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This paper is devoted to exploring the combined impact of a generic nonlinear infection rate and infected removable storage media
on viral spread. For that purpose, a novel dynamical model with an external compartment is proposed, and the explanations of the
main model assumptions (especially the generic nonlinear infection rate) are also examined. The existence and global stability of
the unique equilibrium of the model are fully investigated, from which it can be seen that computer virus would persist. On this
basis, a next-best approach to controlling the level of infected computers is suggested, and the theoretical analysis of optimal control
of the model is also performed. Additionally, some numerical examples are given to illustrate the main results.

1. Introduction

In the wake of developments in computer and network
technologies, computer virus has become more capable of
conquering computer system. In the meantime, the study of
fighting against computer virus has in the past few decades
been paid more attention. In reality, there is no doubt that
antivirus software and firewall are the most effective pre-
vention measures. However, they are incompetent to inhibit
computer virus diffusion over the Internet [1]. To deal with
this problem, a wide variety of mathematical models have
been widely studied (for the related references, see, e.g., [2–
15]).

The infection rate is an important and essential system
parameter in computer virus propagation models. However,
the dominatingmajority of previousmodels assume a bilinear
incidence rate (for the related references, see, e.g., [16–20])
or a nonlinear increasing incidence rate (for the related
references, see, e.g., [21]). The former assumption is suitable
for the case where the proportion of infected computers
is small. The latter assumption neglects the fact that, due
to active protection measures taken during viral spread,
the infection rate would be decreasing, while the infected
computers may be increasing. In order to depict the case

where the infection rate could be decreasing with the infected
computers and inspired by the previous work (e.g., [22, 23]),
the proposedmodel of this paper adopts a nonlinear function𝜎(𝐼) = 𝛽𝐼/𝑓(𝐼), where 𝛽 > 0 and function 𝑓 ∈ 𝐶2[0, +∞)
with 𝑓 ≥ 0, 𝑓 < 0, and 𝑓(0) = 1 (see also the model
assumption (A3) in the next section).

External computers (i.e., computers outside the Internet)
and infected removable storage media play an important
role in viral spread (for the related references, see, e.g.,
[24, 25]). In [24], the impact of infected removable storage
media is considered, but the influence of external computers
is insufficient. In [25], a dynamical model, in which all
external computers are regarded as a separate compartment,
was proposed. Unfortunately, this model ignores the effects
of generic nonlinear infection rate and infected removable
storage media. Consequently, it is necessary to consider the
combined impact of a generic nonlinear infection rate and
infected removable storage media on viral spread.

In addition, optimal control theory is often applied
to control virus prevalence (for the related references, see,
e.g., [14, 26–28]). In [14, 27], a susceptible-latent-break-
ing-outside-susceptible (SLBOS) model and a susceptible-
latent-breaking-susceptible (SLBS) model were studied,
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respectively. References [26, 28] considered a susceptible-
infected-recovered-susceptible (SIRS) model in a fully
connected network and a complex network, respectively. To
our knowledge, there is no susceptible-infected-external-
susceptible (SIES) model that has been examined by applying
optimal control theory.

Combining the above discussions, a novel SIES model
with two kinds of incidence rates, which are caused by
infected computers and infected removable storage media,
is established in this paper. A systematic analysis of the
proposed model shows that the unique (viral) equilibrium
is globally asymptotically stable. This result indicates that
any effort in eradicating computer virus cannot succeed.
In this regard, theoretical analysis of a next-best approach
and optimal control of the model is performed. Numerical
analysis of the model is also included.

The remaining materials of this paper are organized as
follows: Section 2 formulates the model. Section 3 considers
the viral equilibrium and its global stability. In Section 4,
a theoretical analysis of optimal control of the model is
performed. Finally, Section 5 concludes the contributions of
this work and points out some further works that are worth
doing.

2. Model Characterization

In this paper, the proposed model consists of three compart-
ments (see (i)–(iii)), and the assumptions of it are also made
(see (A1)–(A8)):

(i) 𝑆-compartment: the set of all 𝑆-computers (suscepti-
ble internal computers, i.e., computers in the Internet)

(ii) 𝐼-compartment: the set of all 𝐼-computers (infected
internal computers)

(iii) 𝐸-compartment: the set of all 𝐸-computers (external
computers, i.e., computers outside the Internet)

(A1) Every computer is out of use with probability per unit
time 𝜇 > 0

(A2) Every 𝑆- or 𝐼-computer leaves the Internet with
probability per unit time 𝛾1 > 0

