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The time domain model reduction based on general orthogonal polynomials has been presented for linear systems. In this paper,
we extend this approach by taking the derivative information of the system into account in the context of model reduction of
coupled systems. We expand the derivative terms over the Chebyshev polynomial basis and show that Chebyshev coefficients of
the expansion possess a specific structure, making it possible to preserve much more time domain information by employing
projection methods. Besides, with the well-defined projection matrices, the resulting reduced model shares the same topological
structure with the original coupled system. Two numerical examples are simulated to showcase the accuracy of incorporating the
derivative information into model reduction.

1. Introduction

The accurate description and increasing complexity of mod-
eling frequently result in large scale dynamical systems,which
are modeled mathematically by high order differential equa-
tions. In such large scale settings, the direct numerical simu-
lation of these systems would be extremely time-consuming
[1–3].Model reduction reduces the large system to amoderate
size system, which has much less states and retains essential
properties of the original system, so as to enable a fast
numerical simulation [4, 5]. Model reduction has become
a powerful tool for the modeling, prediction, control, and
optimization of a wide range of complex systems.

In the literature, the theory and computational tools of
model reduction have been studied extensively, and most of
them fall into two categories:momentmatchingmethods and
balanced truncationmethods. By taking Laplace transforma-
tion, moment matching methods aim to provide a Páde-type
approximation to the transfer function of original systems in
the frequency domain. As the approximation can be achieved
implicitly by Krylov-based projection methods, this kind of
methods is computationally efficient and applies to extremely
large scale systems [6–9]. However, reducedmodels resulting

from thismethodmay be unstable.The basic idea of balanced
truncation methods relies on first transforming the original
model to a balancing realization which has diagonal and
equal controllability and observability Gramians and then
directly truncating the states corresponding to the small Han-
kel singular values. On the one hand, balanced truncation
methods not only guarantee the stability of original models,
but also provide a global error bound, which allows for an
adaptive choice of the reduced order for a prescribed error
tolerance. On the other hand, the computation of balancing
transformation needs to solve a couple of high order Lya-
punov equations, making the procedure of balanced trunca-
tion computationally intensive in large scale settings [10, 11].

Recently, the direct model reduction in the time domain
draws much more attentions, especially the algorithms based
on orthogonal polynomials. In [12], model reduction is per-
formed by projecting the impulse response of the original sys-
tem onto a smaller dimensional subspace spanned by Cheby-
shev polynomials. Following the same spirit, the approach
given in [13] carries out the reduction based on Laguerre
polynomials and shows that a closed-form expression for
the expansion coefficients can be derived more simply. Later,
Laguerre function approximation is also introduced into the
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timedomain reduction and it has been proven that in this case
there exists an equivalent relationship to moment matching
methods in the frequency domain [14–17]. It is not until
recently that the theoretical framework of model reduction
in the time domain based on general orthogonal polynomials
has been established for linear systems [18]. Also, it applies to
the reduction of nonlinear systems [19]. However, notice that
the approach on the time domain reduction has been initially
built but far more below perfection. For example, the current
approach typically employs one-sided projection methods,
and there still exist some degrees of freedom in the con-
struction of reduced models. As for the structure-preserving
reduction in the time domain, it has not been considered
rigorously. The execution of the approach also needs to be
improved. All of these issues provide the main motivation of
our works.

In this paper, we present a two-sided projection method
for coupled systems in the time domain. To extend the exist-
ing works, we include derivatives of the time response of the
system in the definition of projection matrix. Our approach
towards approximating the derivatives of time responses uses
Chebyshev polynomials, and we show that the Chebyshev
coefficients of time responses possess a specific structure,
similar to that of moments in the frequency domain but
with different starting vectors. This benefits a lot the achieve-
ment of two-sided projection methods in the time domain.
The topological structure of coupled systems is preserved
from the perspective of subsystems by using the proposed
approach. The reduced models produced by the proposed
approach preserve much more time domain information,
thereby providing a superior approximation. For the existing
techniques on model reduction of coupled systems, we refer
the reader to [20–23] and the references therein.

This paper is organized as follows. Section 2 explains our
model and briefly reviews the existing Chebyshev approach.
Section 3 examines the specific structure of Chebyshev coeffi-
cients and establishes a two-sided reduction technique in the
time domain for coupled systems. The main property of the
approach is proved rigorously. Numerical examples verify the
theoretical analysis in Section 4. Finally, Section 5 concludes
this paper.

2. Model Reduction of Coupled Systems

We focus on the coupled system composed of 𝑘 coupled linear
time-invariable (LTI) subsystems

𝑀𝑖�̇�𝑖 (𝑡) = 𝑁𝑖𝑥𝑖 (𝑡) + 𝑏𝑖𝑢𝑖 (𝑡) ,
𝑦𝑖 (𝑡) = 𝑐T𝑖 𝑥𝑖 (𝑡) ,

(1)

where 𝑀𝑖, 𝑁𝑖 ∈ R𝑛𝑖×𝑛𝑖 , 𝑏𝑖, 𝑐𝑖 ∈ R𝑛𝑖 , and 𝑥𝑖(𝑡), 𝑢𝑖(𝑡), and 𝑦𝑖(𝑡)
are the state, input, and output of the subsystems, respectively,𝑖 = 1, 2, . . . , 𝑙. These subsystems are interconnected with each
other by the following algebraic relationships:

