𝛼𝑖𝑢2 + 𝛽𝑖𝑢3 + 𝑂[𝑢]4.
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Using Mathematica or Maple, we are able to simplify
system (41), and using power series one can conclude that
(locally) system (41) is equivalent to(1 − 𝑒𝑟2−2𝑐21) 𝛼1𝑦21 + (𝑐21𝑒𝑟2−2𝑐21𝛼1 + 4𝑐13𝛼1𝛼2+ 4𝑐12𝛼21 − (1 + 𝑒𝑟2−2𝑐21) 𝛽1) 𝑦31 + 𝑂 [𝑦1]4 = 0.(𝛼1 − 𝛼2𝑒𝑟3−2𝑐31) 𝑦21 + (−𝛽1 + 4𝑐12𝛼21 + 4𝑐13𝛼1𝛼2+ 𝑐31𝑒𝑟3−2𝑐31𝛼2 − 𝑒𝑟3−2𝑐31𝛽2) 𝑦31 + 𝑂 [𝑦1]4 = 0 (42)

In order to have equality, from this system we have to con-
clude that(1 − 𝑒𝑟2−2𝑐21) 𝛼1 = 0𝑐21𝑒𝑟2−2𝑐21𝛼1 + 4𝑐13𝛼1𝛼2 + 4𝑐12𝛼21 − (1 + 𝑒𝑟2−2𝑐21) 𝛽1= 0𝛼1 − 𝛼2𝑒𝑟3−2𝑐31 = 0− 𝛽1 + 4𝑐12𝛼21 + 4𝑐13𝛼1𝛼2 + 𝑐31𝑒𝑟3−2𝑐31𝛼2 − 𝑒𝑟3−2𝑐31𝛽2= 0,

(43)

yielding the trivial solution 𝛼1 = 𝛼2 = 𝛽1 = 𝛽2 = 0.
A straightforward computation shows that locally, the

map in (25), in this case, can be given by𝑓 (𝑦1) = 𝑒−𝑦1 (𝑦1 + 2) − 2. (44)

Since 𝑓󸀠(0) = −1, we have to compute the Schwarzian deriv-
ative at the fixed point 0 (cf. Theorem 4); that is,𝑓󸀠󸀠󸀠 (0)𝑓󸀠 (0) − 32 (𝑓󸀠󸀠 (0)𝑓󸀠 (0) )2 = −1 < 0. (45)

Hence, the fixed point 0 is locally asymptotically stable.

Consequently, the fixed point 𝐸1 of system (28) is locally
asymptotically stable if 𝑟1 = 2 and 𝑟𝑗 < 2𝑐𝑗1, for 𝑗 = 2, 3.
These specific values of the parameters undergo a period-
doubling bifurcation. As 𝑟1 increases, the exclusion fixed
point 𝐸1 becomes unstable and an asymptotically stable 2-
periodic cycle of the form{(𝑟10, 0, 0) , (𝑟11, 0, 0)} , 𝑟10 < 𝑟1 < 𝑟11 (46)

is born in the 𝑥-axis.
From now on, computations are only possible via numer-

ical simulations. One can observe that at 𝑟1 ≈ 2.512 a new
period-doubling bifurcation occurs. Hence, the exclusion 2-
periodic cycle on the 𝑥-axis becomes unstable and a new4-periodic cycle in the 𝑥-axis is born. Further simulations
suggest that this scenario of period-doubling bifurcation, in
the 𝑥-axis, will continue route to chaos.

We remark that this period-doubling scenario, in three-
dimensional mappings, is just a direct observation from
the simulations since there is no extension of Sharkovsky’s
theorem [25, 26] for dimension 𝑘 ≥ 2.

It remains to study the stability of the fixed point 𝐸1 when𝑟1 = 2, 𝑟2 = 2𝑐21, and 𝑟3 < 2𝑐31. Under this restriction
on the parameters we have 𝜆1 = −1, 𝜆2 = 1, and |𝜆3| <1. The reduced equation on the centre manifold will be a
two-dimensional system. Unfortunately, this scenario in two-
dimensional discrete systems (𝜆̃1 = −1, 𝜆̃2 = 1) remains as an
open problem, and thus we are not able to discuss the stability
of the fixed point here.