(A3) Due to possible communication with 𝐼-computers
over the Internet, every 𝑆-computer is infected with
probability per unit time 𝜎(𝐼) = 𝛽𝐼/𝑓(𝐼), where 𝛽 > 0
and function𝑓 ∈ 𝐶2[0, +∞)with𝑓 ≥ 0,𝑓 < 0, and𝑓(0) = 1

(A4) Due to possible effect of infected removable storage
media, every 𝑆-computer is infected with probability
per unit time 𝜃 ≥ 0

(A5) Due to treatment, every 𝐼-computer is cured with
probability per unit time 𝛾2 > 0

(A6) The rate of all newly accessed 𝐸-computers is 𝛿 > 0
(A7) Every 𝐸-computer is either susceptible or infected

when it enters the Internet
(A8) Every susceptible (or infected) 𝐸-computer enters the

Internet with probability per unit time 𝜂2 > 0 (or 𝜂1 >0)
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Figure 1: The transfer diagram of the proposed model.

For convenience, let 𝑆, 𝐼, and 𝐸 represent the average
number of computers in 𝑆-compartment, 𝐼-compartment,
and 𝐸-compartment at time 𝑡, respectively. Collecting the
foregoing hypotheses, the proposed model can be depicted
by Figure 1 or the differential system

�̇� = 𝛾2𝐼 + 𝜂2𝐸 − 𝜇𝑆 − 𝜎 (𝐼) 𝑆 − 𝛾1𝑆 − 𝜃𝑆,
�̇� = 𝜎 (𝐼) 𝑆 + 𝜃𝑆 − 𝜇𝐼 − 𝛾1𝐼 − 𝛾2𝐼 + 𝜂1𝐸,
�̇� = 𝛿 + 𝛾1𝑆 + 𝛾1𝐼 − 𝜇𝐸 − 𝜂1𝐸 − 𝜂2𝐸,

(1)

with initial condition (𝑆(0), 𝐼(0), 𝐸(0)) ∈ 𝑅3+.
3. Model Analysis

Let𝑁 = 𝑆 + 𝐼 + 𝐸. System (1) can be rewritten as

�̇� = 𝛿 − 𝜇𝑁,
�̇� = 𝜎 (𝐼) (𝑁 − 𝐼 − 𝐸) + 𝜃 (𝑁 − 𝐼 − 𝐸) − 𝜇𝐼 − 𝛾1𝐼

− 𝛾2𝐼 + 𝜂1𝐸,
�̇� = 𝛿 + 𝛾1𝑁 − 𝛾1𝐸 − 𝜇𝐸 − 𝜂1𝐸 − 𝜂2𝐸,

(2)

with initial condition (𝑁(0), 𝐼(0), 𝐸(0)) ∈ 𝑅3+.
Let 𝑁∗ = 𝛿/𝜇 and 𝐸∗ = 𝛿(𝜇 + 𝛾1)/𝜇(𝜇 + 𝛾1 + 𝜂1 + 𝜂2).

Solving the first and third equations of system (2), we get
lim𝑡→+∞𝑁(𝑡) = 𝑁∗ and lim𝑡→+∞𝐸(𝑡) = 𝐸∗. System (2) can
be reduced to the limiting system [29]

�̇� = 𝜎 (𝐼) (𝐴 − 𝐼) − (𝜇 + 𝛾1 + 𝛾2 + 𝜃) 𝐼 + 𝐵, (3)

where 𝐴 = 𝑁∗ − 𝐸∗ = 𝛿(𝜂1 + 𝜂2)/𝜇(𝜇 + 𝛾1 + 𝜂1 + 𝜂2) > 0 and𝐵 = 𝜂1𝐸∗ + 𝜃𝐴 > 0.
Clearly, system (3) has no virus-free equilibrium. Thus,

this section mainly addresses the existence and global stabil-
ity of viral equilibrium of system (3) with respect to positively
invariant region:Ω = {𝐼 | 0 ≤ 𝐼 ≤ 𝑁∗}.
3.1. Equilibrium

Theorem 1. System (3) has a unique viral equilibrium 𝐼∗,
where 𝐼∗ is the unique root in (0,𝑁∗) of the equation

𝐹 (𝑥) = 𝜎 (𝑥) (𝐴 − 𝑥) − (𝜇 + 𝛾1 + 𝛾2 + 𝜃) 𝑥 + 𝐵 = 0. (4)
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Proof. If 𝐼∗ is a viral equilibrium of system (3), then it satisfies
(4). Now, it suffices to show that (4) has a unique root
in (0,𝑁∗). As 𝜎(𝑥) = 𝛽𝑥/𝑓(𝑥) and 𝜎(𝑥) = 𝛽((𝑓(𝑥) −𝑥𝑓(𝑥))/𝑓2(𝑥)), we proceed by treating two possibilities.

