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In this paper we propose a novel video denoising method based on adaptive thresholding and𝐾-means clustering. In the proposed
method the adaptive thresholding is applied rather than the conventional hard-thresholding of the VBM3D method. The adaptive
thresholding has a high ability to adapt and change according to the amount of noise.More specifically, hard-thresholding is applied
on the higher noise areas while soft-thresholding is applied on the lower noise areas. Consequently, we can successfully remove the
noise effectively and at the same time preserve the edges of the image, because the clustering approach saves more computation
time and is more capable of finding relevant patches than the block-matching approach. So, the 𝐾-means clustering method in
the final estimate in this paper is adopted instead of the block-matching method in the VBM3D method in order to restrict the
search of the candidate patches within the region of the reference patch and therefore improve the grouping. Experimental results
emphasize the superiority of the new method over the reference methods in terms of visual quality, Peak Signal-to-Noise Ratio
(PSNR), and Image Enhancement Factor (IEF). Execution time of the proposed algorithm consumes less time in denoising than
that in the VBM3D algorithm.

1. Introduction

The search for effective video denoising methods remains a
major challenge for researchers. Denoising by spatial domain
methods such as total variation, bilateral filter, and nonlocal
mean filter is more effective for still image processing than
other algorithms. However, these methods have proven their
failure in preserving the image features (e.g., edges). A
plethora of algorithms that are based on transform domain
have been proposed to overcome the flaws of these spatial
domain denoising methods [1–3]. In these algorithms, the
signal is sparsely represented in the transform domain. In
spite of this, for any fixed 2D transform, the great variety
in natural images is unable to achieve good sparsity for all
situations [4].

In recent decades, themost efficient approach in restoring
video sequences takes advantage of the potential similarity
between the grouped block [5]. Most algorithms in this field

have been proposed for signal processing especially for video
denoising [6–11].

Lately Dabov et al. [12] have proposed a novel image
denoising method based on an enhanced sparse representa-
tion in transform domain, which is known as block-matching
and 3D filtering (BM3D). To the best of our knowledge,
BM3D is the most efficient image denoising algorithm. In
this algorithm, the initial, mutual, and similar 2D image
blocks are stacked into the 3D group. Then, the group is
filtered by hard-thresholding and Wiener filter, respectively.
The same authors succeeded to apply the BM3D filtering
scheme on video denoising, which is termed video block-
matching and 3D filtering (VBM3D) [13]. In the VBM3D
algorithm, the set of consecutive frames in the video sequence
has been used to construct the groups. VBM3D algorithm
is implemented as follows. Firstly, the groups are formed
by predictive-search block-matching. Secondly, each group
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is filtered by 3D transform-domain shrinkage (i.e., hard-
thresholding and Wiener filtering, resp.). Finally, the last
estimate of the true video is computed by aggregating all the
obtained local estimates.

Despite that VBM3Dmethod represents the state-of-the-
art in video denoising, it suffers from several drawbacks
where we can explain two of them as follows. One is that,
in the first stage of the VBM3D filter, the hard-thresholding
is incapable of distinguishing between the areas that contain
more noise versus that containing less noise. As a result,
the significant amount of the true signals in the less noisy
areas will be removed, which will lead to deterioration of
the visual quality of the output video. And then the block-
matching in the VBM3D occasionally searches out of the
region that contains the reference block, which will result in
poormatching in the areas that heavily contaminated bynoise
and this would lead to blurred edges [9].

The above-mentioned disadvantages of the VBM3D filter
have been extensively studied in the literature (e.g., [7, 11]).
However, the challenge remains.

One of the most significant enhancements made for
the VBM3D filter is the one proposed by Maggioni et al.
[5], known as the video block-matching and 4D filtering
(VBM4D).Themutually similar volumes in theVBM4Dhave
been grouped rather than the blocks in the VBM3Dmethod.
In theVBM4Dfilter, the tracking blocks along the trajectories
are used to construct the 3D spatial temporal volumes, and
the mutually similar volumes have been grouped together
by stacking them along the 4th D. The authors in [5] have
succeeded to get better results than that of the VBM3D.
However, VBM4D method suffers from high computational
cost.