5.2. Fixed Points on the Planes. Let us now consider the fixed
point𝐸12 on the plane 𝑥1𝑂𝑥2.The stability analysis of𝐸13 and𝐸23 follows in a similar way.

The Jacobian evaluated at the fixed point is given by

𝐽𝐹 (𝐸12) = (1 − 𝑐12𝑐21 + 𝑐12𝑟2 − 𝑟11 − 𝑐12𝑐21 𝑐12 (𝑐12𝑟2 − 𝑟1)1 − 𝑐12𝑐21 𝑐13 (𝑐12𝑟2 − 𝑟1)1 − 𝑐12𝑐21𝑐21 (𝑐21𝑟1 − 𝑟2)1 − 𝑐12𝑐21 1 − 𝑐12𝑐21 + 𝑟1𝑐21 − 𝑟21 − 𝑐12𝑐21 𝑐23 (𝑐21𝑟1 − 𝑟2)1 − 𝑐12𝑐210 0 𝑒((𝑐21𝑐32−𝑐31)𝑟1+(𝑐31𝑐12−𝑐32)𝑟2+(1−𝑐21𝑐12)𝑟3)/(1−𝑐12𝑐21)). (47)

It is a straightforward computation to see that the condi-
tions of local stability are given by4 (𝑐12𝑐21 − 1) + 2 (1 − 𝑐12) 𝑟2 + 2 (1 − 𝑐21) 𝑟1< (𝑐12𝑟2 − 𝑟1) (𝑐21𝑟1 − 𝑟2)< (1 − 𝑐12) 𝑟2 + (1 − 𝑐21) 𝑟1, (48)

(𝑐21𝑐32 − 𝑐31) 𝑟1 + (𝑐31𝑐12 − 𝑐32) 𝑟2 + (1 − 𝑐21𝑐12) 𝑟3< 0. (49)

In Figure 5 a prototype of this region is depicted in the triple(𝑟1, 𝑟2, 𝑟3) when 𝑐𝑗𝑖 = 0.5, for 𝑖 ̸= 𝑗.
Considering the equality4 (𝑐12𝑐21 − 1) + 2 (1 − 𝑐12) 𝑟2 + 2 (1 − 𝑐21) 𝑟1= (𝑐12𝑟2 − 𝑟1) (𝑐21𝑟1 − 𝑟2) (50)

and keeping the other relations, the eigenvalues of 𝐽𝐹(𝐸12)
are such that 𝜆1 = −1 and |𝜆𝑖| < 1, for 𝑖 = 2, 3. Hence, we
are in position to use the centre manifold theorem. Following
the techniques employed in the previous subsection, one
can conclude that 𝐸12 is a locally asymptotically stable
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Figure 5: (a) Stability region of the exclusion fixed point 𝐸12 in the parameter space 𝑂𝑟1𝑟2𝑟3 when 𝑐𝑗𝑖 = 0.5 for 𝑖 ̸= 𝑗. The projection of
this region in the plane 𝑟1𝑂𝑟2 is the region 𝑆1 depicted in Figure 3. (b) Stability regions of 𝐸12, 𝐸13, and 𝐸23, together in the parameter space𝑂𝑟1𝑟2𝑟3 when 𝑐𝑖𝑖 = 1 and 𝑐𝑖𝑗 = 0.5, for 𝑖 ̸= 𝑗 and 𝑖, 𝑗 = 1, 2, 3.
fixed point on the plane 𝑥1𝑂𝑥2 under these restrictions on
the parameters. Notice that, in the parameter space, the
projection of this region in the 𝑟1𝑂𝑟2 plane is part of a branch
of an hyperbola as described in the beginning of this section
and can be observed in Figure 3 by 𝛾1.