Case 1. 𝑓(𝑥) − 𝑥𝑓(𝑥) ≤ 0; namely, 𝜎(𝑥) ≤ 0. Note that
𝐹 (0) = 𝐵 > 0,
𝐹 (𝐴) = 𝐵 − (𝜇 + 𝛾1 + 𝛾2 + 𝜃)𝐴

= −𝛿 (𝜂2 (𝜇 + 𝛾1 + 𝛾2) + 𝛾2𝜂1)𝜇 (𝜇 + 𝛾1 + 𝜂1 + 𝜂2) < 0,
𝐹 (𝑥) = 𝛽(𝐴 − 2𝑥) 𝑓 (𝑥) − (𝐴 − 𝑥) 𝑥𝑓 (𝑥)𝑓2 (𝑥)

− (𝜇 + 𝛾1 + 𝛾2 + 𝜃)
= 𝛽𝐴 (𝑓 (𝑥) − 𝑥𝑓 (𝑥)) − 𝑥 [2𝑓 (𝑥) − 𝑥𝑓 (𝑥)]

𝑓2 (𝑥)
− (𝜇 + 𝛾1 + 𝛾2 + 𝜃) .

(5)

Let 𝐺(𝑥) = 2𝑓(𝑥) − 𝑥𝑓(𝑥); then 𝐺(0) = 2𝑓(0) > 0. 𝑓(𝑥) −𝑥𝑓(𝑥) ≤ 0, 𝑓 ≥ 0; 𝑓 < 0 implies that 𝐺(𝑥) = 𝑓(𝑥) −𝑥𝑓(𝑥) > 0. Hence,𝐺(𝑥) > 0; 𝐹(𝑥) < 0 implies that 𝐹(𝑥) has
a unique root in (0,𝑁∗).
Case 2. 𝑓(𝑥) − 𝑥𝑓(𝑥) > 0; namely, 𝜎(𝑥) > 0. Let

𝐹1 (𝑥) = 𝑓 (𝑥)𝑥 𝐹 (𝑥)
= 𝛽 (𝐴 − 𝑥) + 𝐵𝑓 (𝑥)𝑥 − (𝜇 + 𝛾1 + 𝛾2 + 𝜃) 𝑓 (𝑥)
= 0.

(6)

Then,

𝐹1 (0+) = lim
𝑥→0+

𝐹1 (𝑥) = +∞ > 0,
𝐹1 (𝐴) = 𝐵𝑓 (𝐴)𝐴 − (𝜇 + 𝛾1 + 𝛾2 + 𝜃) 𝑓 (𝐴) < 0,
𝐹1 (𝑥) = −𝛽 + 𝐵𝑥𝑓 (𝑥) − 𝑓 (𝑥)𝑥2

− (𝜇 + 𝛾1 + 𝛾2 + 𝜃) 𝑓 (𝑥) < 0.

(7)

Thus,𝐹(𝑥)has a unique root in (0,𝑁∗).The claimed result
follows by the above discussions.

Remark 2. It follows from the above proof that 0 < 𝐼∗ < 𝐴.
3.2. Global Stability

Theorem 3. 𝐼∗ is globally asymptotically stable with respect toΩ.

Proof. Consider the Lyapunov function

𝑉 = ∫𝐼∗
𝐼

𝑢 − 𝐼∗𝑢 𝑑𝑢. (8)

Then,

�̇�(3) = 𝐼 − 𝐼∗𝐼 [𝜎 (𝐼) (𝐴 − 𝐼) − (𝜇 + 𝛾1 + 𝛾2 + 𝜃) 𝐼 + 𝐵]
= 𝐼 − 𝐼∗𝐼 [𝜎 (𝐼) (𝐴 − 𝐼) − 𝜎 (𝐼∗) (𝐴 − 𝐼∗)
− (𝜇 + 𝛾1 + 𝛾2 + 𝜃) (𝐼 − 𝐼∗)]
= 𝐼 − 𝐼∗𝐼 [(𝐴 − 𝐼∗) (𝜎 (𝐼) − 𝜎 (𝐼∗)) − 𝜎 (𝐼) (𝐼 − 𝐼∗)
− (𝜇 + 𝛾1 + 𝛾2 + 𝜃) (𝐼 − 𝐼∗)]
= (𝐼 − 𝐼∗)2

𝐼 [(𝐴 − 𝐼∗) 𝜎 (𝐼) − 𝜎 (𝐼∗)
𝐼 − 𝐼∗ − 𝜎 (𝐼)

− (𝜇 + 𝛾1 + 𝛾2 + 𝜃)] .