𝑢𝑖 (𝑡) = 𝑘𝑖1𝑦1 (𝑡) + ⋅ ⋅ ⋅ + 𝑘𝑖𝑙𝑦𝑙 (𝑡) + 𝑔𝑖𝑢 (𝑡) ,
𝑦 (𝑡) = 𝑟1𝑦1 (𝑡) + ⋅ ⋅ ⋅ + 𝑟𝑙𝑦𝑙 (𝑡) , (2)
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Figure 1: A diagram of a system coupled through inputs/outputs.

where 𝑟𝑖, 𝑔𝑖, 𝑘𝑖𝑗 ∈ R (𝑗 = 1, 2, . . . , 𝑙) are constants. Besides,𝑢(𝑡) and 𝑦(𝑡) are the input and output of the whole coupled
system, respectively. For simplicity, we assume the zero initial
condition 𝑥𝑖(0) = 0 for 𝑖 = 1, 2, . . . , 𝑙. An example of a
coupled system connected by the inputs and outputs is shown
in Figure 1.

The whole coupled system (1) and (2) is an LTI system. In
fact, by defining the state 𝑥(𝑡) = [𝑥T1 (𝑡) 𝑥T2 (𝑡) ⋅ ⋅ ⋅ 𝑥T𝑙 (𝑡)]T
along with the following matrices

𝑀𝑐 = diag {𝑀1,𝑀2, . . . ,𝑀𝑙} ,
𝑁𝑐 = diag {𝑁1, 𝑁2, . . . , 𝑁𝑙} ,
𝐵𝑐 = diag {𝑏1, 𝑏2, . . . , 𝑏𝑙} ,
𝐶𝑐 = diag {𝑐T1 , 𝑐T2 , . . . , 𝑐T𝑙 } ,
𝑅 = [𝑟1 𝑟2 ⋅ ⋅ ⋅ 𝑟𝑙] ,
𝐺 = [𝑔1 𝑔2 ⋅ ⋅ ⋅ 𝑔𝑙]T ,
𝐾 = [𝑘𝑖𝑗] ,

(3)

we get the following closed-form realization of the coupled
system:

𝑀�̇� (𝑡) = 𝑁𝑥 (𝑡) + 𝑏𝑢 (𝑡) ,
𝑦 (𝑡) = 𝑐T𝑥 (𝑡) , (4)

where coefficient matrices are expressed as

𝑀 = 𝑀𝑐,
𝑁 = 𝑁𝑐 + 𝐵𝑐𝐾𝐶𝑐,
𝑏 = 𝐵𝑐𝐺,
𝑐T = 𝑅𝐶𝑐.

(5)

The whole system is of order 𝑛 = 𝑛1 + 𝑛2 + ⋅ ⋅ ⋅ + 𝑛𝑙.
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For the above linear system, with the properly chosen𝑉,𝑊 ∈ R𝑛×𝑟, a reduced model resulting from projection
methods can be defined as

�̃� ̇̃𝑥 (𝑡) = �̃�𝑥 (𝑡) + �̃�𝑢 (𝑡) ,
𝑦 (𝑡) = 𝑐T𝑥 (𝑡) ,

(6)

where �̃� = 𝑊T𝑀𝑉, �̃� = 𝑊T𝑁𝑉, �̃� = 𝑊T𝑏, and 𝑐 = 𝑉T𝑐.
The current time domain reduction techniques typically use
one-sided projection methods, that is, adopting 𝑊 = 𝑉 in
the above definition. If the different 𝑉 and 𝑊 are adopted,
the methods are called two-sided projection methods. In
[18], the time domain reduction is presented based on the
general orthogonal polynomials for linear systems. The basic
idea is to approximate the impulse response of the system
with orthogonal polynomials and then project the original
system onto a smaller dimensional subspace spanned by the
coefficient vectors of the approximation.

Chebyshev polynomials are defined by the sequence [24]

𝑇𝑖 (𝑡) = cos (𝑖 arccos 𝑡) , − 1 ≤ 𝑡 ≤ 1, 𝑖 = 0, 1, . . . , (7)

and are orthonormal regarding the weight function 𝑤(𝑡) =
1/√1 − 𝑡2. With the impulse function as the input function
and Chebyshev polynomials for the approach proposed in
[18], the impulse time response of the system is represented
by the𝑚th Chebyshev polynomial approximation

𝑥 (𝑡) ≈ 𝑎0𝑇0 (𝑡) + 𝑎1𝑇1 (𝑡) + ⋅ ⋅ ⋅ + 𝑎𝑚𝑇𝑚 (𝑡) , (8)

where 𝑎𝑖 ∈ R𝑛 are Chebyshev coefficient vectors for 𝑖 =0, 1, . . . , 𝑚 and Chebyshev polynomials are rescaled as the
definition interval is different than [−1, 1]. By integrating the
state equation of the system and plugging the approximation
into the derived equality, it turns out that 𝑎0, 𝑎1, . . . , 𝑎𝑚 satisfy
the linear equation

𝑀𝑎0 = (𝑁𝑎0 − 1
4𝑁𝑎1) + 𝑚∑

𝑖=2

𝑁𝑎𝑖 (−1)
𝑖+1

𝑖2 − 1 + 𝑏,

𝑁𝑎0 = 0.5𝑁𝑎2 +𝑀𝑎1,
𝑁𝑎𝑖−1 = 𝑁𝑎𝑖+1 + 2𝑖𝑀𝑎𝑖, 2 ≤ 𝑖 ≤ 𝑚 − 1,
𝑁𝑎𝑚−1 = 2𝑚𝑀𝑎𝑚.

