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This paper proposes a synchronization scheme for two discrete-time chaotic systems with bounded disturbance. By using active
control method and imposing some restriction on the error state, the computation of controller’s feedback matrix is converted to the
min-max optimization problem. The theoretical results are derived with the aid of predictive model predictive paradigm and linear
matrix inequality technique. Two example simulations are performed to show the effectiveness of the designed control method.

1. Introduction

Since the pioneering work of Pecora and Carroll [1], syn-
chronization of chaotic systems has attracted more and more
interest due to its significant applications in many fields such
as chemical systems [2], ecological systems [3], physical sys-
tems [4], and secure communications [5]. From then, many
methods have been proposed to study synchronization of
chaotic systems. A vast variety of synchronization schemes
have been proposed and applied in many research fields, such
as adaptive control method [6], feedback control method [7],
model predictive control method [8], impulse control method
[9], and sliding mode method [10]. However, most of the des-
igned methods have been applied only to investigate contin-
uous-time chaotic systems’ synchronization.

In practice, discrete-time chaotic dynamical systems are
more important than continuous ones, and many models inc-
luding neural networks, biological process, physical process,
and chemical process are described by discrete-time chaotic
dynamical models [11]. Therefore, the research of discrete-
time chaotic systems’ synchronization also plays an impor-
tant role. Recently, many researches pay more and more
attention to the synchronization of discrete-time chaotic sys-
tems for its applications in many fields such as secure
communication and cryptology, and many synchronization
methods are proposed like variable structure control [12],

H_, control [13], backstepping scheme [14, 15], digital filter
method [16], nonlinear control [17], adaptive control [18, 19],
active model predictive control [8], and so on [20-25].

However, most of the aforementioned researches consider
the ideal condition without disturbance, and it is not real
case in practice. The disturbance not only destroys the sys-
tem’s performance but also even makes the system not stable.
So it is important to consider the discrete-time chaos syn-
chronization with additive disturbance.

Based on our previous work [8], in this paper we propose
a synchronization scheme for two discrete-time chaotic sys-
tems with bounded disturbance. The designed method is mai-
nly based on the model predictive control (MPC), and the
most difficulty is how to eliminate the influence of the addi-
tive disturbance on the stability of closed system. With the
aid of quadratic boundedness, it is proved that the designed
closed system is stable and realizes the two discrete-time cha-
otic systems’ synchronization.

Notations. x' is the transpose vector x, and for (semi-)posi-
tive-definite matrix T, || x| = x'Tx. I is the identity matrix.
ep = {& : &PE < 1} defines the ellipsoid. Co{-} denotes
a convex combination of the elements in {-}. The symbol =
induces a symmetric structure in linear matrix inequalities.
x(i | k) is the prediction value of x at time k + i.
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2. Preliminary

In this section, the definition of quadratic boundedness is
revisited [26]. Consider the following discrete-time system
described by

x(k+1)=G k) x (k) + H (k) w k), )

where x(k) € R" is the state vector and w(k) € R? is the noise
vector. It is assumed that w(k) belongs to an ellipsoidal com-
pact set e with T > 0. G(k) and H (k) are two matrices with
appropriated dimension, and suppose that they are unknown
but belong to a known bounded set.

Definition I (see [26]). A set ¢ is said to be strictly quadrat-
ically bounded with a common Lyapunov matrix of system
(1) for all w(k) € e, (G(k),H(k)) € ¢,k = 0,1,...,if
x'(k)Px(k) > 1 implies (Gx+Hw)'P(Gx+Hw) < x'(k)Px(k),
for any w(k) € ey and (G, H) € ¢.

Definition 2 (see [26, 27]). A set ¢ is said to be a positively
invariant set for system (1) for all w(k) € e, (G(k), H(k)) € ¢,
k=0,1,...if x € ¢ implies Gx + Hw € ¢, for any w(k) € &
and (G, H) € ¢.

3. Problem Formulation and
Controller Design

Consider the following form of master chaotic system:
x(k+1)=Ak)x (k) + f (x(k),k) +w(k), (2)

where x € R" is the system’s state vector and A(k) € Q =
Co{A,A,,..., A} is unknown constant matrix with appro-
priate dimension. f(x(k), k) is the nonlinear part and w(k) €
ep, C R"is the bounded disturbance vector. The controlled
slave chaotic system is described by

yk+1) =AWy K+ f(yk),k)+uk), 3

where y € R" is the slave system’s state vector and u(k) is the
designed controller.
Define the system error

e(k) =y (k) —x(k). (4)
Then we can get the error system
e(k+1)=A(k)e(k)+ f (y k), k) - f (x(k), k)
—w (k) +u(k).