(9)

Here, we proceed by treating two cases.

Case 1. If 𝜎(𝐼) ≤ 0, namely, 𝑓(𝐼) − 𝐼𝑓(𝐼) ≤ 0, then it
follows from the Lagrange mean value theorem that (𝜎(𝐼) −𝜎(𝐼∗))/(𝐼 − 𝐼∗) = 𝜎(𝜉) ≤ 0, 𝜉 ∈ (𝐼, 𝐼∗), or 𝜉 ∈ (𝐼∗, 𝐼). As𝐴 − 𝐼∗ = 𝑁∗ − 𝐸∗ − 𝐼∗ > 0, �̇�|(3) ≤ 0 and �̇�|(3) = 0 if and
only if 𝐼 = 𝐼∗. Thus, the claimed result follows from LaSalle’s
Invariance Principle [30].

Case 2. If 𝜎(𝐼) > 0, namely, 𝑓(𝐼) − 𝐼𝑓(𝐼) > 0, let
𝐻(𝐼) = (𝐴 − 𝐼∗) 𝜎 (𝐼) − 𝜎 (𝐼∗)

𝐼 − 𝐼∗ − 𝜎 (𝐼)
− (𝜇 + 𝛾1 + 𝛾2 + 𝜃) .

(10)

Then,

𝐻(0) = (𝐴 − 𝐼∗) 𝜎 (𝐼∗)
𝐼∗ − (𝜇 + 𝛾1 + 𝛾2 + 𝜃) = − 𝐵𝐼∗

< 0,
𝐻 (𝐼) = (𝐴 − 𝐼∗) 𝜎 (𝐼) (𝐼 − 𝐼∗) − [𝜎 (𝐼) − 𝜎 (𝐼∗)]

(𝐼 − 𝐼∗)2
− 𝜎 (𝐼) .

(11)

Next, we need to further distinguish two subcases.

Subcase 2.1. If 𝐼 > 𝐼∗, it follows from the Lagrangemean value
theorem that 𝜎(𝐼) − 𝜎(𝐼∗) = 𝜎(𝜁)(𝐼 − 𝐼∗), 𝜁 ∈ (𝐼∗, 𝐼). As𝑓 < 0, 𝜎 < 0. Then, for 𝜖 ∈ (𝜁, 𝐼),

𝐻 (𝐼) = (𝐴 − 𝐼∗) 𝜎 (𝐼) − 𝜎 (𝜁)𝐼 − 𝐼∗ − 𝜎 (𝐼)
= (𝐴 − 𝐼∗) 𝜎 (𝜖) (𝐼 − 𝜁)𝐼 − 𝐼∗ − 𝜎 (𝐼) < 0.

(12)
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Figure 2: Time plots of 𝑆(𝑡), 𝐼(𝑡), and 𝐸(𝑡) for system (1) given in
Example 4.

Subcase 2.2. If 𝐼 ≤ 𝐼∗, it follows from the Lagrangemean value
theorem that 𝜎(𝐼) − 𝜎(𝐼∗) = 𝜎(𝜀)(𝐼 − 𝐼∗), 𝜀 ∈ (𝐼, 𝐼∗). As𝑓 < 0, 𝜎 < 0. Then, for 𝜍 ∈ (𝐼, 𝜀),

𝐻 (𝐼) = (𝐴 − 𝐼∗) 𝜎 (𝐼) − 𝜎 (𝜀)𝐼 − 𝐼∗ − 𝜎 (𝐼)
= (𝐴 − 𝐼∗) 𝜎 (𝜍) (𝐼 − 𝜀)𝐼 − 𝐼∗ − 𝜎 (𝐼) < 0.

(13)

It follows from (12)-(13) that 𝐻(𝐼) ≤ 𝐻(0) < 0. Thus,�̇�|(3) ≤ 0. Furthermore, �̇�|(3) = 0 if and only if 𝐼 = 𝐼∗. The
claimed result also follows fromLaSalle’s Invariance Principle
[30]. The proof is complete.