(9)

Note that the recurrence relationship of Chebyshev polyno-
mial plays a vital role in the extraction of (9). Further, the pro-
jection matrix 𝑉 is defined as span{𝑉} = span{𝑎0, 𝑎1, . . . , 𝑎𝑚}
along with 𝑊 = 𝑉, leading to reduced model (6) [12, 18]. In
this paper we use the notation span{𝑉} to denote the column
space spanned by the columns of the matrix 𝑉, and so on.

Unfortunately, the topological structure of couple systems
is no longer recognizable after the above reduction procedure.
More importantly, the choice of𝑊 = 𝑉 appears not to be an
advisable choice to achieve superior accurate reducedmodels
in contrast to two-sided projection methods [5, 22].

3. Derivative-Extended Time
Domain Reduction

We study two-sided projection methods in the time domain
by incorporating the derivatives of the time response into
model reduction. The efficient execution of the approach
benefits from the nice structure of Chebyshev coefficients.

3.1. Chebyshev Coefficients. Let us pay attention back to linear
equation (9). Since its coefficient matrix is a block-wise
Hessenberg matrix, if 𝑎𝑚 is available and 𝑁 is nonsingular,
the rest of coefficients 𝑎𝑖 can be expressed as

𝑎𝑚−1 = 2𝑚𝑁−1𝑀𝑎𝑚,
𝑎𝑚−2 = 𝑎𝑚 + 4 (𝑚 − 1)𝑚 (𝑁−1𝑀)2 𝑎𝑚,
𝑎𝑚−3 = 4 (𝑚 − 1)𝑁−1𝑀𝑎𝑚

+ 8 (𝑚 − 2) (𝑚 − 1)𝑚 (𝑁−1𝑀)3 𝑎𝑚,
⋅ ⋅ ⋅ .

(10)

So instead of solving the linear equation directly, one can
plug (10) into the first equation of (9) to get 𝑎𝑚 first and then
calculate other 𝑎𝑖 sequently with much less effort. In fact, our
examination indicates that, for the time domain reduction,
only the vector 𝑎𝑚 is essential for our purpose.

It follows from (10) by induction that, for 1 ≤ 𝑖 ≤ 𝑚,
𝑎𝑚−𝑖 is a linear combination of 𝑁−1𝑀𝑎𝑚, (𝑁−1𝑀)3𝑎𝑚, . . . ,(𝑁−1𝑀)𝑖𝑎𝑚 when 𝑖 is odd, and when 𝑖 is even that is
a linear combination of 𝑎𝑚, (𝑁−1𝑀)2𝑎𝑚, (𝑁−1𝑀)4𝑎𝑚, . . . ,(𝑁−1𝑀)𝑖𝑎𝑚. As a result, (10) can be expressed as a compact
form

[𝑎0 ⋅ ⋅ ⋅ 𝑎𝑚−1 𝑎𝑚]
= [(𝑁−1𝑀)𝑚 𝑎𝑚 ⋅ ⋅ ⋅ (𝑁−1𝑀)𝑎𝑚 𝑎𝑚] Γ,

(11)

where Γ is a lower triangularmatrix of (𝑚+1)×(𝑚+1). As the
diagonal elements of the matrix Γ are nonzero, equality (11)
implies that there exists an invertible linear transformation
between the two groups of vectors, and we conclude that

span {𝑎0, 𝑎1, . . . , 𝑎𝑚} = K𝑚+1 (𝑁−1𝑀;𝑎𝑚) , (12)

where K𝑚+1(𝑁−1𝑀; 𝑎𝑚) is the Krylov subspace defined by
𝑁−1𝑀 and 𝑎𝑚. It means that the time domain reduction
based onChebyshev polynomials projects the original system
onto a low order Krylov subspace. This is similar to that of
moment matching methods in the frequency domain, just
with a different starting vector.

The 𝑚th Chebyshev approximation to the system output𝑦(𝑡) can be obtained directly from (8). There holds 𝑦(𝑡) ≈
𝑐T𝑎0𝑇0(𝑡) + 𝑐T𝑎1𝑇1(𝑡) + ⋅ ⋅ ⋅ + 𝑐T𝑎𝑚𝑇𝑚(𝑡), and Chebyshev
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coefficients of 𝑦(𝑡) are referred to as 𝑌𝑖 = 𝑐T𝑎𝑖 for 𝑖 =0, 1, . . . , 𝑚. It follows from (11) that 𝑌𝑖 satisfy
[𝑌0 ⋅ ⋅ ⋅ 𝑌𝑚−1 𝑌𝑚]

= [𝑐T (𝑁−1𝑀)𝑚 𝑎𝑚 ⋅ ⋅ ⋅ 𝑐T (𝑁−1𝑀)𝑎𝑚 𝑐T𝑎𝑚] Γ,
(13)

which implies that preserving 𝑌𝑖 in the reduced model
amounts to the preservation of the terms 𝑐T(𝑁−1𝑀)𝑖𝑎𝑚.