This means that this specific region undergoes a period-
doubling bifurcation on the 𝑥1𝑂𝑥2 plane. Hence, as the
parameters increase, the fixed point 𝐸12 becomes unstable
and a locally asymptotically stable 2-periodic cycle of the
form {(𝑥0, 𝑦0, 0) , (𝑥1, 𝑦1, 0)} (51)

is born on the 𝑥1𝑂𝑥2 plane. As in the precedent case,
from now on, computations are only possible via numerical
simulations. These simulations suggest a scenario of period-
doubling bifurcation on the 𝑥1𝑂𝑥2 plane route to chaos.

We should mention that if we replace the inequal-
ity signs by equality on (48) and condition (49) is satisfied,
then 𝜆1 = −1, 𝜆2 = 1, and |𝜆3| < 1 are the eigenvalues of

𝐽𝐹(𝐸12). Unfortunately, we are not able to use here the centre
manifold theorem, as mentioned at the end of the previous
subsection.

5.3. Positive Fixed Point. We now consider the positive fixed
point 𝐸∗ known in population dynamics as the coexistence
fixed point. Due to the great number of parameters involved
and for the sake of simplicity, we will study the symmetric
case, that is, when 𝑐𝑖𝑗 = 𝑐, for all 𝑖 ̸= 𝑗. The fixed point 𝐸∗ =(𝑥∗1 , 𝑥∗2 , 𝑥∗3 ) becomes in this case

𝐸∗ = (𝑐 (𝑟2 + 𝑟3) − (𝑐 + 1) 𝑟1(𝑐 − 1) (2𝑐 + 1) , 𝑐𝑟1 − (𝑐 + 1) 𝑟2 + 𝑐𝑟3(𝑐 − 1) (2𝑐 + 1) ,𝑐𝑟1 + 𝑐𝑟2 − (𝑐 + 1) 𝑟3(𝑐 − 1) (2𝑐 + 1) ) , (52)

and the derivative at 𝐸∗ is given by

𝐽𝐹 (𝐸∗)
= (((

(
−2𝑐2 + 𝑟2𝑐 + 𝑟3𝑐 + 𝑐 − (𝑐 + 1) 𝑟1 + 1−2𝑐2 + 𝑐 + 1 𝑐 ((𝑐 + 1) 𝑟1 − 𝑐 (𝑟2 + 𝑟3))(𝑐 − 1) (2𝑐 + 1) 𝑐 ((𝑐 + 1) 𝑟1 − 𝑐 (𝑟2 + 𝑟3))(𝑐 − 1) (2𝑐 + 1)𝑐 (−𝑐𝑟1 + (𝑐 + 1) 𝑟2 − 𝑐𝑟3)(𝑐 − 1) (2𝑐 + 1) −2𝑐2 + 𝑟1𝑐 + 𝑟3𝑐 + 𝑐 − (𝑐 + 1) 𝑟2 + 1−2𝑐2 + 𝑐 + 1 𝑐 (−𝑐𝑟1 + (𝑐 + 1) 𝑟2 − 𝑐𝑟3)(𝑐 − 1) (2𝑐 + 1)𝑐 (−𝑐𝑟1 − 𝑐𝑟2 + (𝑐 + 1) 𝑟3)(𝑐 − 1) (2𝑐 + 1) 𝑐 (−𝑐𝑟1 − 𝑐𝑟2 + (𝑐 + 1) 𝑟3)(𝑐 − 1) (2𝑐 + 1) −2𝑐2 + 𝑟1𝑐 + 𝑟2𝑐 − 𝑟3𝑐 + 𝑐 − 𝑟3 + 1−2𝑐2 + 𝑐 + 1

)))
)

. (53)
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For this matrix we have

tr (𝐽𝐹 (𝐸∗)) = −6𝑐 + 𝑟1 + 𝑟2 + 𝑟3 − 32𝑐 + 1 ,
3∑
𝑖=1

𝑀𝑖𝑖 (𝐽𝐹 (𝐸∗))
= 3𝑃0 + 2𝑃1 (𝑟1 + 𝑟2 + 𝑟3) + 𝑃2 (𝑟21 + 𝑟22 + 𝑟23)𝑃0+ 𝑃4 (𝑟1𝑟2 + 𝑟1𝑟3 + 𝑟2𝑟3)𝑃0 ,

det (𝐽𝐹 (𝐸∗))= −𝑃0 + ∑3𝑖=1 𝑃𝑖 (𝑟𝑖1 + 𝑟𝑖2 + 𝑟𝑖3) + 𝑃4 (𝑟1𝑟2 + 𝑟1𝑟3 + 𝑟2𝑟3)𝑃0− 𝑃5 (𝑟1 (𝑟22 + 𝑟23) + 𝑟2 (𝑟21 + 𝑟23) + 𝑟3 (𝑟21 + 𝑟22)) + 𝑃6𝑟1𝑟2𝑟3𝑃0 ,