Example 4. Consider system (1) with 𝛿 = 5, 𝜇 = 0.01,𝜂1 = 0.1, 𝜂2 = 0.2, 𝛾1 = 0.08, 𝛾2 = 0.08895, 𝜃 = 0.01,
and 𝜎(𝐼) = 0.04487𝐼/(1 + √𝐼). Figure 2 displays the time
plot of this system with initial condition (𝑆(0), 𝐼(0), 𝐸(0)) =(300, 20, 180). From Figure 2, the values of 𝑆(𝑡), 𝐼(𝑡), and 𝐸(𝑡)
tend to a constant, respectively. Furthermore, 𝐼(𝑡) tends to a
positive constant. This shows that 𝐼∗ is globally asymptoti-
cally stable.

Remark 5. Theorem 3 reveals that 𝐼(𝑡) tends to a positive
constant 𝐼∗. From an epidemiological standpoint, it indicates
that computer virus would persist in network. Thus, one
can conclude that any effort in eradicating computer virus is
doomed to failure. Thus, the best achievable goal is to make
the number of infected computers below an acceptable level
(i.e., as low as possible). Note that 𝐼∗ cannot be expressed in a
specific formula, and it follows from Remark 2 that 0 < 𝐼∗ <𝐴. Then, one could keep the value of 𝐴 below an acceptable
threshold. To this end, the following result is made.

Theorem6. From Equation (3),𝐴 = 𝛿(𝜂1+𝜂2)/𝜇(𝜇+𝛾1+𝜂1+𝜂2). Then 𝜕𝐴/𝜕𝜇 < 0, 𝜕𝐴/𝜕𝛾1 < 0, 𝜕𝐴/𝜕𝛿 > 0, 𝜕𝐴/𝜕𝜂1 > 0,
and 𝜕𝐴/𝜕𝜂2 > 0.
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Figure 3: An illustration of the impact of 𝜎(𝐼) on 𝐼(𝑡) for system (1)
given in Example 8.

Proof. Since 𝐴 = 𝛿(𝜂1 + 𝜂2)/𝜇(𝜇 + 𝛾1 + 𝜂1 + 𝜂2), then
𝜕𝐴𝜕𝜇 = −𝛿 (𝜂1 + 𝜂2) (2𝜇 + 𝛾1 + 𝜂1 + 𝜂2)

𝜇2 (𝜇 + 𝛾1 + 𝜂1 + 𝜂2)2 < 0,
𝜕𝐴𝜕𝛾1 = − 𝛿 (𝜂1 + 𝜂2)

𝜇 (𝜇 + 𝛾1 + 𝜂1 + 𝜂2)2 < 0,
𝜕𝐴𝜕𝛿 = 𝜂1 + 𝜂2𝜇 (𝜇 + 𝛾1 + 𝜂1 + 𝜂2) > 0,
𝜕𝐴𝜕𝜂1 =

𝛿 (𝜇 + 𝛾1)
𝜇 (𝜇 + 𝛾1 + 𝜂1 + 𝜂2)2 > 0,

𝜕𝐴𝜕𝜂2 =
𝛿 (𝜇 + 𝛾1)

𝜇 (𝜇 + 𝛾1 + 𝜂1 + 𝜂2)2 > 0.

(14)

Thus, the proof is complete.

Remark 7. Theorem 6 implies the effects of some system
parameters on the value of 𝐴.

In addition, the following two examples exhibit the
impacts of 𝜎(𝐼) and 𝜃 on 𝐼, respectively.
Example 8. Consider system (1) with 𝛿 = 5, 𝜇 = 0.01,𝜂1 = 0.01, 𝜂2 = 0.04, 𝛾1 = 0.04, 𝛾2 = 0.08895, and 𝜃 = 0.01.
Figure 3 demonstrates the time plot of this systemwith initial
condition (𝑆(0), 𝐼(0), 𝐸(0)) = (450, 10, 40).
Example 9. Consider system (1) with 𝛿 = 5, 𝜇 = 0.01,𝜂1 = 0.04, 𝜂2 = 0.08, 𝛾1 = 0.08, 𝛾2 = 0.08895, and𝜎(𝐼) = 0.004487𝐼/(1+√𝐼). Figure 4 shows the timeplot of this
systemwith initial condition (𝑆(0), 𝐼(0), 𝐸(0)) = (450, 10, 40).
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Figure 4: An illustration of the impact of 𝜃 on 𝐼(𝑡) for system (1)
given in Example 9.

Figures 3 and 4 show the effects of different infection
rates and infected removable media on virus diffusion,
respectively.