We extend previous works in order to consider the
derivatives of the time impulse. For a given input function𝑢(𝑡), assume that it has the 𝑚th Chebyshev approximation𝑢(𝑡) ≈ ∑𝑚𝑖=0 𝑢𝑖𝑇𝑖(𝑡) with scalar coefficients 𝑢𝑖. Plugging the
approximation of 𝑥(𝑡) and 𝑢(𝑡) into the state equation results
in

𝑀�̇� (𝑡) ≈ 𝑁 𝑚∑
𝑖=0

𝑎𝑖𝑇𝑖 (𝑡) + 𝑏 𝑚∑
𝑖=0

𝑢𝑖𝑇𝑖 (𝑡) . (14)

If 𝑀 is nonsingular, multiplying the above equation on the
left by 𝑐T𝑀−1 leads to the Chebyshev expansion

̇𝑦 (𝑡) ≈ 𝑚∑
𝑖=0

(𝑐T𝑀−1𝑁𝑎𝑖 + 𝑐T𝑀−1𝑏𝑢𝑖) 𝑇𝑖 (𝑡) . (15)

That is, Chebyshev coefficients of the derivative are 𝑌(1)𝑖 =
𝑐T𝑀−1𝑁𝑎𝑖 + 𝑐T𝑀−1𝑏𝑢𝑖 for 𝑖 = 0, 1, . . . , 𝑚. With the aid of
(11), it has the matrix form

[𝑌(1)0 ⋅ ⋅ ⋅ 𝑌(1)𝑚−1 𝑌(1)𝑚 ]
= [𝑐T (𝑁−1𝑀)𝑚−1 𝑎𝑚 ⋅ ⋅ ⋅ 𝑐T𝑎𝑚 𝑐T (𝑁−1𝑀)−1 𝑎𝑚] Γ

+ 𝑐T𝑀−1𝑏 [𝑢0 ⋅ ⋅ ⋅ 𝑢𝑚−1 𝑢𝑚] .
(16)

We proceed to the higher order derivatives. Let the 𝑗th
derivative of 𝑦(𝑡) and 𝑢(𝑡) be 𝑦(𝑖)(𝑡) and 𝑢(𝑗)(𝑡), respectively,
and let 𝑢(𝑗)(𝑡) have the approximation 𝑢(𝑗)(𝑡) ≈ ∑𝑚𝑖=0 𝑢(𝑗)𝑖 𝑇𝑖(𝑡)
with scalar coefficients 𝑢(𝑗)𝑖 for 𝑖, 𝑗 = 0, 1, . . . , 𝑚. Generally,
there holds

𝑀𝑥(𝑗) (𝑡) = 𝑁𝑥(𝑗−1) (𝑡) + 𝑏𝑢(𝑗−1) (𝑡) ,
𝑦(𝑗) (𝑡) = 𝑐T𝑀−1𝑁𝑥(𝑗−1) (𝑡) + 𝑐T𝑀−1𝑏𝑢(𝑗−1) (𝑡) . (17)

Likewise, by induction it follows from (16) and (17) that
the Chebyshev coefficients 𝑌(𝑗)𝑖 of the high order derivatives
𝑦(𝑗)(𝑡) satisfy

[𝑌(𝑗)0 ⋅ ⋅ ⋅ 𝑌(𝑗)𝑚−1 𝑌(𝑗)𝑚 ] = [𝑐T (𝑀−1𝑁)𝑚−𝑗 𝑎𝑚 ⋅ ⋅ ⋅ 𝑐T (𝑀−1𝑁)−𝑗+1 𝑎𝑚 𝑐T (𝑀−1𝑁)−𝑗 𝑎𝑚] Γ + 𝑐T (𝑀−1𝑁)𝑗−1

⋅ 𝑀−1𝑏 [𝑢0 ⋅ ⋅ ⋅ 𝑢𝑚−1 𝑢𝑚] ⋅ ⋅ ⋅ + 𝑐T𝑀−1𝑏 [𝑢(𝑗−1)0 ⋅ ⋅ ⋅ 𝑢(𝑗−1)𝑚−1 𝑢(𝑗−1)𝑚 ] .
(18)

Note that such an explicit expression for Chebyshev coeffi-
cients looks rather cumbersome, but coefficient matrices of
the system are involved in a cyclic manner, similar to that of
moments in the frequency domain [25].

With the above detection on the Chebyshev coefficients,
in the next subsection we introduce the derivative informa-
tion into the construction of reduced models, leading to a
two-sided reduction method in the time domain.

3.2. Main Property. Now we are in a position to present
the derivative-extended time domain reduction in the frame-
work of two-sided projection methods. For reduced model
(6), let the𝑚th Chebyshev approximation of the state and the
output be

𝑥 (𝑡) ≈ 𝑚∑
𝑖=0

𝑎𝑖𝑇𝑖 (𝑡) ,

𝑦 (𝑡) ≈ 𝑚∑
𝑖=0

�̃�𝑖𝑇𝑖 (𝑡) .
(19)

Here, we have �̃�𝑖 = 𝑐T𝑎𝑖 for 𝑖 = 0, 1, . . . , 𝑚. The Chebyshev
approximation of the high order derivatives is denoted by

𝑦(𝑗) (𝑡) ≈ �̃�(𝑗)0 𝑇0 (𝑡) + ⋅ ⋅ ⋅ + �̃�(𝑗)𝑚−1𝑇𝑚−1 (𝑡) + �̃�(𝑗)𝑚 𝑇𝑚 (𝑡) (20)

for 𝑗 = 1, 2, . . . , 𝑚. Obviously, Chebyshev coefficients �̃�𝑖
and �̃�(𝑗)𝑖 also share the same characteristic structure as
shown in (13) and (18), just by replacing 𝑀,𝑁, 𝑏, 𝑐, 𝑎𝑚 with
�̃�, �̃�, �̃�, 𝑐, 𝑎𝑚.

