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We study a dynamic research and development two-stage input competition gamemodel in the Bertrand duopoly oligopolymarket
with spillover effects on cost reduction. We investigate the stability of the Nash equilibrium point and local stable conditions and
stability region of the Nash equilibrium point by the bifurcation theory.The complex dynamic behaviors of the system are shown by
numerical simulations. It is demonstrated that chaos occurs for a range of managerial policies, and the associated unpredictability
is solely due to the dynamics of the interaction. We show that the straight line stabilization method is the appropriate management
measure to control the chaos.

1. Introduction

Currently, research and development (R&D) activities have
become one of the core competitive points for manufactures.
R&D input is also an important way to enhance technological
strength, and R&D activities can reduce cost and improve
competitiveness. R&D activity investment and technology
spillover effects promote manufacturing development, and
enterprise development conversely promotes investment in
R&D activities.

R&D has been one of the most important motivations
for manufacturing development since the nineteen century.
The choice of strategy and the decision rules for R&D input
are two key consideration factors. Dasgupta and Maskin [1]
divided R&D activities into two kinds which were competi-
tion and noncompetition based on the different structure of
the income of innovation. We know that the R&D activities
can bring spillover effect; that is, one manufacturer can get
the spillover effects of the R&D activities from the other
manufacturer.The influence of the technology spillover effect
brought by the R&D activities has been studied by many
researchers. Aspremont and Jacquemin [2] firstly considered
the spillover effect of technology and put forward Cournot

competition in the product market. They proposed the two-
stage theory for R&D activities, which laid an important
foundation for the later research. Gersbach and Schmutzler
[3] considered a three-location duopoly model, including
production and innovation locations choices, and examined
the effects of the internal knowledge spillovers and external
knowledge spillovers on the location of production and inno-
vation. Bischi and Lamantia [4] studied R&D competition
duopoly games with spillover effects. Milstein and Tishler [5]
used a two-stage model to describe the optimal R&D choice
of firms operation in an oligopoly market and predicted a
U-shaped relationship between competition and innovation.
Petit and Sanna-Randaccio [6] considered a two-country
imperfect competition model and examined the influence
of the firms mode of foreign expansion on the incentive
innovation as well as the impact of R&D activities and
technological spillovers on the international strategy. Luckraz
[7] showed a note in a two-stage Cournot R&D game model
with isoelastic demand functions. Luckraz [8] demonstrated
innovation (or Schumpeter’s) cycles in a discrete and finite
dynamic game of innovation and imitation and concluded
that strategic interactions were sufficient to generate cycles.
Grunfeld [9] presented a three-stageCournot duopolymodel,
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which under conditions identified by firms was chosen
to service a foreign market through exports or localized
production.

The references mentioned above assume that the manu-
facturers are completely rational, but the bounded rationality
is, really, more in the realistic economic market because
the manufacturers cannot always get the full information.
Dynamic Cournot game models were discussed in the
following references, in which players used output as the
decision variable. Fanti et al. [10] analyzed the dynamics of a
nonlinear Cournot duopoly with managerial delegation. Ma
and Guo [11] studied the estimation accuracy by assuming
that the second player makes his estimation based on recur-
sive least-square (RLS) algorithm and compared the profit
in two-period decision-making process with that in one-
period decision-making process. Ma and Ji [12] considered
a Cournot model in electric power triopoly with nonlinear
inverse demand function and cost functions. Ma and Tu [13]
studied the complexity of a duopoly game in the electricity
market under the background of development of new energy
with delayed bounded rationality.Wu andMa [14] established
and investigated the complexity of a multiproduct Cournot
duopoly game with managerial delegation. Matsumoto and
Nonaka [15] researched the complexity of a Cournot model
with linear cost functions and complementary goods. Tra-
montana [16] and Tramontana and Elsadany [17] found two
routes which were the flip bifurcations and the Neimark-
Sacker bifurcation to chaos in a duopoly and triopoly game
model with isoelastic demand function and heterogeneous
players, respectively. Yao et al. [18] analyzed a dynamic
triopoly game model with isoelastic demand function and
fully heterogeneous players: bounded rational, adaptive, and
naive.