With the aid of the active control technique [8, 28, 29], we
select the following controller:

u(k) =u, (k) - f (y (k). k) + f (x (k). k),
u, (k) = F (k) x (k),

(6)

where F(k) will be computed in the following optimization
problem. Substituting (6) into (5), we can get

e(k+1)=[A(k) + F(K)]e (k) -w(k); (7)
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that is,

L
e(k+1)=Yw (k) [A +F(R)]elk)-w(k). (8)

I=1

Lemma 3 (see [26]). For system (8), the following facts are
equivalent:

(a) For all allowable w(k) € €p,» k >0, (8) is strictly quad-
ratically bounded with a common Lyapunov matrix
M > 0.

(b) For any w(k) € €p, and anyl € {1,...,L}, e’ Me > 1
implies
[(A;+F)e-w]  M[(A;+F)e-w] <e'Me  (9)
and e" Me = 1 implies

[(A;+F)e-w] " M[(A,+F)e-w] <e'Me.  (10)

(c) For any allowable w(k) € ep , k > 0, the ellipsoid &
is a positively invariant set for (8).

(d) There exists o € (0, 1), such that

l-a)M * =
0 aP, * [ >0,

w

M(A;+F) -M M

lefl,...,L}. (1)

The target of the following part is to solve a dynamic
feedback MPC where, at each time k, the feedback matrix is
computed through the following optimization problem:

In (k) 12)

min max
B<Ly.QF  [AleQu(k+iee,, ,i=0,1,...N~1
where
N
In (k) =Y lle (i1 k)lg (13)
i=0

and Risa symmetric positive-definite weighting matrix. Con-
sider a quadratic Lyapunov function V(e) = e'Pe (P > 0) of
the error state e with V(0) = 0. At every sampling time k,
suppose the error state e and V satisfy the following condi-
tion:

e (k) € e (14)
e(il | k) € gt \Sﬁ—lQ—l,
(15)
0<i, <N
6(i2 | k) € Sﬁle—l, Viz >N (16)

le G 1R 2 1=
| | L
leG 1R ~ I+ 11 Rl = leGRIE. — (7)

0<i<N,
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where Q! = P.Itis obvious that condition (14) consists of the
initial condition of the min-max problem, (15) implies e(k)
within eg-1, (15) guarantees that system (7) is quadratically
bounded with a common Lyapunov matrix Q7!, and (16) is
used to guarantee convergence of e(k) towards g1+ when
e(k) ¢ eg1. N need not to be known and f3 < 1 is to ensure
thate(k) ¢ €g-11. Note that, since e(k) can only convergence
to a neighborhood of e(k) = 0, there exist k > 0 when (16)
becomes infeasible. In this case, we will stop computing the
optimization problem.
Since w(k) € €p,» e(k) ¢ €gigt is equivalent to

Bllw (k+Dllp, < lle i 1 k)Ig: =

2 2 1 (18)
le Gl R)llgr —lleG+ 1|kl > ; le (G| K)llg -

By applying (8) and using the S-procedure [30], we can get
that the result of (18) is satisfied if and only if

[le ~y[A+F"Q'[A+F]
Ja >0:
yQ ' [A+F] -Q!
(19)
R
— > (0.
(Xy 0 _ﬁpw =

Using Schur complement it is shown that (19) is guaranteed
by

[ (1-a)Q! * ¥ % %]
0 affP, * * x
-Q'[A;+F] Q' Q' x x |20
RY2 0 0 yI x (20
! 0 0 0 0 I

By pre- and postmultiplying both sides of (20) with diag{Q, I,
Q, I, I}, then one can obtain

[ (1-a)Q * % % %]
0 affP, = * =

-[A+F] T Q= x>0 I=1,...,L. (2
QR'? 0 0 yl *
0 0 0 0 I

Summing (17) from i = 0 toi = N — 1 and applying (14) yield

Tn () < ylle (R)lIgy < y- (22)

Hence, (18) is imposed not only for quadratic boundedness
but also for optimality (y will be minimized). Then we can
get the following theorem.