Given the input 𝑢(𝑡) as the impulse function, we aim to
generate a reduced model such that it can preserve a desired
number of Chebyshev coefficients of the impulse response
and its derivatives of original systems. More precisely, we
desire

𝑌𝑖 = �̃�𝑖, 𝑌(𝑗)𝑖 = �̃�(𝑗)𝑖 (21)

for 𝑖 = 0, 1, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑚. Fortunately, it follows
from (13) and (18) that the achievement of (21) can be
guaranteed by the following equalities:

𝑐T (𝑁−1𝑀)𝑖 𝑎𝑚 = 𝑐T (�̃�−1�̃�)𝑖 𝑎𝑚,
𝑐T (𝑀−1𝑁)𝑗 𝑎𝑚 = 𝑐T (�̃�−1�̃�)𝑗 𝑎𝑚,

𝑐T (𝑀−1𝑁)𝑗−1𝑀−1𝑏 = 𝑐T (�̃�−1�̃�)𝑗−1 �̃�−1�̃�
(22)

for 𝑖 = 0, 1, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑚.
Further, one can observe that the terms in (22) possess

a similar structure to moments defined in the frequency
domain. For more details on moments we refer the reader
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to [4]. Besides, all terms in (22) tie in together. Thanks to
the observation, which provides us with the insight into
the definition of projection matrices 𝑉 and 𝑊, we define 𝑉
and 𝑊, respectively, as an orthonormal basis matrix of the
following Krylov subspaces:

span {𝑉} = K𝑚+1 (𝑁−1𝑀; 𝑎𝑚) ,
span {𝑊} = K𝑚+1 (𝑀−T𝑁T;𝑀−T𝑐) . (23)

Theorem 1. Let 𝑉 and𝑊 be defined as (23). If the matrices𝑁
and𝑀 are invertible, then the equalities in (22) hold; that is, the
reduced model preserves the first 𝑚 + 1 Chebyshev coefficients
of the impulse response and its 𝑗th derivatives of the original
system for 𝑗 = 1, 2, . . . , 𝑚, as shown in (21).

Proof. By the definition of 𝑉, there exists a vector 𝑎𝑚 ∈ R𝑚+1

such that 𝑎𝑚 can be expressed as 𝑎𝑚 = 𝑉𝑎𝑚. We first prove
the equality

(𝑁−1𝑀)𝑖 𝑎𝑚 = 𝑉 (�̃�−1�̃�)𝑖 𝑎𝑚, for 𝑖 = 0, 1, . . . , 𝑚. (24)

For ease of presentation, let 𝑋𝑖 = (𝑁−1𝑀)𝑖𝑎𝑚, and then 𝑋𝑖
solves the linear equation

[[[[[
[

𝐼
−𝑀 𝑁

d d

−𝑀 𝑁

]]]]]
]

[[[[[[
[

𝑋0
𝑋1
...

𝑋𝑚

]]]]]]
]
=
[[[[[[
[

𝑎𝑚
0
...
0

]]]]]]
]
. (25)

Since 𝑋𝑖 lies in the subspace span{𝑉}, there exists a vector
𝑋𝑖 ∈ R𝑚+1 such that 𝑋𝑖 = 𝑉𝑋𝑖. Plugging 𝑋𝑖 into the above
linear equation and multiplying each row on the left by 𝑊T

except the first row by 𝑉T lead to

[[[[[[
[

𝐼
−�̃� �̃�

d d

−�̃� �̃�

]]]]]]
]

[[[[[[[
[

𝑋0
𝑋1
...

𝑋𝑚

]]]]]]]
]

=
[[[[[[
[

𝑎𝑚
0
...
0

]]]]]]
]
. (26)

Solving the above equation iteratively, we get 𝑋𝑖 =
(�̃�−1�̃�)𝑖𝑎𝑚, which implies equality (24).

Next, we prove 𝑎𝑚 = 𝑎𝑚. Multiplying the first equation in
(9) on the left by𝑊T yields

𝑊T𝑀𝑎0 = (𝑊T𝑁𝑎0 − 1
4𝑊T𝑁𝑎1)

+ 𝑚∑
𝑖=2

𝑊T𝑁𝑎𝑖 (−1)
𝑖+1

𝑖2 − 1 +𝑊T𝑏.
(27)

Combining (24) with (11) leads to

[𝑎0 ⋅ ⋅ ⋅ 𝑎𝑚−1 𝑎𝑚]
= 𝑉 [(�̃�−1�̃�)𝑚 𝑎𝑚 ⋅ ⋅ ⋅ (�̃�−1�̃�) 𝑎𝑚 𝑎𝑚] Γ.

(28)

Plugging (28) into (27) leads to a linear equation on 𝑎𝑚, which
happens to be the one for 𝑎𝑚 corresponding to the reduced
model. Owing to the unique solution to the linear equation,
we get 𝑎𝑚 = 𝑎𝑚.

Consequently, there exists

(𝑁−1𝑀)𝑖 𝑎𝑚 = 𝑉 (�̃�−1�̃�)𝑖 𝑎𝑚 for 𝑖 = 0, 1, . . . , 𝑚. (29)

The preservation of 𝑐T(𝑁−1𝑀)𝑖𝑎𝑚 is obtained by multiplying
the equation on the left by 𝑐T. Besides, with the aid of Krylov-
based moment matching techniques [4], there hold

(𝑀−T𝑁T)𝑗 (𝑀−T𝑐) = 𝑊𝑊T (𝑀−T𝑁T)𝑗 (𝑀−T𝑐) ,
𝑐T𝑀−1 (𝑁𝑀−1)𝑗𝑊 = 𝑐T�̃�−1 (�̃��̃�−1)𝑗 .