In order to conquer the above-stated weaknesses of
the VBM3D filter, we propose to replace the steady
hard-thresholding by adaptive thresholding (i.e., hard-
thresholding and soft-thresholding). The hard-thresholding
is applied to the areas that are heavily desecrated by noise,
while the soft-thresholding is applied to the slight noise
areas. Applying the hard-thresholding to the heavy noise
areas will play a significant role in removing the noise
effectively, while applying the soft-thresholding to the slight
noise areas will assist in maintaining the edges. To avoid the
second drawback of the VBM3D filter, we propose to replace
the block-matching in the final estimate by the 𝐾-means
clustering. Applying the 𝐾-means clustering will allow us to
find the relevant patches professionally better than the block-
matching, which will lead to improvement of the grouping
and therefore obtain sharper edges.

The remainder of this paper is organized as follows. The
proposed adaptive thresholding and clustering are described
in Section 2. Experimental results are presented in Section 3.
Some concluding remarks are given in Section 4.

2. Proposed Algorithm

Our proposed method is based on the following stages. In
the first stage (basic estimate), we group the block-matching
in the noisy video for every reference block and apply

the adaptive thresholding; whereas the hard-thresholding is
applied to the areas that contain more noise and less image
features, the soft-thresholding is applied to the areas that
contain less noise and more image features. In the second
stage, we apply the 𝑘-means clustering only to the basic
estimate for finding the relevant patches and apply theWiener
filter for achieving further improvement in denoising.

In this paper, we consider 𝑧(𝑥, 𝑡) = 𝑦(𝑥, 𝑡) + 𝜂(𝑥, 𝑡), as the
observed noisy video, where 𝑦 is the true video signal, 𝜂(⋅) ∼
N(0, 𝜎2) is the independent and identically distributed white
Gaussian noise, and (𝑥, 𝑡) ∈ 𝑋 are the 3D spatiotemporal
coordinates in the domain𝑋 ∈ Z3, where the first component
𝑥 ∈ Z2 represents the spatial coordinates, while the last
component (𝑡 ∈ Z) represents the time index.

2.1. Grouping and 3D Transform. Suppose 𝐵
𝑥𝑅

and 𝐵
𝑥
are

the reference block and candidate block located at 𝑥𝑅 and 𝑥,
respectively. The distance between 𝐵

𝑥𝑅
and 𝐵

𝑥
[12] is

𝑑 (𝐵
𝑥𝑅
, 𝐵
𝑥
) =

󵄩󵄩󵄩󵄩󵄩𝛾 (T
ath
2D (𝐵𝑥𝑅)) − 𝛾 (Tath

2D (𝐵𝑥))
󵄩󵄩󵄩󵄩󵄩
2

2

𝑁2 , (1)

where 𝛾 is the adaptive thresholding, T
2D is the normalized

2D linear transform, ‖ ⋅ ‖ denotes 𝑙2-norm, and𝑁 is the block
size. By using 𝑑-distance (1), we can find a group containing
blocks 𝐵

𝑥
all of which are similar to a reference block 𝐵

𝑥𝑅
:

𝑆ath
𝑥𝑅
= {𝑥 ∈ 𝑋 : 𝑑 (𝐵

𝑥𝑅
, 𝐵
𝑥
) ⩽ T

ath
match} , (2)

where Tath
match is the maximum 𝑑-distance for two similar

blocks.
In the next step, each block that has distance less than

a predetermined threshold Tath
match will be searched by the

block-matching.
As in [13], in this paper we use the predictive-search

block-matching within a search range [−𝜔, 𝜔].
Under the above-mentioned conditions the group will be

formed by stacking the reference block 𝐵
𝑥𝑅

and its candidate
blocks. Afterwards, we apply the 3D transform to each group.