1.5

FIGURE 1: Attractor of Hénon map.

Theorem 4. The master system (2) and slave system (3) can
realize the synchronization with controller (6), and the feedback
matrix F is computed through the following optimization:

P (23)
subject to
1 =
>0
e(k) Q
F(1-a)Q  * % % %]
0 aPP, * x x (24)
-[A+F] T Q* |20 I=1,..,L
QR'? 0 0 yI *
L 0 0 0 0 I

4. Numerical Examples

Example 1. This example verifies the effectiveness of the
prosed robust active MPC control method in solving the syn-
chronization between two identical discrete chaotic systems.
Consider the well-known discrete Hénon map [31]:

x, (k+1) =x, (k) + 1 -ax, (k)
(25)
x, (k+1)=bx, (k).

Corresponding to (2), A = (} 5), f(x(k)) = ( 1‘“’62(")2 ) The
system has a strange attractor when a = 1.4, b = 0.3, and
its attractor is shown if Figure 1 with the initial value x(0) =
(0,0)”. The master system is selected as

xy (k+1) =x,(k)+1-ax, (k) +0.25sin (k)
26
x, (k+ 1) = bx; (k) + 0.25 cos (k) . (26



When parameter b varied between 0.2 and 0.4, the matrix A
belongs to the polytope Q = Co{A |, A,}, where A, = (% })
and A, = (4 §)- And the slave system is chosen as

y(k+1) = Ay (k) + f (y (k). k) +u(k), (27)

where y = (y,, y,)" is the slave system’s state and it is obvious
that P, = 4I. When we select « = 0.5, 8 = 0.9, and R = 2],
and the initial values are selected as x(0) = (16, -8)7, y(0) =
(2,6)", then the error of the master system and slave system
is shown in Figure 2 with controller (6).

Example 2. In this example, the proposed robust active MPC
controller is applied to stabilize the uncertain generalized
hyperchaotic Hénon map [32]:

x, (k+1) = 1+ x, (k) — ax, (k)*
x, (k+1) = 1 +bx, (k) - ax, (k)* (28)

x5 (k+1) =bx, (k).

When a = 1.4, b = 0.2 the generalized Hénon map has an
attractor which is shown in Figure 3 with the initial values

x(0) = (0.1,0.05,0.3)". The master system is selected as
x, (k +1) = 1+ x; (k) — ax, (k)* + 0.25 sin (k)

x, (k+1) = 1 +bx, (k) - ax, (k)* + 0.25cos (k) (29)

x5 (k+ 1) = bx, (k) 0.15sin (2k) .
When parameter b varied between 0.1 and 0.3, the matrix
A belongs to the polytope Q = Co{A,, A,}, where A;, =
( 0 o1 (1)) and A, = ( 0 03 (1)> The slave system is selected
Ad1 00 0300

y(k+1)=Ay (k) +g(y(k),k) +u(k), (30)
T /001
(K, 3 (R), y (kDT A = (0b0),
1‘“}’2(k)2
70 = (o )
0

When solving the optimization (23), we select the param-
etersas P, = 4, « = 0.5, 8 = 0.9, and R = I and the
simulation error of the master system and the slave system is

shown in Figure 4 with the initial value of x(0) = (16, -8, DT
and y(0) = (0,4,-5)".

where y(k) =

oT o

5. Conclusions

In this paper, the robust active MPC synchronization for two
discrete-time chaotic systems with bounded disturbance is
studied. With the help of the active control technique, the
synchronization problem is changed into a min-max opti-
mization problem. On the basis of discrete Lyapunov stability
theory, we prove the stability of the closed-loop system. Two
simulation examples demonstrate that the designed control
technique can synchronize the two uncertain discrete-time
chaotic systems.

Discrete Dynamics in Nature and Society

5 " " T
0 F/WVVWVW\NWVWVWVWV\M
8 -5 i
|
N -10
-15
_20 L L n
0 50 100 150 200
k
15
10
<
| 5 ]
EN
0 MWMWW
,5 1 1 I
0 50 100 150 200
k

FIGURE 2: Synchronization errors between the uncertain distur-
bance Hénon maps.

FIGURE 3: Attractor of the generalized Hénon map.
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FIGURE 4: Synchronization errors between the generalized Hénon
maps.
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