Nonlinear dynamic Bertrand game models were also
researched in the following references, where players used
price as the decision variable. Chen et al. [19] applied the
Bertrand triopoly model with linear demand functions to
study the competition in Chinese telecommunications mar-
ket. Guo andMa [20] studied the dynamics characteristics of
nonlinear dynamic system in the closed-loop supply chain.
Ma and Li [21] constructed dynamic Bertrand-Stackelberg
pricing models in a risk-averse supply chain which followed
these strategies: Bertrand game between the twomanufactur-
ers and Stackelberg game between the manufacturer and the
retailer. Sun andMa [22] introduce a triopoly Bertrand game
model and applied it in Chinese cold rolled steel market.

Other models of nonlinear dynamical systems are as fol-
lows. Ma and Pu [23] researched the complex characteristics
on a Cournot-Bertrand duopoly model with heterogeneous
goods. Ma and Xie [24] compared and analyzed the com-
plexity on dual-channel supply chain under different channel
power structures and uncertain demand. Ma et al. [25] con-
sidered stability of a three-species symbiosis Lotka-Volterra
modelwith discrete delays.Ma andLiu [26] investigated exact
solutions for a generalized nonlinear Fokker-Planck diffusion
equation with external force and absorption. Tu and Wang
[27] studied the complexity and control of a dynamic master-
slave Cournot triopoly game model.

However, studies of dynamic R&D competition models
with bounded manufacture were relatively rare. Hu et al.
[28] investigated the complexity in a dynamic R&D Cournot
duopoly. Sheng et al. [29] discussed the local and global
complexity of R&D dynamic Cournot duopoly model. Li
and Ma [30] analyzed the complex characteristics on three
oligarchs R&D competitionmodels with heterogeneous play-
ers. The above three references all were Cournot competition
models.This paper considers a dynamicR&D two-stage input
competition game model in the duopoly Bertrand oligopoly
market, which more closely aligns with the actual economic
market because the products generally have some differences
in the real market.

The organization of this paper is as follows. In Section 2,
we construct an R&D two-stage input competition duopoly
game model with bounded rational rules. We investigate the
fixed points and local stability of the system, and complex
system behaviors are shown by numerical simulations with
changes to input adjustment speed and other parameters. In
Section 3, we confirm that the chaotic systems sensitively are
dependent on initial conditions, and Section 4 shows how
the chaos can be controlled by the straight line stabilization
method. Finally, Section 5 discusses and concludes the paper.

2. The Model

We consider two manufacturers producing alternative and
heterogeneous products in the duopoly oligopoly market.
R&D activities are divided into input and output decision
stages. The first stage is an input competition, and we assume
that the manufacturers follow bounded rational strategies.
The second stage is the output decision, using price com-
petition, and we assume the manufacturers seek maximum
profit. The achievements of the R&D activities are spread
between the two manufacturers, which is called technology
spillover in the competition process. At discrete times 𝑡 (𝑡 =0, 1, 2, . . .), manufacturer 𝑋𝑖 (𝑖 = 1, 2) supplies production𝑞𝑖(𝑡) (𝑖 = 1, 2) for the market. Every manufacture should
make an expectation for the rival’s input in the next period to
estimate the maximum corresponding profit for that period.

Following the classic Bertrand model, the demand func-
tions for the two manufacture are

𝑞1 (𝑡) = 𝑎1 − 𝑏1𝑝1 (𝑡) + 𝑒1𝑝2 (𝑡) ,
𝑞2 (𝑡) = 𝑎2 − 𝑏2𝑝2 (𝑡) + 𝑒2𝑝1 (𝑡) .

(1)

And the cost function for manufacturer 𝑋𝑖 (𝑖 = 1, 2) after
their R&D activities is

𝐶𝑖 (𝑡) = (𝐴 − 𝑥𝑖 (𝑡) − 𝛽𝑖𝑥𝑗 (𝑡)) 𝑞𝑖 (𝑡) ,
(𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗) ,

(2)

where 𝐴 is the positive variable cost parameter before the
manufacturer undertakes the R&D activities, and𝛽𝑖 (𝑖 = 1, 2)
is positive technology spillover between the two manufactur-
ers.
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Combining (1) and (2), the profit formanufacturer𝑋𝑖 (𝑖 =1, 2) at the price decision stage is