(54)

where 𝑃0 = 4𝑐3 − 3𝑐 − 1,𝑃1 = −2𝑐2 + 𝑐 + 1,𝑃2 = 𝑐3 + 3𝑐2 + 2𝑐𝑃3 = 𝑐3 + 𝑐2,𝑃4 = − (2𝑐3 + 2𝑐2 + 𝑐 + 1) ,𝑃5 = − (𝑐3 + 𝑐2 + 𝑐)𝑃6 = 1 + 3𝑐 + 6𝑐2 + 2𝑐3.
(55)

The conditions of local stability of 𝐸∗ now follow from
relation (9). A prototype of this region, in the parameter space𝑂𝑟1𝑟2𝑟3, is represented in Figure 6. Notice that this region is a
three-dimensional solid with planar faces, with the exception
of the top, where the surface is given by

tr (𝐽𝐹 (𝐸∗)) + det (𝐽𝐹 (𝐸∗)) − 3∑
𝑖=1

𝑀𝑖𝑖 (𝐽𝐹 (𝐸∗)) = 1. (56)

Now, in conditions (9), when tr(𝐽𝐹(𝐸∗)) + det(𝐽𝐹(𝐸∗)) −∑3𝑖=1𝑀𝑖𝑖(𝐽𝐹(𝐸∗)) = 1 and assuming the others inequalities,
we have 𝜆1 = −1 and |𝜆𝑖| < 1, for 𝑖 = 2, 3. Hence, we have
to use the centre manifold theory in order to determine the
stability of 𝐸∗.

Making the change of variables

𝑦1 = 𝑥1 − 𝑥∗1 ,𝑦2 = 𝑥2 − 𝑥∗2 ,𝑦3 = 𝑥3 − 𝑥∗3 , (57)

we shift the fixed point to the origin. System (28) is now
equivalent to

𝑌 (𝑛 + 1) = 𝐽𝑌 (𝑛) + 𝐺 (𝑌 (𝑛)) , (58)

where

𝑌 (𝑛) = (𝑦1 (𝑛)𝑦2 (𝑛)𝑦3 (𝑛)) ,
𝐽 = (𝐽11 𝐽12 𝐽13𝐽21 𝐽22 𝐽23𝐽31 𝐽32 𝐽33),
𝐺 (𝑌 (𝑛)) = (𝑔1 (𝑌 (𝑛))𝑔2 (𝑌 (𝑛))𝑔3 (𝑌 (𝑛))) ,𝐽
= ((

(
−2𝑐2 + 𝑐 (𝑟2 + 𝑟3) + (𝑐 + 1) (1 − 𝑟1)−2𝑐2 + 𝑐 + 1 𝑐 ((𝑐 + 1) 𝑟1 − 𝑐 (𝑟2 + 𝑟3))(𝑐 − 1) (2𝑐 + 1) 𝑐 ((𝑐 + 1) 𝑟1 − 𝑐 (𝑟2 + 𝑟3))(𝑐 − 1) (2𝑐 + 1)−𝑐 (𝑐𝑟1 − (𝑐 + 1) 𝑟2 + 𝑐𝑟3)(𝑐 − 1) (2𝑐 + 1) −2𝑐2 + 𝑟1𝑐 + 𝑟3𝑐 + 𝑐 − (𝑐 + 1) 𝑟2 + 1−2𝑐2 + 𝑐 + 1 −𝑐 (𝑐𝑟1 − (𝑐 + 1) 𝑟2 + 𝑐𝑟3)(𝑐 − 1) (2𝑐 + 1)−𝑐 (𝑐𝑟1 + 𝑐𝑟2 − (𝑐 + 1) 𝑟3)(𝑐 − 1) (2𝑐 + 1) −𝑐 (𝑐𝑟1 + 𝑐𝑟2 − (𝑐 + 1) 𝑟3)(𝑐 − 1) (2𝑐 + 1) −2𝑐2 + 𝑟1𝑐 + 𝑟2𝑐 − 𝑟3𝑐 + 𝑐 − 𝑟3 + 1−2𝑐2 + 𝑐 + 1