4. Optimal Control of the Model

To make a tradeoff between control cost and control effect,
the control variable 𝑢(𝑡) meaning the control strategy is
applied in the proposed model (system (1)). Then, one can
get the controlled dynamical system

�̇� = 𝛾2𝐼 + 𝜂2𝐸 − 𝜇𝑆 − 𝜎 (𝐼) 𝑆 − 𝛾1𝑆 − 𝜃𝑆,
�̇� = 𝜎 (𝐼) 𝑆 + 𝜃𝑆 − 𝜇𝐼 − 𝛾1𝐼 − 𝑢 (𝑡) 𝐼 + 𝜂1𝐸,
�̇� = 𝛿 + 𝛾1𝑆 + 𝛾1𝐼 − 𝜇𝐸 − 𝜂1𝐸 − 𝜂2𝐸,

(15)

with initial condition (𝑆(0), 𝐼(0), 𝐸(0))𝑇 ∈ Ω, where
Ω = {(𝑆, 𝐼, 𝐸)𝑇 ∈ 𝑅3+ | 𝑆 + 𝐼 + 𝐸 ≤ 𝛿𝜇} . (16)

The admissible control set is

𝑈 = {𝑢 (⋅) ∈ 𝐿2 [0, 𝑇] | 𝛾2 ≤ 𝑢 (⋅) ≤ 𝛾2} , (17)

where 𝛾2 and 𝛾2 are positive constants and 0 < 𝛾2 < 𝛾2 < 1.
Let x(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝐸(𝑡))𝑇. Then system (15) can be

written in matrix notation as

𝑑x (𝑡)𝑑𝑡 = f (x (𝑡) , 𝑢 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇, (18)

with initial condition x(0) ∈ Ω.
Now, the objective is to find a control variable 𝑢(⋅) so as

to minimize both the number of infected computers and the

total budget for treatment and vaccination during the time
period [0, 𝑇]. That is, it suffices to solve the optimal control
problem.

Minimize𝑢(⋅)∈𝑈 𝐽 (𝑢 (⋅)) = ∫𝑇
0

𝐿 (x (𝑡) , 𝑢 (𝑡)) 𝑑𝑡 (19)

subject to system (18), where

𝐿 (x, 𝑢) = 𝐼 + 𝜖𝑢22 (20)

is the Lagrangian and 𝜖 > 0 is a tradeoff factor based on the
control cost and control effect.

Theorem 10. The optimal control problem (19) has an optimal
control.

Proof. From equations (19) and (20), one can get that

(1) there exist 𝑢(⋅) ∈ 𝑈 such that system (18) is solvable,

(2) the admissible control set 𝑈 is convex and closed,

(3) the right-hand side of system (18) is bounded by a
linear function in x,

(4) 𝐿(x, 𝑢) is convex on 𝑈,
(5) there exist 𝜌 = 2, 𝑐1 = 𝜖/2, and 𝑐2 = 0 such that𝐿(x, 𝑢) ≥ (𝜖/2)‖𝑢‖22.

Thus, the claimed result follows directly from [31].

Theorem 11. Suppose �̃�(⋅) is an optimal control for the optimal
control problem (19), and (�̃�(𝑡), �̃�(𝑡), �̃�(𝑡))𝑇 is the solution to
system (18) with 𝑢(⋅) = �̃�(⋅). Then, there exist functions 𝜆1(𝑡),𝜆2(𝑡), and 𝜆3(𝑡), 0 ≤ 𝑡 ≤ 𝑇, such that

𝑑𝜆1 (𝑡)𝑑𝑡 = 𝜆1 (𝑡) (𝜇 + 𝛾1 + 𝜃 + 𝜎 (�̃� (𝑡))) − 𝛾1𝜆3 (𝑡)
− 𝜆2 (𝑡) (𝜃 + 𝜎 (�̃� (𝑡))) ,

𝑑𝜆2 (𝑡)𝑑𝑡 = −1 − 𝜆1 (𝑡) (𝜇 − 𝐶�̃� (𝑡)) − 𝛾1𝜆3 (𝑡)
+ 𝜆2 (𝑡) (𝜇 + 𝛾1 + �̃� (𝑡) − 𝐶�̃� (𝑡)) ,

𝑑𝜆3 (𝑡)𝑑𝑡 = −𝜂2𝜆1 (𝑡) − 𝜂1𝜆2 (𝑡) + (𝜇 + 𝜂1 + 𝜂2) 𝜆3 (𝑡) ,
0 ≤ 𝑡 ≤ 𝑇,

(21)

with transversality conditions 𝜆1(𝑇) = 𝜆2(𝑇) = 𝜆3(𝑇) = 0,
where

𝐶 = 𝛽𝑓 (�̃� (𝑡)) − 𝛽�̃� (𝑡) 𝑓 (�̃� (𝑡))
𝑓2 (�̃� (𝑡)) . (22)
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Furthermore, we have