𝜋𝑖 (𝑡) = 𝑝𝑖 (𝑡) 𝑞𝑖 (𝑡) − 𝐶𝑖 (𝑡) − 𝛾𝑖2 𝑥𝑖 (𝑡)2

= (𝑝𝑖 (𝑡) − 𝐴 + 𝑥𝑖 (𝑡) + 𝛽𝑖𝑥𝑗 (𝑡))
⋅ (𝑎𝑖 − 𝑏𝑖𝑝𝑖 (𝑡) + 𝑒𝑖𝑝𝑗 (𝑡)) − 𝛾𝑖2 𝑥𝑖 (𝑡)2 ,

(𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗) ,

(3)

where (𝛾𝑖/2)𝑥𝑖(𝑡)2 is the cost of R&D investment.
Thus, the marginal profit of manufacturer𝑋𝑖 (𝑖 = 1, 2) is

𝜕𝜋𝑖 (𝑡)𝜕𝑝𝑖 (𝑡) = (𝑎𝑖 − 𝑏𝑖𝑝𝑖 (𝑡) + 𝑒𝑖𝑝𝑗 (𝑡))
− 𝑏𝑖 (𝑝𝑖 (𝑡) − 𝐴 + 𝑥𝑖 (𝑡) + 𝛽𝑖𝑥𝑗 (𝑡)) ,

(𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗) .
(4)

From (4), we can get themanufacturer’s reaction function
to its competitor for a given period by backward induction,
which is calculated for every possible production of the other
manufacturer in a fixed time. For profitmaximization, we can
get the Nash-Bertrand equilibrium price as follows:

𝑝1 (𝑡) = 1
4𝑏1𝑏2 − 𝑒1𝑒2 [2𝑎1𝑏2 + 𝑒1𝑎2 + 𝑒1𝑏2𝐴 + 2𝑏1𝑏2𝐴

− (𝑒1𝑏2𝛽2 + 2𝑏1𝑏2) 𝑥1 (𝑡) + (𝑒1𝑏2 + 2𝑏1𝑏2𝛽1) 𝑥2 (𝑡)] ,
𝑝2 (𝑡) = 1

4𝑏1𝑏2 − 𝑒1𝑒2 [2𝑎2𝑏1 + 𝑒2𝑎1 + 𝑏1𝑒2𝐴 + 2𝑏1𝑏2𝐴
+ (𝑏1𝑒2 + 2𝛽2𝑏1𝑏2) 𝑥1 (𝑡) + (𝑏1𝑒2𝛽1 + 2𝑏1𝑏2) 𝑥2 (𝑡)] .

(5)

For simplicity expression, we denote

𝑓1 (𝑡) = 𝑝1 (𝑡) ,
𝑓2 (𝑡) = 𝑝2 (𝑡) ,
𝑘1 = − (𝑒1𝑏2𝛽2 + 2𝑏1𝑏2)4𝑏1𝑏2 − 𝑒1𝑒2 ,

𝑘2 = − (𝑒1𝑏2 + 2𝑏1𝑏2𝛽1)4𝑏1𝑏2 − 𝑒1𝑒2 ,

𝑘3 = − (𝑏1𝑒2 + 2𝑏1𝑏2𝛽2)4𝑏1𝑏2 − 𝑒1𝑒2 ,

𝑘4 = − (𝑏1𝑒2𝛽1 + 2𝑏1𝑏2)4𝑏1𝑏2 − 𝑒1𝑒2 .

(6)

Thus, back to the first stage, from (3), (5), and (6), the
R&D marginal profits of the input are

𝜕𝜋1 (𝑡)𝜕𝑥1 (𝑡)
= (𝑘1 + 1) (𝑎1 − 𝑏1𝑓1 (𝑡) + 𝑒1𝑓2 (𝑡))
+ (−𝑏1𝑘1 + 𝑒1𝑘3) (𝑓1 (𝑡) − 𝐴 + 𝑥1 (𝑡) + 𝛽1𝑥2 (𝑡))
− 𝛾1𝑥1 (𝑡) ,

𝜕𝜋2 (𝑡)𝜕𝑥2 (𝑡)
= (𝑘4 + 1) (𝑎2 − 𝑏2𝑓2 (𝑡) + 𝑒2𝑓1 (𝑡))
+ (−𝑏2𝑘4 + 𝑒2𝑘2) (𝑓2 (𝑡) − 𝐴 + 𝑥2 (𝑡) + 𝛽2𝑥1 (𝑡))
− 𝛾2𝑥2 (𝑡) .