))
)

,
𝑔𝑖 (𝑦1, 𝑦2, 𝑦3) = 𝑓𝑖 (𝑦1 + 𝑥∗1 , 𝑦2 + 𝑥∗2 , 𝑦3 + 𝑥∗3 ) − 𝑥∗𝑖 − 3∑

𝑗=1

𝐽𝑖𝑗𝑦𝑗, 𝑖 = 1, 2, 3.

(59)
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Figure 6: Stability region of the positive fixed point 𝐸∗ in the
parameter space 𝑂𝑟1𝑟2𝑟3 when 𝑐𝑖𝑖 = 1 and 𝑐𝑗𝑖 = 0.5, for 𝑖 ̸= 𝑗 and𝑖, 𝑗 = 1, 2, 3.

Since 𝐽 is nonsingular, there exist a diagonal matrixΛ and
the matrices 𝑃 and 𝑃−1 such that 𝐽 = 𝑃Λ𝑃−1. Making a new
change of variables 𝑌 = 𝑃𝑍, where 𝑍 = (𝑧1, 𝑧2, 𝑧3), one can
write (58) as 𝑍 (𝑛 + 1) = Λ𝑍 (𝑛) + 𝐻 (𝑍 (𝑛)) , (60)

where

𝑍 (𝑛) = (𝑧1 (𝑛)𝑧2 (𝑛)𝑧3 (𝑛)) ,
Λ = (−1 0 00 𝜆2 00 0 𝜆3),

𝐻 (𝑍 (𝑛)) = 𝑃−1𝐺 (𝑃 × 𝑍 (𝑛)) .
(61)

The centremanifold in this case can be represented locally
as the graph of a function Φ : R2 → R2 such that𝑊𝑐 = {(𝑧1, 𝑧2, 𝑧3) ∈ R × R

2 | (𝑧2, 𝑧3)= (Φ1 (𝑧1) , Φ2 (𝑧1)) , Φ (0) = 0, 𝐷Φ (0)= 0, 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨 < 𝛿 for a sufficiently small 𝛿} . (62)

Therefore, the centre manifold equation (27) is given byΦ1 [−𝑧1 + ℎ1 (𝑧1, Φ1 (𝑧1) , Φ2 (𝑧1))]= 𝜆2Φ1 (𝑧1) + ℎ2 (𝑧1, Φ1 (𝑧1) , Φ2 (𝑧1))Φ2 [−𝑧1 + ℎ1 (𝑧1, Φ1 (𝑧1) , Φ2 (𝑧1))]= 𝜆3Φ2 (𝑧1) + ℎ3 (𝑧1, Φ1 (𝑧1) , Φ2 (𝑧1)) ,
(63)

where Φ𝑖, 𝑖 = 1, 2, can be represented locally by Φ𝑖(𝑢) =𝛼𝑖𝑢2 + 𝛽𝑖𝑢3 + 𝑂[𝑢]4 andℎ𝑖 (𝑧1, 𝑧2, 𝑧3) = 3∑
𝑗=1

𝑃̃𝑖𝑗𝑔𝑗 (𝑧1, 𝑧2, 𝑧3) , 𝑖 = 1, 2, 3, (64)

where 𝑃̃𝑖𝑗 are the entries of the matrix 𝑃−1.
Unfortunately, at this stage the computations are long

and we are not able to find explicitly the matrices 𝑃, Λ,
and 𝑃−1 such that 𝐽 = 𝑃Λ𝑃−1. However, we are able to
find it numerically. Hence, we will illustrate the study with
a concrete example. Let 𝑐 = 0.5 and 𝑟2 = 𝑟3 = 1.5 (the choice
of these values is made considering the region obtained in
Figure 6). Substituting in

tr (𝐽𝐹 (𝐸∗)) + det (𝐽𝐹 (𝐸∗)) − 3∑
𝑖=1

𝑀𝑖𝑖 (𝐽𝐹 (𝐸∗)) = 1, (65)

we obtain 𝑟1 ≈ 2.1547. Under these values of the parameters,
the matrices are given by