In the 3D transform, each 2D block will be transformed
by 2D-transforming, while the coefficients are transformed
by 1D-transforming [14]. The transform can afford to attain
an extremely sparse representation of the true signal group
(𝑀
𝑆
ath
𝑥𝑅

), and therefore it will be easy to disentangle the noise
by shrinkage.

2.2. Thresholding. In this paper, we propose a novel adaptive
thresholding. This thresholding is achieved by shrinkage in a
3D transform domain.

Before talking about the proposed adaptive thresholding,
let us take a brief description of hard-thresholding and soft-
thresholding.

2.2.1. Hard-Thresholding. In the hard-thresholding, if the
absolute value of any element is either less than or equal
to the threshold, the element will be set to zero, while the



Discrete Dynamics in Nature and Society 3

element will be retained if the absolute value is greater than
the threshold.

𝑋Hard =
{
{
{

𝑋 if |𝑋| > 𝜏;
0 if 𝑋 ≤ 𝜏.

(3)

Typically, the results of the hard-thresholding are exceed-
ingly smoothed. However, it is not enough for maintaining
the edges of the image, where the denoised image usually
suffers from blurring edges [10, 15].

2.2.2. Soft-Thresholding. In the soft-thresholding, if the abso-
lute value of any element is either less than or equal to the
threshold, the element will be set to zero, while the threshold
will be subtracted from the element if the absolute value is
greater than the threshold.

𝑋soft =
{
{
{

sign (𝑋) (|𝑋| − 𝜏) if |𝑋| > 𝜏;
0 if 𝑋 ≤ 𝜏.

(4)

The main idea of the soft-thresholding methods lies
in that the coefficients have contributions from both the
informative signal and noise. Consequently, the retained
coefficients will be shrunk which will contribute to constrict-
ing the effects of noise.

2.2.3. Adaptive Thresholding Method. In this paper, we pro-
pose to apply adaptive thresholding (ATH) rather than
the conventional hard-thresholding which was adopted by
VBM3D filter.The proposed adaptive thresholdingmethod is
applied as the initial denoising for the 3D-transformed group,
which is implemented as follows:

𝑊(𝑖, 𝑗) = {{
{

𝜎 < 𝑇 Soft-thresholding,
Otherwise Hard-thresholding,

(5)

where 𝑇 is optional test threshold and 𝜎 is the noise standard
deviation.

From (5) we can expect the following:

(i) In the areas that contain more noise (i.e., 𝜎 ⩾ 𝑇)
and less image features (such as edges), the proposed
thresholding will highlight the role of the hard-
thresholding which leads to reduction of the noise
level significantly in these areas.

(ii) In the areas that contain less noise (i.e., 𝜎 < 𝑇) and
more image features, the proposed thresholding will
highlight the role of the soft-thresholding that in turn
leads tomaintain the significant features of the image.

It is worth noting that the shrinkage in theVBM3Dmodel
is based on the hard-thresholding while the shrinkage in our
model is based on the soft-thresholding.

2.3. Inverse Transform and Aggregation. After the noise
reduction process that was implemented by the adaptive

thresholding, we apply the inverse transform to get 3D array
of block-wise estimates

𝑀̂ath
𝑆
ath
𝑥𝑅

= T
ath−1
3D (𝛾 (Tath

3D (𝐵𝑆ath
𝑥𝑅

))) , (6)

whereTath
3𝐷

is the 3D transform.
The groups 𝑀̂ath

𝑆
ath
𝑥𝑅

(basic estimate) constitute an extremely
redundant representation of the video because of the overlap-
ping of the obtained block estimates. Consequently, there are
several estimates for each pixel. For that, we aggregate these
estimates in order to shape an estimate of the whole video.