(7)

Suppose that the R&D input decision of manufacturer𝑋𝑖 (𝑖 = 1, 2) is bounded rational suppliers, and the manu-
facturer makes the next-period R&D input decision based on
their current input and the marginal profit of the R&D input.
The dynamic adjustment mechanism can be written as

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + 𝛼𝑖𝑥𝑖 (𝑡) 𝜕𝜋𝑖 (𝑡)𝜕𝑥𝑖 (𝑡) (𝑖 = 1, 2) , (8)

where 𝛼𝑖 (𝑖 = 1, 2) is the speed adjustment parameter of the
R&D input, and 𝜕𝜋𝑖(𝑡)/𝜕𝑥𝑖(𝑡) (𝑖 = 1, 2) is the marginal profit
of the R&D input.

Combining (7) and (8), a new dynamic R&D input
competition game model with bounded rational strategy can
be described by a 2-dimensional dynamic system:

𝑥1 (𝑡 + 1) = 𝑥1 (𝑡) + 𝛼1𝑥1 (𝑡)
⋅ [(𝑘1 + 1) (𝑎1 − 𝑏1𝑓1 (𝑡) + 𝑒1𝑓2 (𝑡))
+ (−𝑏1𝑘1 + 𝑒1𝑘3) (𝑓1 (𝑡) − 𝐴 + 𝑥1 (𝑡) + 𝛽1𝑥2 (𝑡))
− 𝛾1𝑥1 (𝑡)] ,

𝑥2 (𝑡 + 1) = 𝑥2 (𝑡) + 𝛼2𝑥2 (𝑡)
⋅ [(𝑘4 + 1) (𝑎2 − 𝑏2𝑓2 (𝑡) + 𝑒2𝑓1 (𝑡))
+ (−𝑏2𝑘4 + 𝑒2𝑘2) (𝑓2 (𝑡) − 𝐴 + 𝑥2 (𝑡) + 𝛽2𝑥1 (𝑡))
− 𝛾2𝑥2 (𝑡)] .

(9)

2.1. Fixed Points and Local Stability Analysis. In system (9),𝛼𝑖 (𝑖 = 1, 2) is taken as the bifurcation parameter, and the
other parameters are constant. Let 𝑎1 = 9, 𝑎2 = 7, 𝑏1 =1.4, 𝑏2 = 1.2, 𝑒1 = 0.3, 𝑒2 = 0.5, 𝐴 = 5, 𝛾1 = 1.6, 𝛾2 =1.8, 𝛽1 = 0.2, 𝛽2 = 0.3.

Let 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡); then we have three meaningful fixed
points: 𝐸1 = (0, 1.5451), 𝐸2 = (1.9486, 0), 𝐸3 = (𝑥∗1 , 𝑥∗2 ) =(5.5558, 4.4831). 𝐸1 and 𝐸2 are boundary equilibrium points
that mean that at least one player is out of the market. There-
fore, we only consider the stability of the Nash equilibrium
point 𝐸3.
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To investigate the local stability ofNash equilibriumpoint𝐸3, we first obtain the Jacobianmatrix of system (9) at 𝐸3. For
simplicity, we denote

𝐽 = (𝑗11 𝑗12𝑗21 𝑗22) , (10)

where

𝑗11 = 1 + 𝛼1𝑥∗1 [2 (𝑘1 + 1) (−𝑏1𝑘1 + 𝑒1𝑘3) − 𝛾1] = 1
− 1.9933𝛼1,

𝑗12 = 𝛼1𝑥∗1 [(𝑘1 + 1) (−𝑏1𝑘2 + 𝑒1𝑘4)
+ (𝑘2 + 𝛽1) (−𝑏1𝑘1 + 𝑒1𝑘3)] = 0.1159𝛼1,

𝑗21 = 𝛼2𝑥∗2 [(𝑘4 + 1) (−𝑏2𝑘3 + 𝑒2𝑘1)
+ (𝑘3 + 𝛽2) (−𝑏2𝑘4 + 𝑒2𝑘2)] = 0.0726𝛼2,

𝑗22 = 1 + 𝛼2𝑥∗2 [2 (𝑘4 + 1) (−𝑏2𝑘4 + 𝑒2𝑘2) − 𝛾2] = 1
− 2.0632𝛼2.