(30)

Combining (29) with (30) demonstrates that

𝑐T (�̃�−1�̃�)𝑗 𝑎𝑚
= 𝑐T𝑀−1 (𝑁𝑀−1)𝑗−1𝑊(𝑊T𝑁𝑉)𝑎𝑚
= 𝑐T (𝑀−1𝑁)𝑗 𝑎𝑚,

𝑐T (�̃�−1�̃�)𝑗−1 �̃�−1�̃� = 𝑐T𝑀−1 (𝑁𝑀−1)𝑗−1𝑊(𝑊T𝑏)
= 𝑐T (𝑀−1𝑁)𝑗−1𝑀−1𝑏,

(31)

which concludes the proof.

Remark 2. Notice that there are 𝑚2 + 𝑚 conditions imposed
in (21), while there are 3𝑚 + 1 conditions in (22), much
less than the former, which ensures the preservation of all
desired Chebyshev coefficients by the two-sided projection.
Moreover, the left projectionmatrix can be exploited for other
purposes, say preserving the stability, if one just considers
the preservation of Chebyshev coefficients of the impulse
response.

Remark 3. Clearly, the third equality in (22) is concerned
with Markov parameters, which are defined as Taylor coef-
ficients of the transfer function in the frequency domain
when it is expanded around the infinity [4]. Thus a series of
Markov parameters are also guaranteed at the same time by
Theorem 1, and the proposed method can be regarded as a
kind of time-frequency hybrid reduction in some sense.

3.3. Structure-Preserving Implementation. Generally, the top-
ological structure of the system is closely related to its prac-
tical physical structure and should be taken into account in
model reduction. To this end, we partition the projection
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matrices 𝑉 and 𝑊 given in (23) according to the structure
of coupled systems as follows:

𝑉 =
[[[[[[
[

𝑉1
𝑉2
...
𝑉𝑙

]]]]]]
]
,

𝑊 =
[[[[[[
[

𝑊1
𝑊2
...
𝑊𝑙

]]]]]]
]
,

(32)

where the submatrices 𝑉𝑖,𝑊𝑖 ∈ R𝑛𝑖×(𝑚+1) for 𝑖 = 1, 2, . . . , 𝑙.
The resulting projection matrices are defined as

�̂� = diag {𝑉1, 𝑉2, . . . , 𝑉𝑙} ,
�̂� = diag {𝑊1,𝑊2, . . . ,𝑊𝑙} .

(33)

Starting from (5), such block-wise diagonal projectionmatri-
ces immediately lead to a reduced model, composed of

�̃�𝑖 ̇̃𝑥𝑖 (𝑡) = �̃�𝑖𝑥𝑖 (𝑡) + �̃�𝑖𝑢𝑖 (𝑡) ,
𝑦𝑖 (𝑡) = 𝑐T𝑖 𝑥𝑖 (𝑡) ,

(34)

where �̃�𝑖 = 𝑊T
𝑖 𝑀𝑖𝑉𝑖, �̃�𝑖 = 𝑊T

𝑖 𝑁𝑖𝑉𝑖, �̃�𝑖 = 𝑊T
𝑖 𝑏𝑖, and 𝑐T =

𝑐T𝑉𝑖. Together with the coupled relationships

𝑢𝑖 (𝑡) = 𝑘𝑖1𝑦1 (𝑡) + ⋅ ⋅ ⋅ + 𝑘𝑖𝑙𝑦𝑙 (𝑡) + 𝑔𝑖𝑢 (𝑡) ,
𝑦 (𝑡) = 𝑟1𝑦1 (𝑡) + ⋅ ⋅ ⋅ + 𝑟𝑙𝑦𝑙 (𝑡) , (35)

we obtain the whole structure-preserving reduced model.
The above procedure is equivalent to projecting each

subsystem onto the subspaces spanned by 𝑊𝑖 and 𝑉𝑖 from
the perspective of subsystems. So the reduction can be
implemented based on each subsystem instead of reducing
the entire system directly. In fact, it follows from (5) that

𝑀−T𝑐 = 𝑀−T𝑐 𝐶T
𝑐 𝑅T,

𝑀−T𝑁T (𝑀−T𝑐) = 𝑀−T𝑐 𝑁T
𝑐𝑀−T𝑐 𝐶T

𝑐 𝑅T

+𝑀−T𝑐 𝐶T
𝑐𝐾T𝐵T

𝑐𝑀−T𝑐 𝐶T
𝑐 𝑅T,

(36)

and then we get

span {𝑀−T𝑐} = span {𝑀−T𝑐 𝐶T
𝑐 𝑅T} ⊆ span {𝑀−T𝑐 𝐶T

𝑐 } ,
span {𝑀−T𝑁T (𝑀−T𝑐)}

⊆ span {𝑀−T𝑐 𝑁T
𝑐 (𝑀−T𝑐 𝐶T

𝑐 )} ∪ span {𝑀−T𝑐 𝐶T
𝑐 } .