The basic estimate of the true video is computed by
weighted averaging of all the obtained block-wise estimates
that are overlapped.Theweights can be described as inversely
proportional to the total sample variance of the estimate of the
corresponding block-wise estimates [12].

2.4. Clustering. Block-matching is a supervised approach.
Thenoisy video, in this approach, is processed through block-
wise manner where the matching blocks are grouped for
every reference block.

In the block-matching approach, it is so hard to define
the threshold as to how similar to the reference block is
acceptable; therefore, this approach has high computational
cost.

Contrary to the block-matching approach that was
adopted by the VBM3D, the clustering partitions the image
into disjoint areas. As a result, we can get similar patches in
an unsupervised manner [16].

The threshold in the block-matching is predetermined,
while the threshold in the clustering is adaptively determined
by comparing the proximities of the reference patch with
different cluster centers. For that, the clustering approach has
the capacity to find the relevant patches better than the block-
matching approach.

In this paper, we adopt the the𝐾-means clustering [17] in
the final estimates, rather than the block-matching.

The basic idea of the 𝐾-means clustering algorithm is
summarized as follows.

Step 1. Let 𝑘 be the initial cluster centers𝑚1, 𝑚2, . . . , 𝑚𝑛.
Step 2. Calculate the distance between each cluster center and
each object.

Step 3. Appoint each object to the most similar cluster.

Step 4. After appointing all the objects, update the average of
each cluster.

Step 5. Iterate Steps 2, 3, and 4 until the error function is
converged.

In the proposed method, the 𝐾-means clustering is
carried out only on the basic estimate 𝑀̂ath

𝑆
ath
𝑥𝑅

rather than the
block-matching which was conducted in both basic estimate
and noisy video in [13].

Applying the block-matching on the basic estimate usu-
ally leads to blurred edges. This seems obvious once we look
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at Figures 5 and 6. Thus, unlike VBM3D [13], the proposed
method does not apply the block-matching method on the
basic estimate, but it assigns the efficient 𝑘-means clustering
method to partition the basic estimate.

The implementation of the 𝐾-means clustering on the
basic estimate rather than the noisy video will lead to
improvement of the grouping.

The main reason of applying the clustering to the basic
estimate, instead of the input noisy video, is the flaw of
accuracy in detecting edges in the noisy video. For that, the
clustering can only be performedon theWiener filtering stage
where a denoised video basic estimate is obtainable.

2.5. Wiener Filtering. After the implementation of the basic
shrinking (adaptive thresholding) on the transform coef-
ficients, we implement the empirical Wiener filtering to
improve the shrinkage which in turn will mitigate the noise.

The empirical Wiener shrinkage coefficients, which are
computed from the energy of the 3D transform coefficient of
the initial estimate group 𝑀̂ath

𝑆
ath
𝑥𝑅

, can be expressed as follows:

𝑊𝑆wie
𝑥𝑅

=
󵄨󵄨󵄨󵄨󵄨󵄨T

wie
3D (𝑀̂ath

𝑆
wie
𝑥𝑅

)󵄨󵄨󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨󵄨󵄨T
wie
3D (𝑀̂ath

𝑆
wie
𝑥𝑅

)󵄨󵄨󵄨󵄨󵄨󵄨
2 + 𝜎2

. (7)

The implementation results of the Wiener filtering in
transform domain Twie

3D are much more efficient and precise
than those of the adaptive thresholding of the 3D spectrum
of the noisy video.

The general final estimate 𝑀̂wie
𝑆
wie
𝑥𝑅

is computed by the
aggregation using the following weights:

𝑤wie
𝑥𝑅
= 1
𝜎2 󵄩󵄩󵄩󵄩󵄩𝑊𝑆wie𝑥𝑅

󵄩󵄩󵄩󵄩󵄩
2

2

. (8)

3. Experimental Results

In this paper, we compare the performance of the proposed
algorithm with the ones that are in [13, 18, 19] algorithms, in
terms of visual quality, Peak Signal-to-Noise Ratio (PSNR),
and Image Enhancement Factor (IEF).