(11)

Then, the characteristic equation of system (9) at 𝐸3 is
𝑓 (𝜆) = 𝜆2 − (𝑗11 + 𝑗22) 𝜆 + (𝑗11𝑗22 − 𝑗12𝑗21) . (12)

According to the Jury test, the local stable conditions for
Nash equilibrium 𝐸3 are

(i) 1 − (𝑗11 + 𝑗22) + (𝑗11𝑗22 − 𝑗12𝑗21) = 4.1042𝛼1𝛼2 > 0,
(ii) 1 + (𝑗11 + 𝑗22) + (𝑗11𝑗22 − 𝑗12𝑗21) = 4 − 3.9865𝛼1 −4.1264𝛼2 + 4.1042𝛼1𝛼2 > 0,
(iii) 𝑗11𝑗22−𝑗12𝑗21 = −1.9933𝛼1−2.0632𝛼2+4.1042𝛼1𝛼2 <0.
Solving the above equations, the local stable region of

the Nash equilibrium point with positive (𝛼1, 𝛼2) is shown in
Figure 1. System (9) is asymptotically stable when the R&D
input speed adjustment parameters are in the stable region.
For parameters in the stable region, all R&D inputs will be
stable at Nash equilibrium point 𝐸3 after a limited number of
games for any given initial datum as shown in Figure 2.

2.2. Dynamics Characteristics of System (5). To understand
the dynamic evolution of the system, we show the dynamic
features of system (9) with increasing 𝛼𝑖 (𝑖 = 1, 2) by
numerical simulations, such as bifurcation diagrams, largest
Lyapunov exponents, strange attractors, and time diagram.

Complex characteristics of nonlinear dynamic systems
are generally investigated by varying one parameter while the
others are fixed. The occurrence of chaos by period doubling
bifurcations as one parameter is increased, which is called a
codimension-one route to chaos.

First, we discuss manufacturer 𝑋1 accelerating 𝛼1. The
Nash equilibrium point will become unstable if 𝛼1 is out of
the stable region.

Figure 3 shows the bifurcation diagram and correspond-
ing largest Lyapunov exponents with respect to 𝛼1 (𝛼1 ∈

(0, 1.5061]) for 𝛼2 = 0.36. The bifurcation diagram is an
illustrative way for dynamic systems analysis and describes
how the dynamic behavior of the dynamic systems alters as
one parameter is changed. Bifurcations involve qualitative
changes of behavior of the system, such as from equilibrium
to periodic cycles or chaos. The evolution of system (9) is
successively stable state, period doubling bifurcation, chaos,
and intermittent chaos, including both high cycle bifurca-
tions and chaos. The potential meanings of the bifurcation
point is the critical point for the system from one state
to another. Calculation of the largest Lyapunov exponents
is another way to quantitatively analyze dynamic system
characteristics. The largest Lyapunov exponents are negative
when dynamic systems are at the stable state and high
order cycles and positive while the system is in a chaotic
state.The Lyapunov exponents can also differentiate between
high order cycles and aperiodic behavior, and larger positive
exponent means stronger chaos. It is easier to understand
the dynamic properties by comparing with the bifurcation
diagram.

The R&D input evolution of the duopoly manufacturers
starts with equilibrium state, undergoes period doubling, and
ends with a chaotic state with increased 𝛼1. System (9) is
stable at the Nash equilibrium point for 0 < 𝛼1 < 0.9990.
Phase diagrams for 2, 4, and 8 cycle orbits are shown in
Figure 4. The strange attractor indicates inherent regularity
of the chaos, which is an important characteristic of chaos.
Figure 5 shows three classic chaos attractors for system (9).
Figure 6(a) shows the phase diagram of system (9) for (𝛼1 =1.39, 𝛼2 = 0.36) when system (9) in a chaotic state. The
motion of the chaos is an aperiodic series.Thephase diagrams
for 3 and 6 cycle orbits are shown in Figures 6(b) and 6(c),
respectively.