(37)

Recycling (37) in the definition of𝑊 leads to

span {𝑊} = K𝑚+1 (𝑀−T𝑁T;𝑀−T𝑐)
⊆ K𝑚+1 (𝑀−T𝑐 𝑁T

𝑐 ;𝑀−T𝑐 𝐶T
𝑐 ) .

(38)

By (3), if we partition the matrix 𝐶T
𝑐 = diag{𝑐1, 𝑐2, . . . , 𝑐𝑙} =

[𝐶T
1 𝐶T
2 ⋅ ⋅ ⋅ 𝐶T

𝑙 ]T with the matrix 𝐶𝑖 ∈ R𝑛𝑖×𝑙, Krylov
vectors of the subspace K𝑚+1(𝑀−T𝑐 𝑁T

𝑐 ;𝑀−T𝑐 𝐶T
𝑐 ) profit from

the block-diagonal structure of𝑀𝑐, 𝑁𝑐 and have the following
explicit expression:

(𝑀−T𝑐 𝑁T
𝑐 )𝑗𝑀−T𝑐 𝐶T

𝑐 =
[[[[[[[
[

(𝑀−T1 𝑁T
1 )𝑗 𝑀−T1 𝐶1

(𝑀−T2 𝑁T
2 )𝑗 𝑀−T2 𝐶2

⋅ ⋅ ⋅
(𝑀−T𝑙 𝑁T

𝑙 )𝑗 𝑀−T𝑙 𝐶𝑙

]]]]]]]
]

(39)

for 𝑗 = 0, 1, . . . , 𝑚. Further, as all columns of the matrix 𝐶𝑖
are zeros, except one column being 𝑐𝑖, the diagonal elements𝑊𝑖 defined in (33) can be chosen as follows:

span {𝑊𝑖} = K𝑚+1 (𝑀−T𝑖 𝑁T
𝑖 ;𝑀−T𝑖 𝐶𝑖)

= K𝑚+1 (𝑀−T𝑖 𝑁T
𝑖 ;𝑀−T𝑖 𝑐𝑖) .

(40)

We point out that𝑊𝑖 arises only relying on the 𝑖th subsystem,
while full system (23) is still required and then (33) is used
to obtain 𝑉𝑖 for the subsystems. The nice structure similar to
(40) is not available for 𝑉.

In the following, we sketch the procedure of the proposed
derivative-extended reduction method for coupled systems.

Algorithm 4 (derivative-extended reduction method for cou-
pled systems).

Input. The inputs are coefficient matrices of (1) and (2):𝑀𝑖, 𝑁𝑖, 𝑏𝑖, 𝑐𝑖; 𝑘𝑖𝑗, 𝑟𝑖, 𝑔𝑖.
Output. The outputs are coefficient matrices of (34): �̃�𝑖,�̃�𝑖, �̃�𝑖, 𝑐𝑖.

(1) Calculate 𝑎𝑚 by solving linear equation (9).
(2) Construct the matrix 𝑉𝑖 by (23) and (33).
(3) Construct the column orthonormal matrix 𝑊𝑖 by

(40).
(4) Construct subsystem (34) for 𝑖 = 1, 2, . . . , 𝑙.
(5) Combine all subsystems with coupled relationships

(35).

Remark 5. In Algorithm 4, one can calculate the vector 𝑎𝑚 by
solving the first linear equation of (9) with much less effort,
instead of solving the whole linear system directly. Once the
vector 𝑎𝑚 is found, the matrices 𝑉𝑖 and 𝑊𝑖 with orthogonal
columns can be obtained by using the well-known Arnoldi
algorithm [8].

Remark 6. Algorithm 4 cannot ensure the preservation of the
stability of original systems in theory. Note that even though
all subsystems are stable, the whole couple systemmay be still
unstable. The stability of reduced models can be enforced by
constructing a new left projection matrix at the expense of



Discrete Dynamics in Nature and Society 7

Original-Sys
Frequency-Sys

Time-Sys
Derivative-extended-Sys

Frequency-Sys
Time-Sys
Derivative-extended-Sys

1 2 3 4 50
Time t (second)

0

20

40

60

80

100

120
y
(t
)

10−5

10−4

10−3

10−2

10−1

Re
la

tiv
e e

rr
or

s

1 2 3 4 50
Time t (second)

Figure 2: Outputs and relative errors for the input 𝑢(𝑡) = 𝑒−2𝑡 sin(5𝑡).

preserving Chebyshev coefficients of the derivatives.We refer
the reader to [23], where the stability of coupled systems was
discussed in detail based on the closed form.

In the end, we point out that while we base our discussion
mainly on the single-input single-output (SISO) systems,
however, all the results presented in this paper can be easily
extended to the multi-input multioutput (MIMO) case. The
extension is nonessential in principle and here we omit the
details.

4. Simulation Examples

In this section, two numerical examples from real world are
simulated to show the performance of our approach. We
compare our results with the time domain reduction method
presented in [18] as well as the typical frequency domain
reduction method [4]. Our simulation is carried out in
MatlabVersion 7.5.0.342 (R2007b) on a PCwith Intel(R) Core
(TM) CPU 2.60GHz and 4GB RAM.

Example 1. We use the benchmark model, Earth Atmo-
spheric Example, which results from the modeling of the
atmospheric storm track [26]. This model is dense and is of
order 598. It is a general linear system and there is no coupled
structure for this model. This example is mainly used to
manifest the superior approximation accuracy whenmerging
the derivative information into reduced models.