𝑢∗ (𝑡)
= max{min{(𝜆2 (𝑡) − 𝜆1 (𝑡)) �̃� (𝑡)𝜖 , 𝛾2} , 𝛾2} ,

0 ≤ 𝑡 ≤ 𝑇.
(23)

Proof. Note that the Hamiltonian is

𝐻(𝑆, 𝐼, 𝐸, 𝜆1, 𝜆2, 𝜆3, 𝑢)
= 𝐼 + 𝜖2𝑢2 + 𝜆1 𝑑𝑆𝑑𝑡 + 𝜆2 𝑑𝐼𝑑𝑡 + 𝜆3 𝑑𝐸𝑑𝑡 ,

(24)

where 𝜆1, 𝜆2, and 𝜆3 are undetermined.
Then, applying the Pontryagin Minimum Principle [32],

there exist functions 𝜆1(𝑡), 𝜆2(𝑡), and 𝜆3(𝑡), 0 ≤ 𝑡 ≤ 𝑇, such
that

𝑑𝜆1 (𝑡)𝑑𝑡
= −𝜕𝐻(�̃� (𝑡) , �̃� (𝑡) , �̃� (𝑡) , 𝜆1 (𝑡) , 𝜆2 (𝑡) , 𝜆3 (𝑡) , �̃� (𝑡))

𝜕𝑆 ,
𝑑𝜆2 (𝑡)𝑑𝑡
= −𝜕𝐻(�̃� (𝑡) , �̃� (𝑡) , �̃� (𝑡) , 𝜆1 (𝑡) , 𝜆2 (𝑡) , 𝜆3 (𝑡) , �̃� (𝑡))

𝜕𝐼 ,
𝑑𝜆3 (𝑡)𝑑𝑡
= −𝜕𝐻(�̃� (𝑡) , �̃� (𝑡) , �̃� (𝑡) , 𝜆1 (𝑡) , 𝜆2 (𝑡) , 𝜆3 (𝑡) , �̃� (𝑡))

𝜕𝐸 ,
0 ≤ 𝑡 ≤ 𝑇.

(25)

Hence, system (21) follows by a straightforward calculation.
As the terminal cost is unspecified and the final state is free,
the transversality conditions hold.

Note that the optimality condition 𝐻(�̃�(⋅), �̃�(⋅), �̃�(⋅),𝜆1(⋅), 𝜆2(⋅), 𝜆3(⋅), �̃�(⋅)) = min𝑢(⋅)∈𝑈𝐻(�̃�(⋅), �̃�(⋅), �̃�(⋅), 𝜆1(⋅),𝜆2(⋅), 𝜆3(⋅), 𝑢(⋅)). Then, either

𝜕𝐻(�̃� (𝑡) , �̃� (𝑡) , �̃� (𝑡) , 𝜆1 (𝑡) , 𝜆2 (𝑡) , 𝜆3 (𝑡) , �̃� (𝑡))
𝜕𝑢

= 𝜖�̃� (𝑡) + 𝜆1 (𝑡) �̃� (𝑡) − 𝜆2 (𝑡) �̃� (𝑡) = 0
(26)

or �̃�(𝑡) = 𝛾2 or �̃�(𝑡) = 𝛾2. Thus, the proof is complete.

By combining the above discussions, the optimality sys-
tem for the optimal control problem (19) can be derived as
follows:

𝑑𝑆 (𝑡)𝑑𝑡
= 𝑢 (𝑡) 𝐼 (𝑡) + 𝜂2𝐸 (𝑡) − 𝜇𝑆 (𝑡) − 𝜎 (𝐼 (𝑡)) 𝑆 (𝑡)

− 𝛾1𝑆 (𝑡) − 𝜃𝑆 (𝑡) ,
𝑑𝐼 (𝑡)𝑑𝑡

= 𝜎 (𝐼 (𝑡)) 𝑆 (𝑡) + 𝜃𝑆 (𝑡) − 𝜇𝐼 (𝑡) − 𝛾1𝐼 (𝑡)
− 𝑢 (𝑡) 𝐼 (𝑡) + 𝜂1𝐸 (𝑡) ,

𝑑𝐸 (𝑡)𝑑𝑡
= 𝛿 + 𝛾1𝑆 (𝑡) + 𝛾1𝐼 (𝑡) − 𝜇𝐸 (𝑡) − 𝜂1𝐸 (𝑡) − 𝜂2𝐸 (𝑡) ,

𝑑𝜆1 (𝑡)𝑑𝑡
= 𝜆1 (𝑡) (𝜇 + 𝛾1 + 𝜃 + 𝜎 (𝐼 (𝑡)))