Similarly, Figure 7 shows the bifurcation diagram and
corresponding largest Lyapunov exponents with respect to𝛼2 (𝛼2 ∈ (0, 1.7816]) when 𝛼1 = 0.42. System (9) is stable
at the Nash equilibrium point for 0 < 𝛼2 < 0.9624. When𝛼2 > 0.9624, system (9) loses stability and undergoes period
doubling bifurcations to chaos. Figure 8 shows three typical
chaos attractors of system (9).

The parameter basin plot is a more powerful tool than 1D
bifurcation diagram in the numerical analysis, which is also
called 2D bifurcation diagrams and assigns different colors in
a 2D parameter space to stable cycles of different periods.

Figure 9 shows parameter basin for periodic cycles with
the change of manufacturers’ adjustment speeds 𝛼1 and𝛼2 and assigns different colors to stable states (green), 2-
periodic cycle (blue), 3-periodic cycle (red), 4-periodic cycle
(cyan), 6-periodic cycle (black), 8-periodic cycle (yellow),
nonconvergent chaos (orange), and divergence (white). From
Figure 9, we can more clearly see that system (9) goes into
chaos by two doubling period bifurcation routes with the
increase of manufacturers’ adjustment speed 𝛼𝑖 (𝑖 = 1, 2).
System (9) firstly goes through 2-periodic cycle, 4-periodic
cycle, and 8-periodic cycle to chaos. Then, system (9) goes
through 3-periodic cycle to chaos or 3-periodic cycle and 6-
periodic cycle to chaos.

Figure 10 shows the bifurcation diagram with the change
of the demand elasticity coefficient 𝑏𝑖 (𝑖 = 1, 2). System (9)
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Figure 4: Phase diagram of system (9) for (a) (𝛼1 = 1.18, 𝛼2 = 0.36); (b) (𝛼1 = 1.25, 𝛼2 = 0.36); (c) (𝛼1 = 1.285, 𝛼2 = 0.36).

is divergent or in a chaotic state if 𝑏𝑖 (𝑖 = 1, 2) is too
small, and theNash equilibrium is changedwith increasing of𝑏𝑖 (𝑖 = 1, 2). Manufacturer 𝑋𝑖 (𝑖 = 1, 2) input first increases
and then decreases, but the input of the other manufacturer
monotonically decreases.

Figure 11 shows the bifurcation diagram with the change
of the demand elasticity coefficient 𝑒𝑖 (𝑖 = 1, 2). System (9)
is divergence or in a chaotic state if 𝑒𝑖 (𝑖 = 1, 2) is too large,
and theNash equilibrium is changedwith increasing of 𝑒𝑖 (𝑖 =1, 2). Manufacturer𝑋𝑖 (𝑖 = 1, 2) input first increases and then
decreases.

Figure 12 shows the bifurcation diagram with the change
of the variable cost parameter 𝐴. System (9) is in a periodic

cycle or a chaotic state if 𝐴 is too small or too large,
respectively. The system has no economic meaning if 𝐴 is
too large. Within the domain of economic meaning, the
Nash equilibrium of system (9) is decreasing with increasing
of 𝐴.
3. The Sensitive Dependence on
Initial Conditions

Sensitivity to initial conditions is one of the most important
characteristics of chaos.Thus, even a small difference between
initial R&D inputs may lead to significant loss while the
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Figure 5: Chaos attractors of system (9) for (a) (𝛼1 = 1.33, 𝛼2 = 0.36); (b) (𝛼1 = 1.39, 𝛼2 = 0.36); (c) (𝛼1 = 1.48, 𝛼2 = 0.36).

system is in a chaotic state. Figures 13 and 14 show the
relationships between inputs and time, which confirm that
system (9) has significant sensitivity to initial conditions.
Figures 13(a) and 14(a) show two different evolution tracks
of 𝑥1 and 𝑥2 with different initial data, respectively. Figures
13(b) and 14(b) show the variance of 𝑥1 and 𝑥2 with different
initial data by time, respectively.They are very similar at first,
but the difference between them becomes rabid and unpre-
dictable after several game times.Thus, just a slight difference
between initial data may cause significantly different game
results.

4. Chaos Control

Chaos can break regular economic systems, causing a con-
fused and unpredictable market; that is, the system may fluc-
tuate and become random-like and seemingly unpredictable.