For comparison, the reduced model “Frequency-Sys” is
produced to match the Markov parameters by the frequency
domain reductionmethods in [4], the reducedmodel “Time-
Sys” by the time domain reduction method given in [18],
and the last one, denoted as “Derivative-extended-Sys,” by
our derivative-extended time domain method. All reduced

models are of order 12. For the given input 𝑢(𝑡) = 𝑒−2𝑡 sin(5𝑡),
Figure 2 shows the output and the relative error for each
reduced model in the time domain. It can be seen that the
transient response of the system is well approximated by all
reduced models, while our approach shows a much better
accuracy, especially for the long term behavior of the system
for this example.

Example 2. This coupled system is adapted from the standard
example appearing in [22], where it describes a PI-controller
used to control the temperature of a 1D beam. The coupled
system is of order 2001 and comprises two subsystems.

For this example, the reduced models “Frequency-Sys”
and “Time-Sys” are produced by the frequency domain
reduction [4] and the time domain method [18], respectively,
for comparison. “Derivative-extended-Sys” is generated by
the proposed Algorithm 4 in this paper, and the topological
structure of couple systems is retained naturally. Reduced
order coupled systems of order 6 are first produced, and
Figure 3 depicts the outputs and relative errors for the input
function 𝑢(𝑡) = 𝑒−𝑡. Clearly, owing to preserving much more
time domain information, the derivative-extended approach
provides amuch better approximation to the transient behav-
ior of the system, while it shows more erratic error than the
other two methods. Actually, the two-sided projection meth-
ods we adopted pave the way for retaining more information
of the original systems but may result in ill-conditioned
system matrices compared with one-sided methods [27].

To this end, one can proceed to define a new orthonormal
matrix 𝑄𝑖 by enlarging the subspaces spanned by 𝑊𝑖 and 𝑉𝑖
as follows:
span {𝑄𝑖} = span {𝑊𝑖} ∪ span {𝑉𝑖}

for 𝑖 = 1, 2, . . . , 𝑙, (41)
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Figure 3: Outputs and relative errors for the input 𝑢(𝑡) = 𝑒−𝑡.
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Figure 4: Relative errors of reduced models with different reduced
orders.

and then 𝑄𝑖 can be employed to reduce each subsystem in
the framework of one-sided methods along with roughly
doubling the reduced order at most. With 𝑚 = 6, we
obtain a reduced coupled system of order 15 by (41), which is
denoted by “Enlarged-space-Sys.” To provide a fair compari-
son, three reducedmodels “Frequency-Sys,” “Time-Sys,” and
“Derivative-extended-Sys” of order 16 are also carried out in
our simulation, and the relative error of each reduced model
is shown in Figure 4. We observe that the relatively higher
reduced order largely improves the approximation accuracy
of “Frequency-Sys” and our approach still has the best
approximation to the system transient behavior, although it
levels out to similar error to the others as time progresses.

5. Conclusions

Wehave presented a derivative-extended time domain reduc-
tion method for coupled systems based on Chebyshev poly-
nomials. The derived reduced model matches much more
time domain information of the original system due to the
specific structure of Chebyshev coefficients, and the coupled
structure is also preserved naturally during model reduction.
Theoretical analysis and numerical simulation verify the
accuracy of the proposed method.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Natural Science Foundation
of China (NSFC) under Grants 11401472 and 11371287,
the Natural Science Foundation of Shaanxi Province
(2017JM1019), and the Fundamental Research Funds for the
Central Universities under Grant 3102015ZY072.

References

[1] D. Amsallem, M. Zahr, Y. Choi, and C. Farhat, “Design opti-
mization using hyper-reduced-order models,” Structural and
Multidisciplinary Optimization, vol. 51, no. 4, pp. 919–940, 2015.

[2] Z. Ye, Z. Zhu, and J. R. Phillips, “Incremental large-scale
electrostatic analysis,” IEEE Transactions on Computer-Aided
Design of IntegratedCircuits and Systems, vol. 28, no. 11, pp. 1641–
1653, 2009.

[3] L. Stirling, K. Willcox, and D. Newman, “Development of a
computational model for astronaut reorientation,” Journal of
Biomechanics, vol. 43, no. 12, pp. 2309–2314, 2010.



Discrete Dynamics in Nature and Society 9

[4] A. C. Antoulas, Approximation of Large-Scale Dynamical Sys-
tems, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, Pa, USA, 2005.

[5] P. Benner, V. Mehrmann, and D. C. Sorensen, “Dimension
reduction of large-scale systems,” in Lecture Notes in Computa-
tional Science and Engineering, Springer, Berlin, Germany, 2005.

[6] I. M. Jaimoukha and E. M. Kasenally, “Oblique projection
methods for large scale model reduction,” SIAM Journal on
Matrix Analysis and Applications, vol. 16, no. 2, pp. 602–627,
1995.

[7] S. A. Nahvi, M. Nabi, and S. Janardhanan, “Piece-wise quasi-
linear approximation for nonlinear model reduction,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 32, no. 12, pp. 2009–2013, 2013.

[8] T. C. Ionescu, “Two-sided time-domain moment matching for
linear systems,” IEEETransactions onAutomatic Control, vol. 61,
no. 9, pp. 2632–2637, 2016.

[9] V. Druskin and V. Simoncini, “Adaptive rational Krylov sub-
spaces for large-scale dynamical systems,” Systems & Control
Letters, vol. 60, no. 8, pp. 546–560, 2011.
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