As mentioned in Section 2, the capacity of VBM3D
method is limited in highly noise-polluted video.Thus, in this
sectionwe focus on the heavily noisy video sequences in order
to highlight the role of the proposed algorithm in improving
the denoising performance in this case.

In this section, the video sequences, Miss America,
Salesman, Tennis, and Bus, are used to verify the efficiency
of the new video denoising algorithm.These video sequences
have been polluted by the additive white Gaussian noise
(AWGN).

To evaluate the performance of the proposed algorithm,
we use the visual quality as a qualitativemeasurement and the
PSNR and IEF as a quantitative one.

The proposed algorithm achieves higher performance on
both noise removal and edges preservation as compared with
the algorithms in [13, 18, 19].

Figure 1: Visual comparison of different algorithms for frame 5
of the Miss America sequence. From left to right and from top
to bottom: original frame, noisy frame (𝜎

𝑛
= 40), result of [18]

algorithm, result of [19] algorithm, result of [13] algorithm, and
result of the proposed algorithm.

The experimental results are shown in Figures 1–4. These
figures provide a visual comparison in the performance of the
four algorithms applied to the test sequences: Miss America,
Salesman, Tennis, and Bus. These sequences are degraded by
AWGN with standard deviation 𝜎 = 40. From these figures,
we can remark that the proposed method has higher ability
to suppress the noise and sharpen the edges simultaneously,
better than the other methods. Figures 5 and 6 offer a visual
comparison of the performance of the four models.

As a qualitative measurement, the proposed model is the
best in terms of edges conservation. This is clearly visible in
the edges of the books of the Salesman sequence as well as in
the lock of the hair of the Miss America sequence in Figures
5 and 6.

Applying the clustering approach in our proposed algo-
rithm instead of the block-matching approach has con-
tributed in the development of the performance of our
algorithm, which in turn led to sharper edges. This is proved
in Figures 5 and 6.

Figures 7–14 include the different values of PSNR and IEF
of the four models with different noise standard deviations.
These figures show that the proposed algorithm outperforms
all of the reference algorithms in terms of PSNR and IEF.

Table 1 lists the execution timeof theVBM3Dand the pro-
posed algorithms for all noise levels. From this table, we can
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Figure 2: Visual comparison of different algorithms for frame 5 of Salesman sequence. From left to right and from top to bottom: original
frame, noisy frame (𝜎

𝑛
= 40), result of [18] algorithm, result of [19] algorithm, result of [13] algorithm, and result of the proposed algorithm.

Figure 3: Visual comparison of different algorithms for frame 5 of Tennis sequence. From left to right and from top to bottom: original frame,
noisy frame (𝜎

𝑛
= 40), result of [18] algorithm, result of [19] algorithm, result of [13] algorithm, and result of the proposed algorithm.
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Figure 4: Visual comparison of different algorithms for frame 5 of Bus sequence. From left to right and from top to bottom: original frame,
noisy frame (𝜎

𝑛
= 40), result of [18] algorithm, result of [19] algorithm, result of [13] algorithm, and result of the proposed algorithm.

Figure 5: Zoom of noisy Miss America sequence (𝜎
𝑛
= 40). From left to right and from top to bottom: result of [18] algorithm, result of [19]

algorithm, result of [13] algorithm, and result of the proposed algorithm.

Table 1: Computational cost of the VBM3D and the proposed algorithms for the Bus video sequence.