To eliminate the negative effect of chaos, the straight line
stabilization method is applied.

Recently, Xu et al. [31] and Yang et al. [32] introduced
a straight line stabilization control method. We utilize this
method to control the chaos of system (9). The external
control signal is as follows:

𝜀 = (𝜀1𝜀2) = (𝜇𝐼 − 𝐽)(
𝑥1 (𝑡) − 𝑥∗1
𝑥2 (𝑡) − 𝑥∗2) , (13)

where |𝜇| < 1 is the feedback control parameter and other
parameters are the same as in Section 2.

Substituting the external control signal (13) into system
(5), the controlled system becomes

𝑥1 (𝑡 + 1) = 𝑥1 (𝑡) + 𝛼1𝑥1 (𝑡)
⋅ [(𝑘1 + 1) (𝑎1 − 𝑏1𝑓1 (𝑡) + 𝑒1𝑓2 (𝑡))
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Figure 6: Phase diagram of system (9) for (a) (𝛼1 = 1.39, 𝛼2 = 0.36); (b) (𝛼1 = 1.423, 𝛼2 = 0.36); (c) (𝛼1 = 1.428, 𝛼2 = 0.36).

+ (−𝑏1𝑘1 + 𝑒1𝑘3) (𝑓1 (𝑡) − 𝐴 + 𝑥1 (𝑡) + 𝛽1𝑥2 (𝑡))
− 𝛾1𝑥1 (𝑡)] + 𝜀1,

𝑥2 (𝑡 + 1) = 𝑥2 (𝑡) + 𝛼2𝑥2 (𝑡)
⋅ [(𝑘4 + 1) (𝑎2 − 𝑏2𝑓2 (𝑡) + 𝑒2𝑓1 (𝑡))
+ (−𝑏2𝑘4 + 𝑒2𝑘2) (𝑓2 (𝑡) − 𝐴 + 𝑥2 (𝑡) + 𝛽2𝑥1 (𝑡))
− 𝛾2𝑥2 (𝑡)] + 𝜀2.

(14)
For (𝛼1 = 1.39, 𝛼2 = 0.36), the bifurcation diagram in

Figure 15 shows that controlled system (14) restabilizes at the

Nash equilibrium point for −1 < 𝜇 < 0.1362. This indicates
that chaos control of system (9) can be realized by adding a
very small perturbation. Other complex dynamic behaviors
of the system can also be controlled by similar straight line
stabilization.

5. Conclusions

This paper shows competitive interactions of a two-stage
R&D input competition duopoly game model with bounded
rational strategy and asymmetric spillovers by a nonlinear
dynamic game model and numerical simulations. Under
certain conditions, oscillatory and chaos behaviors can occur.
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Figure 7: Bifurcation diagram (a) and corresponding largest Lyapunov exponents (b), with 𝛼2 ∈ (0, 1.4510] for 𝛼1 = 0.42.
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Figure 10: Bifurcation diagram for (a) 𝑏1 ∈ (0, 1.8]; (b) 𝑏2 ∈ (0, 1.8] and (𝛼1 = 0.42, 𝛼2 = 0.36).

While the model describes the system for cost reduction, this
structure can be generally applied to other microeconomic
relationships shape competitive decisions for manufacturing.

Nash equilibrium region and local stable conditions are
derived. The effects of input adjustment speed, demand
elasticity, product substitution elasticity, variable cost, and
technology spillover level on system dynamic features are
shown by numerical simulations, that is, bifurcation dia-
grams, largest Lyapunov exponents, strange attractors, phase
diagrams, and sensitive analysis on initial conditions. When
the input adjust speed is too large, demand elasticity, vari-
able cost, and too small product substitution elasticity may

cause the system to become chaotic following the period
doubling bifurcation route. Manufacturers can raise demand
elasticity, decrease product substitution, reduce variable cost,
and increase technology spillovers of their rivals to enhance
competitiveness.Thederived results provide some theoretical
implications for manufacturers about R&D activities input
and output decisions in real economic markets.

Chaos causes significant problems for manufacturers to
forecast the market and formulate decision plans. Chaotic
systems can be returned to the Nash equilibrium point and
complex system behaviors can be eliminated by the straight
line stabilization method.
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