𝑃 = (−0.9769 0 −0.6676−0.1511 −0.7071 0.5265−0.1511 0.7071 0.5265 ) ,
Λ = (−1. 0 00 0.7887 00 0 0.634) ,

𝑃−1 = (−0.8558 −0.5425 −0.54250 −0.7071 0.7071−0.2457 0.794 0.794 ) .
(66)

And the functions ℎ𝑖(𝑧1, 𝑧2, 𝑧3), for 𝑖 = 1, 2, 3, areℎ1 (𝑧1, 𝑧2, 𝑧3) = 1.9409 + 𝑧1+ (0.836𝑧1 + 0.5713𝑧3 − 1.4823) 𝑒1.128𝑧1+0.1411𝑧3+ (0.082𝑧1 − 0.3836𝑧2 − 0.2856𝑧3 − 0.2293)⋅ 𝑒0.7151𝑧1−0.3536𝑧2−0.4559𝑧3+ (0.082𝑧1 + 0.3836𝑧2 − 0.2856𝑧3 − 0.2293)⋅ 𝑒0.7151𝑧1+0.3536𝑧2−0.4559𝑧3 ,ℎ2 (𝑧1, 𝑧2, 𝑧3) = −0.7887𝑧2+ (0.1069𝑧1 + 0.5𝑧2 − 0.3723𝑧3 − 0.2989)⋅ 𝑒0.7151𝑧1+0.3536𝑧2−0.456𝑧3+ (−0.1069𝑧1 + 0.5𝑧2 + 0.3723𝑧3 + 0.2989)⋅ 𝑒0.7151𝑧1−0.3536𝑧2−0.4559𝑧3 ,



14 Discrete Dynamics in Nature and Societyℎ3 (𝑧1, 𝑧2, 𝑧3) = −0.634𝑧3 − 0.2456+ (0.24𝑧1 + 0.164𝑧3 − 0.4255) 𝑒1.128𝑧1+0.1411𝑧3+ (0.3356 − 0.12𝑧1 + 0.5614𝑧2 + 0.418𝑧3)⋅ 𝑒0.7151𝑧1−0.3536𝑧2−0.456𝑧3+ (−0.12𝑧1 − 0.5614𝑧2 + 0.418𝑧3 + 0.336)⋅ 𝑒0.7151𝑧1+0.354𝑧2−0.456𝑧3 .
(67)

Using Taylor series and solving system (63), one can
conclude that the dynamics of the system is given locally by
the dynamics of 𝑧1(𝑛 + 1) = ℎ̃(𝑧1(𝑛)), whereℎ̃ (𝑧1) = 𝑒0.7151𝑧1 (0.164𝑧1 − 0.4586)+ 𝑒1.128𝑧1 (0.836𝑧1 − 1.4823) + 1.9409. (68)

Notice that this corresponds to the equation on the centre
manifold that is generically given by (15).

Since ℎ̃󸀠(0) = −1, we have to use Theorem 4. The
Schwarzian derivative of ℎ̃ at 0 is ≈ −1.1476 < 0. It follows
from Theorem 4 that, in this particular case, the fixed point
is locally asymptotically stable.

We remark that, due to the difficulties encountered in
finding thematrix𝑃, one canwrite a script inMathematica or
Maple to automatically obtain, via numerical approximation,
the map ℎ̃ in each case.

6. Conjecture

One of the main questions in population dynamics is under
what conditions does local stability of a fixed point imply its
global asymptotic stability?