𝜎 10 20 30 40 50 60 70 80 95 100
VBM3D 0.2967 s 0.2997 s 0.2933 s 0.4944 s 0.4758 s 0.4318 s 0.4065 s 0.3960 s 0.3931 s 0.3912 s
New 0.2950 s 0.2944 s 0.2924 s 0.4863 s 0.4663 s 0.4277 s 0.4033 s 0.3948 s 0.3896 s 0.3889 s
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Figure 6: Zoom of noisy Salesman sequence (𝜎
𝑛
= 40). From left to right and from top to bottom: result of [18] algorithm, result of [19]

algorithm, result of [13] algorithm, and result of the proposed algorithm.
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Figure 7: PSNR (dB) graph of [13, 18, 19] and new algorithms for
various Gaussian noise for Miss America video sequence.

observe that the implementation of the proposed algorithm
is faster than that of the VBM3D algorithm, which means
that our proposed algorithm saves more computation time
than the VBM3D algorithm. In other words, the proposed
algorithm is more economical and faster.

Tables 2–9 compare the denoising performance of the
four algorithms. In these tables, common video sequences
have been contaminated by AWGN, with raising standard
deviation 𝜎 = 10–100. From Tables 2–5, we can see that
increasing the noise standard deviation is offset by decreasing
the PSNR values, which means that the denoising effect is
worse. However, the PSNR values of the proposed model are
the highest among the four models, which imply that the
denoising effect of the new model is the best.

[18] model
[19] model

[13] model
New model
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Figure 8: PSNR (dB) graph of [13, 18, 19] and new algorithms for
various Gaussian noise for Salesman video sequence.

The data in the Tables 2–9 demonstrate that the proposed
algorithm is superior to the VBM3D algorithm in all the
experiments. From these tables we can also observe that our
proposed algorithm has made a great improvement in all of
the PSNR and IEF of the VBM3D up to 1.67 dB and 28.68,
respectively.

4. Conclusion

This paper presented a novel model of video denoising based
on adaptive thresholding and clustering.The proposedmodel
has a high capacity to acclimatize and change according to
the amount of the noise. Consequently, this model is able
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Figure 9: PSNR (dB) graph of [13, 18, 19] and new algorithms for
various Gaussian noise for Tennis video sequence.
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Figure 10: PSNR (dB) graph of [13, 18, 19] and new algorithms for
various Gaussian noise for Bus video sequence.

to attenuate the noise from heavy noise video sequences
effectively. In the proposed method, we applied the adaptive
thresholding, instead of hard-thresholding which proved its
incompetence to distinguish between the heavy noise areas
and slight noise areas. Accordingly, the proposed algorithm
has succeeded in maintaining the details (e.g., edges) and
removing the noise strongly in comparison with the other
reference methods. The applying of the clustering approach
to the basic estimate in our algorithm rather than the block-
matching approach in the VBM3D algorithm allowed us to
get edges sharper than the ones in the VBM3D method.
Numerical experiments with four different video sequences
and various levels of white Gaussian noise showed that our
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Figure 11: IEF graph of [13, 18, 19] and new algorithms for various
Gaussian noise for Miss America video sequence.
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Figure 12: IEF graph of [13, 18, 19] and new algorithms for various
Gaussian noise for Salesman video sequence.

proposed model has achieved higher noise removal gain as
compared with the reference methods, in addition to 1.67 dB
gain higher than that in theVBM3D algorithm. Experimental
results emphasize the superiority of the proposed algorithm
in terms of visual quality with obvious improvement in the
PSNR and IEF. As shown in Table 1, the execution time of the
proposed algorithm is less than that of theVBM3Dalgorithm.
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Table 2: PSNR of different algorithms with different Gaussian noise levels for Miss America video sequence.

𝜎 10 20 30 40 50 60 70 80 95 100
[18] 26.71 23.74 21.19 19.22 17.71 16.45 15.42 14.50 13.68 12.98
[19] 29.52 25.65 22.08 19.62 17.70 16.26 15.01 13.93 13.02 12.25
[13] 39.64 37.95 36.56 35.46 34.19 30.44 28.89 28.12 27.44 26.81
New 39.67 38.12 36.96 35.94 34.90 32.11 30.41 29.45 28.60 27.83

Table 3: PSNR of different algorithms with different Gaussian noise levels for Salesman video sequence.