− 𝜆2 (𝑡) (𝜃 + 𝜎 (𝐼 (𝑡))) − 𝛾1𝜆3 (𝑡) ,
𝑑𝜆2 (𝑡)𝑑𝑡

= −1 − 𝜆1 (𝑡) (𝜇 − 𝐶𝑆 (𝑡))
+ 𝜆2 (𝑡) (𝜇 + 𝛾1 + 𝑢 (𝑡) − 𝐶𝑆 (𝑡)) − 𝛾1𝜆3 (𝑡) ,

𝑑𝜆3 (𝑡)𝑑𝑡 = −𝜂2𝜆1 (𝑡) − 𝜂1𝜆2 (𝑡) + (𝜇 + 𝜂1 + 𝜂2) 𝜆3 (𝑡) ,
𝑢 (𝑡) = max{min{(𝜆2 (𝑡) − 𝜆1 (𝑡)) 𝐼 (𝑡)𝜖 , 𝛾2} , 𝛾2} ,

0 ≤ 𝑡 ≤ 𝑇,

(27)

with (𝑆(0), 𝐼(0), 𝐸(0))𝑇 ∈ Ω, and 𝜆1(𝑇) = 𝜆2(𝑇) = 𝜆3(𝑇) =0.
Next, the effectiveness of optimal control will be exam-

ined. Here we have to point out that all parameter values are
chosen hypothetically due to the unavailability of real-world
data.

Example 12. Suppose that 𝛿 = 2, 𝜇 = 0.01, 𝜂1 = 0.012, 𝜂2 =0.021, 𝛾1 = 0.01, 𝜃 = 0.015, 𝛾2 = 0.001, 𝛾2 = 0.8, 𝜎(𝐼) =
0.005𝐼/(1 + √𝐼), 𝜖 = 15, and 𝑇 = 100. The optimality system
(18) with (𝑆(0), 𝐼(0), 𝐸(0)) = (100, 60, 40) is to be numerically
solved with the backward-forward Runge-Kutta fourth-order
scheme. Then Figures 5–7 and Table 1 are obtained.

Figures 5 and 6 exhibit the evolution of 𝑆 and 𝐼 with
different control strategies, respectively. From these two
figures, it is natural to see that the optimal control �̃� is
superior to others.
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Table 1: The values of 𝐼 and objective function 𝐽 under different control strategies 𝑢.
𝑢 = �̃� 𝑢 = 0.001 𝑢 = 0.2 𝑢 = 0.4 𝑢 = 0.6 𝑢 = 0.8

𝐼(𝑢) 5.5 104.1 19.9 9.5 6.1 4.3𝐽(𝑢) 748.1 9894.8 2637.1 1671.4 1373.1 1322.9
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Figure 5: Evolution of number of susceptible computers with
different control strategies.

Figure 7 shows the corresponding optimal control strat-
egy.

Table 1 lists the values of infected computers 𝐼 and
objective function 𝐽 under different control strategies. It is
easy to conclude that �̃� is the best choice.

5. Conclusions and Prospects

This paper has investigated an SIES model with generic
nonlinear infection rate. A thorough analysis shows that the
unique (viral) equilibrium is globally asymptotically stable.
This result implies that any effort in eradicating computer
virus is inoperative. As a result, a countermeasure, which
mainly aims to maintain the number of infected computers
at an acceptable level, and optimal control analysis of the
proposed model have been posed. Some numerical examples
are also included.

The study of this model not only implies some new
practical measures but also gives a theoretical support to the
usefulness of some existing antivirus strategies and provides
the basis to developing many other more elaborated models.

The study can be continued in several directions. First
of all, it would be interesting for complex network (e.g.,
scale-free network) because our model is a homogeneous
model. Next, delays (or pulses) could be incorporated in our
model so as to characterize the delay in the development
of new vaccine (or the emergency of new virus). Finally,
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Figure 6: Evolution of number of infected computers with different
control strategies.
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Figure 7: An optimal control function for system (18).

our model involves a relatively large number of parameters,
which are very difficult to establish with accuracy. Therefore,
it is appropriate to modify our model by considering the
parameters to be random variables.
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