One of themost influential models in population dynam-
ics is the one-dimensional Ricker equation given by 𝑥𝑛+1 =𝑥𝑛𝑒𝑟−𝑥𝑛 , 𝑟 > 0. The local stability condition of the positive
fixed point 𝑥∗ = 𝑟, 0 < 𝑟 ≤ 2, implies global stability of 𝑥∗;
that is, all solutions of the difference equation 𝑥𝑛+1 = 𝑥𝑛𝑒𝑟−𝑥𝑛 ,
starting at an initial condition 𝑥0 > 0, converge to 𝑥∗ = 𝑟
whenever 0 < 𝑟 ≤ 2. In order to establish this conclusion one
can use Coppell’sTheorem since 𝑥∗ = 𝑟 is the unique positive
fixed point of the map.

Theorem 14 (see Coppell [27]). Let 𝐼 = [𝑎, 𝑏] ⊆ R and 𝑓 :𝐼 → 𝐼 be a continuous map. If the equation 𝑓(𝑓(𝑥)) = 𝑥 has
no roots, with the possible exception of the roots of the equation𝑓(𝑥) = 𝑥, then every orbit under themap𝑓 converges to a fixed
point.

In planar models this question of global stability is
more involved since we do not have an analogue of
Coppell’s Theorem, but alternative methods do exist. For
instance, Balreira et al. [28], used the Singularity Theory of

Whitney [29] and proved that the local stability conditions
(32) of the positive fixed point(𝑥∗1 , 𝑥∗2 ) = (𝑟1 − 𝑐12𝑟21 − 𝑐12𝑐21 , 𝑟2 − 𝑐21𝑟11 − 𝑐12𝑐21) (69)

in the two-dimensional Ricker competition model (31) imply
its global stability provided that 1 < 𝑟1, 𝑟2 < 2, and the
image of a critical curves [30] do not intersect. Later, Ryals
and Sacker [31] improved the result by reducing the infinite
number of topological conditions on the critical curves to a
finite number.

We should mention that Smith [32] uses monotonicity to
prove the global stability of the fixed points of the system𝑢𝑛+1 = 𝑢𝑛exp (𝑟 (1 − 𝑢𝑛 − 𝐵V𝑛))

V𝑛+1 = V𝑛exp (𝑠 (1 − 𝐶𝑢𝑛 − V𝑛)) , (70)

when 𝑟, 𝑠 ≤ 1, in which case the invariant set is [0, 𝑟−1] ×[0, 𝑠−1]. Notice that, by the changes of variables 𝑟𝑢 = 𝑥 and𝑠V = 𝑦, system (70) is equivalent to𝑥𝑛+1 = 𝑥𝑛exp (𝑟 − 𝑥𝑛 − 𝐵𝑟𝑠 𝑦𝑛)𝑦𝑛+1 = 𝑦𝑛exp (𝑠 − 𝑦𝑛 − 𝐶𝑠𝑟 𝑥𝑛) . (71)

Clearly, 𝑟1 = 𝑟, 𝑟2 = 𝑠, 𝑐12 = 𝐵𝑟/𝑠, and 𝑐21 = 𝐶𝑠/𝑟.
Therefore, Smith’s global results cover the local analysis when
the carrying capacities are taken in the unit interval and, in
this case, global stability is obtained when 𝑟𝑖 ≤ 1, for 𝑖 = 1, 2,
such that 𝑟𝑖 ∈ 𝑆1 (Figure 3).

It remains as an open problem to show the global stability
in the mixing cases, that is, when 𝑟1 ≤ 1 and 1 < 𝑟2 ≤ 2, or𝑟2 ≤ 1 and 1 < 𝑟1 ≤ 2, and also in the region between 𝑟1 = 2
or 𝑟2 = 2 and the branch of hyperbola 𝛾1 as is depicted in
Figure 3, as part of the region 𝑆1. This is precisely part of the
conjecture raised by Elaydi and Luı́s [33].

We should mention that the study of global stability can
also be extended to the other nontrivial fixed points (by trivial
fixed point we mean the origin) of system (31), as well.

Now, motivated by the precedent cases in lower dimen-
sion, we have the following conjecture concerning the non-
trivial fixed points of the three-dimensional Ricker competi-
tion model.