𝜎 10 20 30 40 50 60 70 80 95 100
[18] 28.38 24.78 21.73 19.44 17.63 16.24 15.10 14.11 13.23 12.53
[19] 30.26 25.95 22.15 19.49 17.41 15.84 14.59 13.44 12.54 11.84
[13] 38.53 35.24 32.65 30.76 29.12 26.13 25.13 24.59 24.13 23.70
New 38.69 35.49 33.14 31.37 29.84 27.18 26.08 25.44 24.90 24.43

Table 4: PSNR of different algorithms with different Gaussian noise levels for Tennis video sequence.

𝜎 10 20 30 40 50 60 70 80 95 100
[18] 21.75 20.92 19.47 17.94 16.53 15.25 14.11 13.16 12.36 11.64
[19] 23.19 22.05 20.20 18.25 16.46 14.95 13.64 12.62 11.77 11.09
[13] 34.73 31.20 29.22 27.99 26.61 24.19 23.13 22.41 21.78 21.22
New 34.87 31.24 29.30 28.05 26.99 25.38 24.30 23.48 22.75 22.11

Table 5: PSNR of different algorithms with different Gaussian noise levels for Bus video sequence.

𝜎 10 20 30 40 50 60 70 80 95 100
[18] 22.23 21.01 19.51 18.08 16.83 15.69 14.72 13.87 13.10 12.40
[19] 26.77 24.15 21.35 19.07 17.26 15.78 14.60 13.54 12.68 11.91
[13] 33.40 29.61 27.61 26.28 24.79 23.14 22.27 21.63 21.10 20.65
New 33.55 29.70 27.73 26.41 25.19 23.88 22.98 22.28 21.69 21.20

Table 6: IEF of different algorithms with different Gaussian noise levels for Miss America video sequence.

𝜎 10 20 30 40 50 60 70 80 95 100
[18] 0.73 1.46 1.82 2.05 2.26 2.46 2.61 2.78 2.90 3.07
[19] 1.38 2.24 2.29 2.25 2.27 2.32 2.39 2.47 2.52 2.58
[13] 14.15 38.34 62.72 86.49 100.96 61.21 58.34 63.81 69.06 73.79
New 14.24 39.89 68.73 96.55 118.89 89.89 82.79 86.66 90.17 93.26

Table 7: IEF of different algorithms with different Gaussian noise levels for Salesman video sequence.

𝜎 10 20 30 40 50 60 70 80 95 100
[18] 1.07 1.85 2.03 2.16 2.23 2.35 2.44 2.56 2.65 2.78
[19] 1.64 2.38 2.30 2.18 2.14 2.12 2.17 2.19 2.25 2.33
[13] 10.96 20.54 25.47 29.33 31.42 22.68 24.58 28.31 32.21 36.09
New 11.63 21.79 28.51 33.71 37.07 28.91 30.57 34.42 38.48 42.62

Table 8: IEF of different algorithms with different Gaussian noise levels for Tennis video sequence.

𝜎 10 20 30 40 50 60 70 80 95 100
[18] 0.23 0.76 1.23 1.54 1.71 1.85 1.95 2.01 2.13 2.24
[19] 0.32 .099 1.46 1.64 1.71 1.72 1.74 1.80 1.87 1.98
[13] 4.57 8.12 11.55 15.51 17.63 14.53 15.48 17.15 18.78 20.39
New 4.72 8.18 11.78 15.70 19.25 19.11 20.24 21.88 23.44 24.98
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Table 9: IEF of different algorithms with different Gaussian noise levels for Bus video sequence.