Conjecture 15. Consider the Ricker competition model (28)
where the growth rates 𝑟𝑖 are positive and the competition
parameters are taken as 𝑐𝑖𝑖 = 1 and 0 < 𝑐𝑗𝑖 < 1, for 𝑖 ̸= 𝑗
and 𝑖, 𝑗 = 1, 2, 3. Let x∗ be a nontrivial fixed point of the map𝐹 defined in (29) and assume that we have− 1 − 3∑

𝑖=1

𝑀𝑖𝑖 (𝐽𝐹 (x∗)) < tr (𝐽𝐹 (x∗)) + det (𝐽𝐹 (x∗))
≤ 1 + 3∑

𝑖=1

𝑀𝑖𝑖 (𝐽𝐹 (x∗))
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Figure 7: Stability regions, in the parameter space 𝑂𝑟1𝑟2𝑟3, of the
fixed points of the three-dimensional Ricker competition model
when 𝑐𝑖𝑖 = 1 and 𝑐𝑗𝑖 = 0.5, for 𝑖 ̸= 𝑗 and 𝑖, 𝑗 = 1, 2, 3.

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 3∑𝑖=1𝑀𝑖𝑖 (𝐽𝐹 (x∗)) − tr (𝐽𝐹 (x∗)) det (𝐽𝐹 (x∗))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨< 1 − det2 (𝐽𝐹 (x∗)) ,
(72)

where tr(𝐽𝐹(x∗)), det(𝐽𝐹(x∗)), and ∑3𝑖=1𝑀𝑖𝑖(𝐽𝐹(x∗)) are the
trace, the determinant, and the sum of the principal minors of
the Jacobianmatrix evaluated at the fixed point x∗, respectively.

Then, the fixed point x∗ is globally asymptotically stable
with respect to the interior of the first octant.

Notice that, for each one of the nontrivial fixed points
x∗ mentioned in the conjecture (three fixed points on the
axes 𝐸1, 𝐸2, and 𝐸3, three fixed points on the planes 𝐸12,𝐸13, and 𝐸23, and the positive fixed point 𝐸∗), the local
stability conditions (72) correspond to those developed in
the previous section for the respective fixed point. Moreover,
geometrically it corresponds to each one of the seven regions
depicted in Figure 7 as mentioned before.

Before ending this section, we should mention that in
a forthcoming paper, Balreira et al. [34] use a new notion
of monotonicity in higher dimensional maps and show that
Conjecture 15 is true in the case of the positive fixed point𝐸∗,
when 𝑟𝑖 < 1 for 𝑖 = 1, 2, 3.The result was established since the
three-dimensional Ricker competition model is monotone
(more specifically, normally monotone) if conditions (72) are
valid such that 𝑟𝑖 < 1 for 𝑖 = 1, 2, 3. This is precisely a subset
of the set depicted in Figure 6.

Finally, if one considers the remaining region in the
parameter space, themap is notmonotone. Since it is possible
to show global stability, in the planar model, for certain
cases (Balreira et al. [28] and Ryals and Sacker [31]), using
the Singularity Theory of Whitney [29], we believe that an

extension of the ideasmay be useful in provingConjecture 15.
Unfortunately, such theory of singularity does not exist for
three-dimensional systems. It either is necessary to develop
such theory of singularity in three-dimensional models to
show Conjecture 15 or may use another different tool such as
Lyapunov method (cf.Theorem 4.2 in Elaydi [20, page 205]).

7. Conclusion

In this paper we illustrate how to apply the centre manifold
theorem to three-dimensional discrete dynamical systems.
We recall the necessary and sufficient conditions of local
stability of three-dimensional systems and give, in depth, the
tools to study the stability of nonhyperbolic fixed points in
the terminology of difference equations.

As illustrative example, we study the Ricker competition
model of three species. This nonlinear model has seven
nontrivial fixed points. Each fixed point has a region, in the
parameter space, where it is locally asymptotically stable.
When one determines these regions, the result is the seven
regions depicted in Figure 7.

In addition, we state a conjecture in the global stability of
each nontrivial fixed point of the Ricker competition model,
in the respective region of local stability.
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