𝜎 10 20 30 40 50 60 70 80 95 100
[18] 0.26 0.78 1.24 1.57 1.86 2.06 2.22 2.40 2.50 2.67
[19] 0.72 1.61 1.89 1.98 2.06 2.09 2.16 2.26 2.33 2.36
[13] 3.36 5.62 7.98 10.45 11.58 11.41 12.71 14.32 16.05 17.86
New 3.48 5.74 8.21 10.76 12.70 13.54 14.97 16.63 18.38 20.26
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Figure 13: IEF graph of [13, 18, 19] and new algorithms for various
Gaussian noise for Tennis video sequence.
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Figure 14: IEF graph of [13, 18, 19] and new algorithms for various
Gaussian noise for Bus video sequence.

Acknowledgments

This work is supported by the Natural Science Foundation
of Anhui Province under Grants nos. 1608085MF144 and
1608085QF131.

References

[1] M. Kazubek, “Wavelet domain image denoising by thresholding
andWiener filtering,” IEEE Signal Processing Letters, vol. 10, no.
11, pp. 324–326, 2003.

[2] L. Tan, X. Gao, S. He, and F. Li, “Context modeling for MRI
denoising in the undecimated wavelet domain,” in Proceedings
of the IEEE 4th International Conference on Fuzzy Systems and
Knowledge Discovery, vol. 3, pp. 322–326, Hainan, China, 2007.

[3] R. Ahmed,N.Maheshwari, and P. Lalla, “Wavelet based iterative
thresholding for denoising of remotely sensed optical and
synthetic aperture radar images,” in Proceedings of the IEEE
International Conference on Advanced Communication, Control
and Computing Technologies (ICACCCT ’14), pp. 1331–1335, May
2014.

[4] Q. Chen and D. Wu, “Image denoising by bounded block
matching and 3D filtering,” Signal Processing, vol. 90, no. 9, pp.
2778–2783, 2010.

[5] M. Maggioni, G. Boracchi, A. Foi, and K. Egiazarian, “Video
denoising, deblocking, and enhancement through separable 4-
D nonlocal spatiotemporal transforms,” IEEE Transactions on
Image Processing, vol. 21, no. 9, pp. 3952–3966, 2012.

[6] M. Ghoniem, Y. Chahir, and A. Elmoataz, “Nonlocal video
denoising, simplification and inpainting using discrete regular-
ization on graphs,” Signal Processing, vol. 90, no. 8, pp. 2445–
2455, 2010.

[7] X. Li and Y. Zheng, “Patch-based video processing: a variational
Bayesian approach,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 19, no. 1, pp. 27–40, 2009.

[8] A. Danielyan, A. Foi, V. Katkovnik, and K. Egiazarian, “Image
and video super-resolution via spatially adaptive block-
matching filtering,” in Proceedings of the International
Workshop on Local and Non-local Approximation in Image
Processing (LNLA ’09), pp. 1–8, Tuusula, Finland, 2009.

[9] M. Maggioni, G. Boracchi, A. Foi, and K. Egiazarian, “Video
denoising using separable 4-D nonlocal spatiotemporal trans-
forms,” in Proceedings of the International Society for Optical
Engineering (SPIE ’11), vol. 7870, pp. 1–11, 2011.

[10] M. Saha,M. K. Naskar, and B. N. Chatterji, “Soft, hard and block
thresholding techniques for denoising ofmammogram images,”
IETE Journal of Research, vol. 61, no. 2, pp. 186–191, 2015.

[11] A. Danielyan, A. Foi, V. Katkovnik, and K. Egiazarian, “Image
and video super-resolution via spatially adaptive block-match-
ing filtering,” in Proceedings of the International Workshop on
Local and Non-Local Approximation in Image Processing, pp. 1–
8, 2008.

[12] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image
denoising by sparse 3-D transform-domain collaborative filter-
ing,” IEEE Transactions on Image Processing, vol. 16, no. 8, pp.
2080–2095, 2007.

[13] K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse
3D transform-domain collaborative filtering,” in Proceedings of



Discrete Dynamics in Nature and Society 11

the 15th European Signal Processing Conference (EUSIPCO ’07),
pp. 145–149, IEEE, Poznań, Poland, September 2007.
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